Categorical distributions; Discriminative models CPSC 440/550: Advanced Machine Learning

cs.ubc.ca/~dsuth/440/24w2

University of British Columbia, on unceded Musqueam land

2024-25 Winter Term 2 (Jan-Apr 2025)

- If you need a form signed, post it (privately) on Piazza
- Assignment 1 due Friday 11:59pm!
- Quiz 1 happening now through Saturday; schedule a slot ASAP

Last time

- Generative classifiers: model p(x, y) and predict with e.g. $\arg \max_{y} p(y \mid x) = \arg \max_{y} p(x, y)$
- Multivariate models: product of Bernoullis, assumes X_j are all independent
- Naïve Bayes: assume the X_j are independent given Y

"Galaxy Brain Bayes"

- Naïve Bayes models p(y) as Bernoulli, $p(x \mid y)$ as product of Bernoullis
 - Makes a strong assumption: all the X_j are independent given Y
- What if we avoided that assumption entirely?
- Could model $p(x \mid y)$ with a full categorical distribution:

$$Pr(X_1 = 0, X_2 = 0, \dots, X_d = 0 \mid Y = 0) = \theta_{00\dots0|0}$$
$$Pr(X_1 = 0, X_2 = 0, \dots, X_d = 1 \mid Y = 0) = \theta_{00\dots1|0}$$
$$\vdots$$

$$\Pr(X_1 = 1, X_2 = 1, \dots, X_d = 1 \mid Y = 0) = \theta_{11\dots1|0}$$

 \ldots and the same for probabilities given Y=1

- 2^d possible binary vectors, so need $2^d 1$ parameters for each condition
- $\bullet\,$ MLE is again counting, $\theta_{x|y}=n_{x|y}/n_y$, as we'll see in a moment
- Different kind of "naïvety" than naïve Bayes: each bit-vector is totally separate

Outline

1 Categorical distribution

- Inference
- Learning
- 2 Discriminative classifiers

Motivating problem: political polling

- Want to know support for political parties among a voter group
 - Helps candidates/parties target campaigning, etc
- Where I live, the last election results:
 - 40.4% 23.0% Liberal
 - 30.7% 17.5% NDP
 - 21.6% 12.31% Conservative
 - 3.9% 2.2% Green
 - 3.2% 1.8% PPC
 - 43% no vote
- We want to estimate these quantities based on a sample (a poll)

General problem: categorical density estimation

- Special case of density estimation with a categorical variable:
 - Input: n iid samples of categorical values $x^{(1)}, x^{(2)}, \ldots, x^{(n)} \in \{1, 2, \ldots, k\}$
 - Output: a probability model for Pr(X = 1), Pr(X = 2), ..., Pr(X = k)
- \bullet We'll remember, but not usually write down, that $1={\tt Lib},\, 2={\tt NDP},\,\ldots$
- As a picture: $\mathbf{X} \in \mathbb{R}^{n \times 1}$ contains our sample data X is a random variable over $\{1, 2, \dots, k\}$ from the distribution

$$\mathbf{X} = \begin{bmatrix} 1\\2\\3\\1\\3 \end{bmatrix} \xrightarrow{\text{density estimator}} & \Pr(X=1) = 0.4\\ \Pr(X=2) = 0.2\\ \Pr(X=3) = 0.4 \end{bmatrix}$$

• We'll start by revisiting previous concepts, but introduce some more

Other applications of categorical density estimation

- Some other questions we might ask:
 - What portion of my customers use cash, credit, debit?
 - What's the probability that a random patient will be able to receive this type of blood?
 - S How many random tweets should I expect to look at before I see this particular word?
- For categorical variables, we do not assume an ordering
 - $\bullet\,$ Category 4 isn't "closer" to category 3 than it is to category 1

Ordinal variables

- Ordered categorical variables are called ordinal
 - Results of rolling dice, if you're trying to beat a specific number
 - Survey results ("strongly disagree," "disagree," "neutral," ...)
 - Ratings (1 star, 2 stars, ...)
 - Tumour severity (Grade I, ..., Grade IV)
- We won't cover these for now, but lots of methods exist
- "Ordinal logistic regression": a loss function where "2 stars" is closer to "3 stars" than "4 stars"
 - But there might be a bigger "gap" between 2 and 3 stars than between 3 and 4
- Can use this "ordinal loss" in neural nets

Parametrizing categorical probabilities

- We typically use the categorical distribution (aka "multinoulli" (ugh))
- For k categories, have k parameters, $\theta_1,\ldots,\theta_k\geq 0$

$$\Pr(X = 1 \mid \theta_1, \dots, \theta_k) = \theta_1 \quad \cdots \quad \Pr(X = k \mid \theta_1, \dots, \theta_k) = \theta_k$$

• Categories are mutually exclusive: can only pick one

• Require that
$$\sum_{c=1}^{k} \theta_c = 1$$

• More succinctly: if $X \sim \operatorname{Cat}(\boldsymbol{\theta})$ with $\boldsymbol{\theta} = (\theta_1, \dots, \theta_k)$,

$$p(x \mid \boldsymbol{\theta}) = \theta_1^{\mathbbm{1}(x=1)} \theta_2^{\mathbbm{1}(x=2)} \cdots \theta_k^{\mathbbm{1}(x=k)}$$

Outline

- Learning
- 2 Discriminative classifiers

Inference task: union

- Inference task: given θ , compute probability of unions
- For example: $\Pr(X = \texttt{Lib} \cup X = \texttt{NDP} \mid \boldsymbol{\theta})$
- Can't be both, so: $\Pr(X = 2 \cup X = 4 \mid \boldsymbol{\theta}) = \theta_2 + \theta_4$
- Variation: $Pr(X \le c)$ for some c is $\theta_1 + \theta_2 + \cdots + \theta_c$
- Why do we care, since the categories are unordered?
- $F(c) = \Pr(X \le c)$ is the cumulative distribution function (cdf)
 - Depends on (arbitrary) ordering, but very useful function as we'll see soon!

Inference task: mode (decoding)

- Inference task: given ${m heta}$, find the mode, $rg \max_x p(x \mid {m heta})$
 - "Who's going to win the election?"
- Also very easy: $\arg \max_c \theta_c$

Inference task: likelihood

- \bullet Inference task: given and data $\mathbf{X},$ find $p(\mathbf{X} \mid \boldsymbol{\theta})$
- Assuming data is iid from $Cat(\theta)$,

p

$$\begin{aligned} (\mathbf{X} \mid \boldsymbol{\theta}) &= p(x^{(1)}, \dots, x^{(n)} \mid \boldsymbol{\theta}) = \prod_{i=1}^{n} p(x^{(i)} \mid \boldsymbol{\theta}) \\ &= \prod_{i=1}^{n} \theta_1^{\mathbb{1}(x^{(i)}=1)} \theta_2^{\mathbb{1}(x^{(i)}=2)} \cdots \theta_k^{\mathbb{1}(x^{(i)}=k)} \\ &= \theta_1^{\sum_{i=1}^{n} \mathbb{1}(x^{(i)}=1)} \theta_2^{\sum_{i=1}^{n} \mathbb{1}(x^{(i)}=2)} \cdots \theta_k^{\sum_{i=1}^{n} \mathbb{1}(x^{(i)}=k)} \\ &= \theta_1^{n_1} \theta_2^{n_2} \cdots \theta_k^{n_k} \end{aligned}$$

... defining at the end n_c as the number of cs in X, like n₀ and n₁ for binary data
Like Bernoulli, the likelihood only depends on the counts

Code for categorical likelihood

```
counts = np.zeros(k)
for x in X:
    count[x] += 1
p = 1
for theta_c, n_c in zip(theta, counts):
    p *= theta_c ** n_c

Better version:
counts = np.bincount(X,
\rightarrow minlength=k)
log_p = counts @ log_theta
```

- Computational complexity (either way) is $\mathcal{O}(n+k)$
 - Usual case: $n \gg k$ (many samples, few categories), this is just $\mathcal{O}(n)$
 - If $k \gg n$, could also easily get $\mathcal{O}(n)$ by only tracking categories with nonzero counts

Inference task: sampling

• Inference task: given θ , generate samples from $X \sim \operatorname{Cat}(\theta)$

$$\begin{array}{l}
\Pr(X=1) = 0.4 \\
\Pr(X=2) = 0.2 \\
\Pr(X=3) = 0.4
\end{array} \xrightarrow{\text{sampling}} \mathbf{X} = \begin{bmatrix} 1 \\ 3 \\ 3 \end{bmatrix}$$

Notice: not sampling "one value per class"; each sample is in one category
Who will this voter (say they'll) vote for?

Categorical sampling algorithm

- ullet Will use a uniform sample from [0,1] to construct a sample from $\operatorname{Cat}({\boldsymbol{\theta}})$
- Example: sample from $\theta = (0.4, 0.2, 0.3, 0.1)$ based on a single $u \sim \text{Unif}([0, 1])$
 - Want X = 1 40% of the time: if u < 0.4, return 1
 - Want X = 2 20% of the time: if $0.4 \le u < 0.6$, return 2
 - Want X = 3 30% of the time: if $0.6 \le u < 0.9$, return 3
 - Want $X = 4 \ 10\%$ of the time: if $0.9 \le u$, return 4

• Use CDF,
$$\Pr(X \leq c) = \theta_1 + \dots + \theta_c$$
:

- Generate $u \sim \text{Unif}([0,1])$
- if $u \leq \Pr(X \leq 1)$, return 1
- else if $u \leq \Pr(X \leq 2)$, return 2

• . . .

• else return k

- Computing $\Pr(X \leq c)$ from θ costs $\mathcal{O}(k)$
 - Would get $\mathcal{O}(k^2)$ total time...but can save it
 - cdf = np.cumsum(theta)
 - u = rng.random_sample(n_to_samp)

samp = cdf.searchsorted(u, side='right')

• Takes $\mathcal{O}(k)$ upfront, $\mathcal{O}(\log k)$ per sample

Faster categorical sampling algorithms

- Previous method is sometimes called "roulette wheel sampling"
 - + $\mathcal{O}(k)$ preprocessing (computing the CDF), $\mathcal{O}(\log k)$ time per sample
- "Vose's alias method": $\mathcal{O}(k)$ preprocessing but only $\mathcal{O}(1)$ time per sample
- Really nice (long) article developing many variations: Darts, Dice, and Coins: Sampling from a Discrete Distribution by Keith Schwarz

Outline

Categorical distributionInference

• Learning

2 Discriminative classifiers

MLE for categorical distribution

• How do we learn a categorical model?

$$\mathbf{X} = \begin{bmatrix} \mathsf{NDP} \\ \mathsf{Lib} \\ \mathsf{Lib} \\ \mathsf{CPC} \\ \vdots \end{bmatrix} \xrightarrow{\text{density estimator}} \boldsymbol{\theta} = \begin{bmatrix} \Pr(X = \mathsf{Lib}) = 0.404 \\ \Pr(X = \mathsf{NDP}) = 0.307 \\ \Pr(X = \mathsf{CPC}) = 0.216 \\ \Pr(X = \mathsf{Grn}) = 0.039 \\ \Pr(X = \mathsf{PPC}) = 0.032 \end{bmatrix}$$

• Like before, start with maximum likelihood estimation (MLE):

$$\hat{\boldsymbol{\theta}} \in rg\max_{\boldsymbol{\theta}} p(\mathbf{X} \mid \boldsymbol{\theta})$$

- Like before, MLE will be $\theta_c = \frac{n_c}{n}$ (the portion of *c*s in the data)
- Like before, derivation is more complicated than the result

Derivation of the MLE that doesn't work

• The likelihood is

$$p(\mathbf{X} \mid \boldsymbol{\theta}) = \theta_1^{n_1} \cdots \theta_k^{n_k}$$

• So, the log-likelihood is

$$\log p(\mathbf{X} \mid \boldsymbol{\theta}) = n_1 \log \theta_1 + \dots + n_k \log \theta_k$$

• Take the derivative for a particular θ_c :

$$\frac{\partial}{\partial \theta_c} \log p(\mathbf{X} \mid \boldsymbol{\theta}) = \frac{n_c}{\theta_c}$$

• Set the derivative to zero:

$$\frac{n_c}{\theta_c} = 0$$

• ... huh?

Fixing the derivation

- Setting the derivative to zero doesn't work
 - Ignores the constraint that $\sum_{c} \theta_{c} = 1$
- Some ways to enforce constraints (see e.g. this StackExchange thread):
 - Use Lagrange multipliers to find stationary point of the Lagrangian
 Define θ_k = 1 − Σ^{k-1}_{c=1} θ_c, replace in the objective function
- We'll take a different way here:
 - Use a different parameterization $\tilde{\theta}_c$ that doesn't have this constraint
 - Compute the MLE for the $\tilde{\theta}_c$ by setting derivative to zero
 - Convert from the $\tilde{\theta}_c$ to θ_c

Unnormalized parameterization

• Let's have $\tilde{\theta}_c$ be unnormalized:

$$\Pr(X = c \mid \tilde{\theta}_1, \dots, \tilde{\theta}_k) \propto \tilde{\theta}_c$$

• Still need each
$$\tilde{\theta}_c \geq 0$$

Can then find

$$p(c \mid \tilde{\boldsymbol{\theta}}) = \frac{\tilde{\theta}_c}{\sum_{i=1}^k \tilde{\theta}_c} = \frac{\tilde{\theta}_c}{Z_{\tilde{\boldsymbol{\theta}}}}$$

- The "normalizing constant" $Z_{\tilde{\theta}}$ makes the total probability 1
 - Don't need the explicit sum-to-1 constraint anymore
 - Note: constant for different x; **not** constant for different θ
- To convert from unnormalized to normalized: $\theta_c = \tilde{\theta}_c/Z_{\tilde{\theta}}$

Derivation of the MLE that does work

• The likelihood in terms of the unnormalized parameters is

$$p(\mathbf{X} \mid \tilde{\boldsymbol{\theta}}) = \left(\frac{\tilde{\theta}_1}{Z_{\tilde{\boldsymbol{\theta}}}}\right)^{n_1} \cdots \left(\frac{\tilde{\theta}_k}{Z_{\tilde{\boldsymbol{\theta}}}}\right)^{n_k} = \frac{1}{Z_{\tilde{\boldsymbol{\theta}}}^n} \tilde{\theta}_1^{n_1} \cdots \tilde{\theta}_k^{n_k}$$

• So, the log-likelihood is

$$\log p(\mathbf{X} \mid \tilde{\boldsymbol{\theta}}) = n_1 \log \tilde{\theta}_1 + \dots + n_k \log \tilde{\theta}_k - n \log Z_{\hat{\boldsymbol{\theta}}}$$

• Take the derivative for a particular $\tilde{\theta}_c$:

$$\frac{\partial}{\partial \tilde{\theta}_c} \log p(\mathbf{X} \mid \tilde{\boldsymbol{\theta}}) = \frac{n_c}{\tilde{\theta}_c} - \frac{n}{Z_{\tilde{\boldsymbol{\theta}}}} \frac{\partial Z_{\tilde{\boldsymbol{\theta}}}}{\partial \tilde{\theta}_c} = \frac{n_c}{\tilde{\theta}_c} - \frac{n}{Z_{\tilde{\boldsymbol{\theta}}}} \qquad \text{since } \frac{\partial}{\partial \tilde{\theta}_c} \left(\tilde{\theta}_1 + \dots + \tilde{\theta}_k \right) = 1$$

• Set the derivative to zero:

$$\frac{n_c}{\tilde{\theta}_c} = \frac{n}{Z_{\tilde{\boldsymbol{\theta}}}} \quad \text{so} \quad \frac{\theta_c}{Z_{\tilde{\boldsymbol{\theta}}}} = \frac{n_c}{n}$$

 \sim

- Can check this objective is concave, so this is a max; also satisfies $\tilde{\theta}_c \ge 0$ constraint
- Many solutions, but all the same after normalizing

MAP estimate, Dirichlet prior

- As before, might prefer MAP estimate over MLE
- Often becomes more important for large k: lots of parameters!
- Most common prior is the Dirichlet distribution:

$$p(\theta_1,\ldots,\theta_k \mid \alpha_1,\ldots,\alpha_k) \propto \theta_1^{\alpha_1-1} \cdots \theta_k^{\alpha_k-1}$$

- $\bullet\,$ Generalization of the beta distribution to k classes
- Requires each $\alpha_c > 0$
- This is a distribution over heta
 - Probability distribution over possible (categorical) probability distributions

Dirichlet distribution

• Wikipedia's visualizations for k = 3:

https://en.wikipedia.org/wiki/Dirichlet_distribution

MAP estimate for Dirichlet-Categorical

• Reason to use the Dirichlet: again because posterior is simple

$$p(\boldsymbol{\theta} \mid \mathbf{X}, \boldsymbol{\alpha}) \propto p(\mathbf{X} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta} \mid \boldsymbol{\alpha}) \propto \theta_1^{n_1} \cdots \theta_k^{n_k} \theta_1^{\alpha_1 - 1} \cdots \theta_k^{\alpha_k - 1}$$
$$= \theta_1^{(n_1 + \alpha_1) - 1} \cdots \theta_k^{(n_k + \alpha_k) - 1}$$

i.e. it's Dirichlet again with parameters $\tilde{\alpha}_c = n_c + \alpha_c$

• A few more steps show MAP for a categorical with Dirichlet prior is

$$\hat{\theta}_{c} = \frac{n_{c} + \alpha_{c} - 1}{\sum_{c'=1}^{k} (n_{c'} + \alpha_{c'} - 1)}$$

(again as long as all $n_c + \alpha_c > 1$)

- Dirichlet has k hyper-parameters α_c
 - Often use $\alpha_c = \alpha$ for some $\alpha \in \mathbb{R}$: one hyperparameter
 - Makes the MLE $\hat{\theta}_c = rac{n_c + lpha 1}{n + k(lpha 1)}$
 - $\alpha = 2$ gives Laplace smoothing (add 1 "fake" count for each class)

Conjugate priors

- This is our second example where prior and posterior have the same form
 - Beta prior + Bernoulli likelihood gives a Beta posterior
 - Also happens with binomial, geometric, ... likelihoods
 - Dirichlet prior + categorical likelihood gives a Dirichlet posterior
 - Also happens with multinomial likelihood
- When this happens, we say prior is conjugate to the likelihood
- Prior and posterior come from the same "family" of distributions

 $X \sim L(\theta) \quad \theta \sim P(\alpha) \quad \text{implies} \quad \theta \mid X \sim P(\alpha^+)$

- ${\, \bullet \, }$ Updated parameters α^+ will depend on the data
- Many computations become easier if we have a conjugate prior
- But not all distributions have conjugate priors
 - $\bullet\,$ And even when one exists, might not be convenient / a good choice

Outline

2 Discriminative classifiers

Discriminative classifiers

- Generative classifiers model p(x, y), then use that to get $p(y \mid x)$
 - Often model p(y) (usually simple) and then $p(x \mid y)$ (harder)

"When solving a problem of interest, do not solve a more general problem as an intermediate step."

— Vladimir Vapnik

- An alternative philosophy: just directly model $p(y \mid x)$
 - Or even further: just directly learn a classification function
- Modeling p(x) can be hard
 - Discriminative: "which pixels show me this picture is a dog?"
 - Generative: "what do pictures of dogs look like?"

Hierarchy of predictor types

• Different types of models can answer different types of questions:

type	example	p(x,y)	$p(y \mid x)$	$f(x) \approx y$
Generative	naïve Bayes	1	✓	✓
Discriminative (prob.)	logistic regression	×	\checkmark	\checkmark
Discriminative (non-prob.)	SVM	×	×	\checkmark

- Problem usually gets "easier" as you model less
- But you can't do as much with it
 - Discriminative models can't sample, do outlier detection, ...
 - "Pure classifiers" can't easily combine into broader inference (e.g. decision theory)

Discriminative models, binary data

• Discriminative model with a full categorical parameterization:

 $\Pr(\texttt{spam} \mid \texttt{aardvark} = 0, \dots, \texttt{lotto} = 0, \dots, \texttt{zyzzyva} = 0) = \theta_{0 \cdots 0 \cdots 0}$

 $\Pr(\texttt{spam} \mid \texttt{aardvark} = 1, \dots, \texttt{lotto} = 1, \dots, \texttt{zyzzyva} = 1) = \theta_{1 \cdots 1 \cdots 1}$

- Can represent any conditional distribution on binary data
- Needs 2^d parameters (versus $2(2^d-1)$ for "galaxy brain Bayes")
 - (Why not $2^d 1$?)
- Fitting: $y \mid x$ is a separate Bernoulli for each x; can just MLE/MAP for each one
- But probably don't see very many emails per x (and many have $n_x = 0$)
 - Will probably overfit for almost every \boldsymbol{x}
 - Want to share information across similar xs!

Linear parameterization of conditionals

- Generally: would like to use a "parsimonious" parameterization
 - Full categorical distribution: can model anything, very many parameters
 - Making stronger assumptions: can't model everything, much less complex model
- Standard basic choice: assume a linear model, i.e. one of the form

$$p(y = 1 | x_1, \dots, x_d, w) = f(w_1 x_1 + \dots + w_d x_d) = f(w^{\mathsf{T}} x)$$

where w is our vector of d parameters and f is some function from \mathbb{R} to [0,1]• Standard basic choice for f: sigmoid function, giving logistic regression

$$f(z) = \frac{1}{1 + \exp(-z)}$$

$$(i) = \frac{1}{1 + \exp(-z)}$$

$$(i) = \frac{0.8}{6}$$

Logistic regression inference

• For a given w and x, logistic regression gives us a Bernoulli distribution over y:

$$\Pr(Y = 1 \mid X = x, w) = \frac{1}{1 + \exp(-w^{\mathsf{T}}x)}$$

- \bullet Usually just take the mode to predict most likely y
- But can also:
 - Set a different confidence threshold, e.g. based on "decision theory"
 - Sample conditional ys given this x
 - Compute probability of seeing 5 positives out of 10 examples with this \boldsymbol{x}
 - $\bullet\,$ Compute the expected number of samples with this x to see a single positive
 - Ask how likely both an x and an independent x' are to be positive
 - . . .

Maximum conditional likelihood

- \bullet MLE for generative models: $\arg\max_w p(\mathbf{X},\mathbf{y}\mid w)$
 - Can't do that for discriminative models!
- ullet When we say MLE for discriminative models, we mean $\arg\max_w p(\mathbf{y}\mid\mathbf{X},w)$
 - $\bullet~\mbox{Treat}~{\bf X}$ as fixed, maximize conditional likelihood
- \bullet Logistic regression also makes sense for continuous x
 - Even though it's only using binary probabilities!
- Different than naïve Bayes:
 - $\bullet\,$ Models $X\mid Y,$ so continuous X needs to use a continuous distribution

Logistic (negative log-)likelihood

• Logistic regression uses

$$p(\mathbf{y} \mid \mathbf{X}, w) = \prod_{i=1}^{n} p\left(y^{(i)} \mid \mathbf{X}, w\right) = \prod_{i=1}^{n} p\left(y^{(i)} \mid x^{(i)}, w\right)$$

so
$$-\log p(\mathbf{y} \mid \mathbf{X}, w) = \sum_{i=1}^{n} -\log p(y^{(i)} \mid x(i), w)$$

• Each $-\log p(y^{(i)} \mid x(i), w)$ term is $\log (1 + \exp (-\tilde{y}^{(i)} w^{\mathsf{T}} x^{(i)}))$, for $\tilde{y} \in \{-1, 1\}$:

$$\begin{cases} -\log\frac{1}{1+\exp\left(-w^{\mathsf{T}}x^{(i)}\right)} & \text{if } y^{(i)} = 1\\ -\log\left(1-\frac{1}{1+\exp\left(-w^{\mathsf{T}}x^{(i)}\right)}\right) & \text{if } y^{(i)} = 0 \end{cases} = \begin{cases} \log\left(1+\exp\left(-w^{\mathsf{T}}x^{(i)}\right)\right) & \text{if } y^{(i)} = 1\\ \log\left(1+\exp\left(w^{\mathsf{T}}x^{(i)}\right)\right) & \text{if } y^{(i)} = 0 \end{cases}$$

 \bullet Usually convenient to use $y \in \{-1,1\}$ instead of $\{0,1\}$ for binary linear classifiers

MLE for logistic regression

- MLE is equivalent to minimizing $f(w) = \sum_{i=1}^{n} \log(1 + \exp(-y^{(i)}w^{\mathsf{T}}x^{(i)}))$
 - Using $y^{(i)} \in \{-1,1\}$ here
 - Equivalent to "binary cross-entropy"
 - Computational cost: need to compute the $w^{\mathsf{T}}x^{(i)}$, aka $\mathbf{X}w$, in time $\mathcal{O}(nd)$

• $\nabla f(w) = -\mathbf{X}^{\mathsf{T}} \frac{\mathbf{y}}{1 + \exp(\mathbf{y} \odot \mathbf{X} w)}$, with elementwise operations for the y; also $\mathcal{O}(nd)$

- Convex function: no bad local minima
- No closed-form solution in general from setting $\nabla f(w)=0$
- But can solve with gradient descent or other iterative optimization algorithms
 - Best choice depends on n, d, desired accuracy, computational setup, \ldots

MAP for logistic regression \approx regularization

- MAP with a Gaussian prior, $w_j \sim \mathcal{N}\left(0, \frac{1}{\lambda}\right)$, adds $\frac{1}{2}\lambda \|w\|^2$ to the objective
 - Now "strongly convex": optimization is usually faster
- Typically gives better test error when λ is appropriate
- MAP here is $\arg \max_w p(w \mid \mathbf{X}, \mathbf{y}) = \arg \max_w p(\mathbf{y} \mid \mathbf{X}, w) p(w)$
 - As opposed to generative MAP, $\arg \max_w p(w \mid \mathbf{X}, \mathbf{y}) = \arg \max_w p(\mathbf{X}, \mathbf{y} \mid w) p(w)$

Binary naïve Bayes is a linear model

Ρ

$$\begin{aligned} \operatorname{r}(Y=1 \mid X=x) &= \frac{p(x \mid y=1)p(y=1)}{p(x \mid y=1)p(y=1) + p(x \mid y=0)p(y=0)} \\ &= \frac{1}{1 + \frac{p(x \mid y=0)p(y=0)}{p(x \mid y=1)p(y=1)}} = \frac{1}{1 + \exp\left(-\log\frac{p(x \mid y=1)p(y=1)}{p(x \mid y=0)p(y=0)}\right)} \\ &= \sigma\left(\sum_{j=1}^{d}\log\frac{p(x_{j} \mid y=1)}{p(x_{j} \mid y=0)} + \log\frac{p(y=1)}{p(y=0)}\right) \\ &= \sigma\left(\sum_{j=1}^{d}\log\frac{\theta_{j|1}^{x_{j}}(1-\theta_{j|1})^{1-x_{j}}}{\theta_{j|0}^{x_{j}}(1-\theta_{j|0})^{1-x_{j}}} + \log\frac{p(y=1)}{p(y=0)}\right) \\ &= \sigma\left(\sum_{j=1}^{d}\left[x_{j}\log\frac{\theta_{j|1}}{\theta_{j|0}} + (1-x_{j})\log\frac{1-\theta_{j|1}}{1-\theta_{j|0}}\right] + \log\frac{p(y=1)}{p(y=0)}\right) \\ &= \sigma\left(\sum_{j=1}^{d}x_{j}\underbrace{\log\frac{\theta_{j|1}}{\theta_{j|0}}\frac{1-\theta_{j|0}}{1-\theta_{j|1}}}_{w_{j}} + \underbrace{\sum_{j=1}^{d}\log\frac{1-\theta_{j|1}}{1-\theta_{j|0}}}_{p(y=0)} + \log\frac{p(y=1)}{p(y=0)}\right) = \sigma(w^{\mathsf{T}}x+b) \end{aligned}$$

Not generally the parameters that logistic regression would pick (so, lower likelihoods in logreg model)

39 / 46

bonusl

Adding intercepts to linear models

- Often we only talk about homogeneous linear models, $f(w^{\mathsf{T}}x)$
- More generally inhomogeneous models, $f(w^{T}x + b)$, are very useful in practice
- Two usual ways to do this:
 - Treat b as another parameter to fit and put it in all the equations
 - Add a "dummy feature" $X_0 = 1$; then corresponding weight w_0 acts like b
- Both of these ways make sense in probabilistic framing, too!
- ullet Just be careful about if you want to use the same prior on b/w_0 or not
 - Often makes sense to "not care about y location," i.e. use improper prior $p(w_0) \propto 1$
- Another generally-reasonable scheme:
 - First centre the ys so $\frac{1}{n}\sum_{i=1}^n y^{(i)}=0$, then put some prior on w_0 not being too big

Recap: tabular versus logistic regression

- Tabular parameterization of a categorical:
 - Each $\theta_{y|x}$ is totally separate
 - 2^d parameters when everything is binary
 - Can model any binary conditional parameter
 - Tends to overfit unless $2^d \ll n$
- Logistic regression parameterization of a categorical:
 - Each $\theta_{y|x}$ is given by $\sigma(w^{\mathsf{T}}x+b)$
 - d or d + 1 parameters (depending on offset)
 - Can only model linear conditionals
 - Tends to underfit unless d is big or truth is linear
- Simple versus complex model: subject of learning theory

"Fundamental trade-off"

 $\begin{array}{l} \text{generalization error} = \text{train error} + \underbrace{\text{generalization error}}_{\text{generalization gap (overfitting)}} \geq \text{irreducible error} \\ \end{array}$

- If irreducible error > 0, small train error implies some overfitting / vice versa
- Simple models, like logistic regression with few features:
 - Tend to have small generalization gaps: don't overfit much
 - Tend to have larger training error (can't fit data very well)
- Complex models, like tabular conditionals with many features:
 - Tend to have small training error (fit data very well)
 - Tend to overfit more

Nonlinear feature transformations

- Can go between linear and tabular with non-linear feature transforms:
 - $\bullet\,$ Transform each $x^{(i)}$ into some new $z^{(i)}$
 - Train a logistic regression model on $\boldsymbol{z}^{(i)}$
 - At test time, do the same transformation for the test features
- Examples: polynomial features, radial basis functions, periodic basis functions, ...
- Can also frame kernel methods in this way
- More complex features tend to decrease training error, increase overfitting
 - Performance is better if the features match the "true" conditionals better!
- Gaussian RBF features/Gaussian kernels, with appropriate regularization (λ and lengthscale σ chosen on a validation set), is often an excellent baseline

Learning nonlinear feature transformations with deep networks

- Not always clear which feature transformations are "right"
- Generally, deep learning tries to learn good features
 - Use "parameterized" features, optimize those parameters too
 - Use a flexible-enough class of features
- Assuming you've seen fully-connected networks: one-layer version is

$$\hat{y}(x) = v^{\mathsf{T}} h(Wx)$$

where W is an $m \times d$ matrix (the "first layer" of feature transformation) h is an element-wise activation function, e.g. $\operatorname{ReLU}(z) = \max\{0, z\}$ or sigmoid, v is a linear function of "activations"

- Without h (e.g. h(z) = z), becomes a linear model: $v^{\mathsf{T}}(Wx) = \underbrace{v^{\mathsf{T}}W}_{} x$
- $\bullet~$ Need to fit parameters $W~{\rm and}~v$

Fitting neural networks

- $\hat{y}(x) = v^{\mathsf{T}}h(Wx)$: with fixed W, this is a linear model in the transformed features
- For binary classification, often use logistic likelihood

 $p(y \mid x, W, v) = \sigma \left(y \ \hat{y}(x) \right)$

- Can then compute logistic negative log-likelihood
- Minimize it with some variant of gradient descent
- Deep networks do the same thing; a fully-connected L-layer network looks like

$$\hat{y}(x) = W_L h_{L-1}(W_{L-1}h_{L-2}(W_{L-2}\cdots h_1(W_1x)\cdots))$$

or more often, add bias terms

$$\hat{y}(x) = b_L + W_L h_{L-1} (b_{L-1} + W_{L-1} h_{L-2} (b_{L-2} + \dots + h_1 (b_1 + W_1 x) \dots))$$

where each b is a vector with the same dimension as the activations at that layer
If W_j is d_j × d_{j-1}, jth layer activations are length d_j, b_j is also length d_j
Can still apply same logistic likelihood, optimize in same way

Summary

- Discriminative classifiers model $p(y \mid x)$ instead of p(x,y)
 - Most of modern ML uses discriminative classifiers
- Tabular parameterization models all possible conditionals
- Parameterized conditionals add some structure
 - Linear models, like logistic regression, or deep models
- "Fundamental trade-off" between fitting and overfitting

• Next time: everything is regularization