
Categorical distributions; Discriminative models
CPSC 440/550: Advanced Machine Learning

cs.ubc.ca/~dsuth/440/24w2

University of British Columbia, on unceded Musqueam land

2024-25 Winter Term 2 (Jan–Apr 2025)

1 / 46

https://cs.ubc.ca/~dsuth/440/24w2

Admin

If you need a form signed, post it (privately) on Piazza

Assignment 1 due Friday 11:59pm!

Quiz 1 happening now through Saturday; schedule a slot ASAP

2 / 46

Last time

Generative classifiers: model p(x, y) and predict with e.g.
argmaxy p(y | x) = argmaxy p(x, y)

Multivariate models: product of Bernoullis, assumes Xj are all independent

Näıve Bayes: assume the Xj are independent given Y

3 / 46

“Galaxy Brain Bayes”
Näıve Bayes models p(y) as Bernoulli, p(x | y) as product of Bernoullis

Makes a strong assumption: all the Xj are independent given Y

What if we avoided that assumption entirely?

Could model p(x | y) with a full categorical distribution:

Pr(X1 = 0, X2 = 0, . . . , Xd = 0 | Y = 0) = θ00···0|0

Pr(X1 = 0, X2 = 0, . . . , Xd = 1 | Y = 0) = θ00···1|0
...

Pr(X1 = 1, X2 = 1, . . . , Xd = 1 | Y = 0) = θ11···1|0

. . . and the same for probabilities given Y = 1

2d possible binary vectors, so need 2d − 1 parameters for each condition

MLE is again counting, θx|y = nx|y/ny, as we’ll see in a moment

Different kind of “näıvety” than näıve Bayes: each bit-vector is totally separate
4 / 46

Outline

1 Categorical distribution
Inference
Learning

2 Discriminative classifiers

5 / 46

Motivating problem: political polling

Want to know support for political parties among a voter group

Helps candidates/parties target campaigning, etc

Where I live, the last election results:

40.4% 23.0% Liberal
30.7% 17.5% NDP
21.6% 12.31% Conservative
3.9% 2.2% Green
3.2% 1.8% PPC
43% no vote

We want to estimate these quantities based on a sample (a poll)

6 / 46

General problem: categorical density estimation

Special case of density estimation with a categorical variable:

Input: n iid samples of categorical values x(1), x(2), . . . , x(n) ∈ {1, 2, . . . , k}
Output: a probability model for Pr(X = 1), Pr(X = 2), . . . , Pr(X = k)

We’ll remember, but not usually write down, that 1 = Lib, 2 = NDP, . . .

As a picture: X ∈ Rn×1 contains our sample data
X is a random variable over {1, 2, . . . , k} from the distribution

X =

1
2
3
1
3

 density estimator−−−−−−−−−−→
Pr(X = 1) = 0.4
Pr(X = 2) = 0.2
Pr(X = 3) = 0.4

We’ll start by revisiting previous concepts, but introduce some more

7 / 46

Other applications of categorical density estimation

Some other questions we might ask:
1 What portion of my customers use cash, credit, debit?
2 What’s the probability that a random patient will be able to receive this type of

blood?
3 How many random tweets should I expect to look at before I see this particular word?

For categorical variables, we do not assume an ordering

Category 4 isn’t “closer” to category 3 than it is to category 1

8 / 46

Ordinal variables

Ordered categorical variables are called ordinal

Results of rolling dice, if you’re trying to beat a specific number
Survey results (“strongly disagree,” “disagree,” “neutral,” . . .)
Ratings (1 star, 2 stars, . . .)
Tumour severity (Grade I, . . . , Grade IV)

We won’t cover these for now, but lots of methods exist

“Ordinal logistic regression”: a loss function where “2 stars” is closer to “3 stars”
than “4 stars“

But there might be a bigger “gap” between 2 and 3 stars than between 3 and 4

Can use this “ordinal loss” in neural nets

9 / 46

Parametrizing categorical probabilities

We typically use the categorical distribution (aka “multinoulli” (ugh))

For k categories, have k parameters, θ1, . . . , θk ≥ 0

Pr(X = 1 | θ1, . . . , θk) = θ1 · · · Pr(X = k | θ1, . . . , θk) = θk

Categories are mutually exclusive: can only pick one

Require that
k∑

c=1

θc = 1

More succinctly: if X ∼ Cat(θ) with θ = (θ1, . . . , θk),

p(x | θ) = θ
1(x=1)
1 θ

1(x=2)
2 · · · θ1(x=k)

k

10 / 46

Outline

1 Categorical distribution
Inference
Learning

2 Discriminative classifiers

11 / 46

Inference task: union

Inference task: given θ, compute probability of unions

For example: Pr(X = Lib ∪X = NDP | θ)

Can’t be both, so: Pr(X = 2 ∪X = 4 | θ) = θ2 + θ4

Variation: Pr(X ≤ c) for some c is θ1 + θ2 + · · ·+ θc

Why do we care, since the categories are unordered?

F (c) = Pr(X ≤ c) is the cumulative distribution function (cdf)

Depends on (arbitrary) ordering, but very useful function as we’ll see soon!

12 / 46

Inference task: mode (decoding)

Inference task: given θ, find the mode, argmaxx p(x | θ)
“Who’s going to win the election?”

Also very easy: argmaxc θc

13 / 46

Inference task: likelihood

Inference task: given and data X, find p(X | θ)
Assuming data is iid from Cat(θ),

p(X | θ) = p(x(1), . . . , x(n) | θ) =
n∏

i=1

p(x(i) | θ)

=

n∏
i=1

θ
1(x(i)=1)
1 θ

1(x(i)=2)
2 · · · θ1(x

(i)=k)
k

= θ
∑n

i=1 1(x
(i)=1)

1 θ
∑n

i=1 1(x
(i)=2)

2 · · · θ
∑n

i=1 1(x
(i)=k)

k

= θn1
1 θn2

2 · · · θnk
k

. . . defining at the end nc as the number of cs in X, like n0 and n1 for binary data

Like Bernoulli, the likelihood only depends on the counts

14 / 46

Code for categorical likelihood

counts = np.zeros(k)

for x in X:

count[x] += 1

p = 1

for theta_c, n_c in zip(theta, counts):

p *= theta_c ** n_c

Better version:

counts = np.bincount(X,

minlength=k)↪→

log_p = counts @ log_theta

Computational complexity (either way) is O(n+ k)

Usual case: n ≫ k (many samples, few categories), this is just O(n)
If k ≫ n, could also easily get O(n) by only tracking categories with nonzero counts

15 / 46

Inference task: sampling

Inference task: given θ, generate samples from X ∼ Cat(θ)

Pr(X = 1) = 0.4
Pr(X = 2) = 0.2
Pr(X = 3) = 0.4

sampling−−−−−→ X =

13
3

Notice: not sampling “one value per class”; each sample is in one category

Who will this voter (say they’ll) vote for?

16 / 46

Categorical sampling algorithm
Will use a uniform sample from [0, 1] to construct a sample from Cat(θ)

Example: sample from θ =
(
0.4, 0.2, 0.3, 0.1

)
based on a single u ∼ Unif([0, 1])

Want X = 1 40% of the time: if u < 0.4, return 1
Want X = 2 20% of the time: if 0.4 ≤ u < 0.6, return 2
Want X = 3 30% of the time: if 0.6 ≤ u < 0.9, return 3
Want X = 4 10% of the time: if 0.9 ≤ u, return 4

0

return 1

0.4
return 2

0.6

return 3

0.9
return 4

1

Use CDF, Pr(X ≤ c) = θ1 + · · ·+ θc:

Generate u ∼ Unif([0, 1])
if u ≤ Pr(X ≤ 1), return 1
else if u ≤ Pr(X ≤ 2), return 2
. . .
else return k

Computing Pr(X ≤ c) from θ costs O(k)

Would get O(k2) total time. . . but can save it

cdf = np.cumsum(theta)
u = rng.random_sample(n_to_samp)

samp = cdf.searchsorted(u, side='right')

Takes O(k) upfront, O(log k) per sample

17 / 46

Faster categorical sampling algorithms

Previous method is sometimes called “roulette wheel sampling”

O(k) preprocessing (computing the CDF), O(log k) time per sample

“Vose’s alias method”: O(k) preprocessing but only O(1) time per sample

Really nice (long) article developing many variations:
Darts, Dice, and Coins: Sampling from a Discrete Distribution by Keith Schwarz

18 / 46

https://www.keithschwarz.com/darts-dice-coins/

Outline

1 Categorical distribution
Inference
Learning

2 Discriminative classifiers

19 / 46

MLE for categorical distribution

How do we learn a categorical model?

X =

NDP

Lib

Lib

CPC
...

density estimator−−−−−−−−−−→ θ =

Pr(X = Lib) = 0.404
Pr(X = NDP) = 0.307
Pr(X = CPC) = 0.216
Pr(X = Grn) = 0.039
Pr(X = PPC) = 0.032

Like before, start with maximum likelihood estimation (MLE):

θ̂ ∈ argmax
θ

p(X | θ)

Like before, MLE will be θc =
nc
n (the portion of cs in the data)

Like before, derivation is more complicated than the result

20 / 46

Derivation of the MLE that doesn’t work

The likelihood is
p(X | θ) = θn1

1 · · · θnk
k

So, the log-likelihood is

log p(X | θ) = n1 log θ1 + · · ·+ nk log θk

Take the derivative for a particular θc:

∂

∂θc
log p(X | θ) = nc

θc

Set the derivative to zero:
nc

θc
= 0

. . . huh?

21 / 46

Fixing the derivation

Setting the derivative to zero doesn’t work

Ignores the constraint that
∑

c θc = 1

Some ways to enforce constraints (see e.g. this StackExchange thread):

Use Lagrange multipliers to find stationary point of the Lagrangian
Define θk = 1−

∑k−1
c=1 θc, replace in the objective function

We’ll take a different way here:

Use a different parameterization θ̃c that doesn’t have this constraint
Compute the MLE for the θ̃c by setting derivative to zero
Convert from the θ̃c to θc

22 / 46

https://math.stackexchange.com/questions/2725539/maximum-likelihood-estimator-of-categorical-distribution

Unnormalized parameterization

Let’s have θ̃c be unnormalized:

Pr(X = c | θ̃1, . . . , θ̃k) ∝ θ̃c

Still need each θ̃c ≥ 0

Can then find

p(c | θ̃) = θ̃c∑k
i=1 θ̃c

=
θ̃c
Zθ̃

The “normalizing constant” Zθ̃ makes the total probability 1

Don’t need the explicit sum-to-1 constraint anymore
Note: constant for different x; not constant for different θ

To convert from unnormalized to normalized: θc = θ̃c/Zθ̃

23 / 46

Derivation of the MLE that does work
The likelihood in terms of the unnormalized parameters is

p(X | θ̃) =

(
θ̃1
Zθ̃

)n1

· · ·

(
θ̃k
Zθ̃

)nk

=
1

Zn
θ̃

θ̃n1
1 · · · θ̃nk

k

So, the log-likelihood is

log p(X | θ̃) = n1 log θ̃1 + · · ·+ nk log θ̃k − n logZθ̃

Take the derivative for a particular θ̃c:

∂

∂θ̃c
log p(X | θ̃) = nc

θ̃c
− n

Zθ̃

∂Zθ̃

∂θ̃c
=

nc

θ̃c
− n

Zθ̃

since
∂

∂θ̃c

(
θ̃1 + · · ·+ θ̃k

)
= 1

Set the derivative to zero:

nc

θ̃c
=

n

Zθ̃

so
θ̃c
Zθ̃

=
nc

n

Can check this objective is concave, so this is a max; also satisfies θ̃c ≥ 0 constraint
Many solutions, but all the same after normalizing

24 / 46

MAP estimate, Dirichlet prior

As before, might prefer MAP estimate over MLE

Often becomes more important for large k: lots of parameters!

Most common prior is the Dirichlet distribution:

p(θ1, . . . , θk | α1, . . . , αk) ∝ θα1−1
1 · · · θαk−1

k

Generalization of the beta distribution to k classes
Requires each αc > 0

This is a distribution over θ

Probability distribution over possible (categorical) probability distributions

25 / 46

Dirichlet distribution

Wikipedia’s visualizations for k = 3:

0.0

0.2

0.4

0.6

0.8

1.0

x
1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

0.0 0.2 0.4 0.6 0.8 1.0

x3

 = (1.5, 1.5, 1.5)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

PD
F

f(x
;

)

0.0

0.2

0.4

0.6

0.8

1.0

x
1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

0.0 0.2 0.4 0.6 0.8 1.0

x3

 = (5.0, 5.0, 5.0)

0.0

1.5

3.0

4.5

6.0

7.5

9.0

10.5

PD
F

f(x
;

)

0.0

0.2

0.4

0.6

0.8

1.0

x
1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

0.0 0.2 0.4 0.6 0.8 1.0

x3

 = (1.0, 2.0, 2.0)

0.0

0.8

1.6

2.4

3.2

4.0

4.8

5.6
PD

F
f(x

;
)

0.0

0.2

0.4

0.6

0.8

1.0

x
1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

0.0 0.2 0.4 0.6 0.8 1.0

x3

 = (2.0, 4.0, 8.0)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

PD
F

f(x
;

)

https://en.wikipedia.org/wiki/Dirichlet_distribution

26 / 46

https://en.wikipedia.org/wiki/Dirichlet_distribution

MAP estimate for Dirichlet-Categorical
Reason to use the Dirichlet: again because posterior is simple

p(θ | X,α) ∝ p(X | θ)p(θ | α) ∝ θn1
1 · · · θnk

k θα1−1
1 · · · θαk−1

k

= θ
(n1+α1)−1
1 · · · θ(nk+αk)−1

k

i.e. it’s Dirichlet again with parameters α̃c = nc + αc

A few more steps show MAP for a categorical with Dirichlet prior is

θ̂c =
nc + αc − 1∑k

c′=1(nc′ + αc′ − 1)

(again as long as all nc + αc > 1)

Dirichlet has k hyper-parameters αc

Often use αc = α for some α ∈ R: one hyperparameter

Makes the MLE θ̂c =
nc + α− 1

n+ k(α− 1)
α = 2 gives Laplace smoothing (add 1 “fake” count for each class)

27 / 46

Conjugate priors
This is our second example where prior and posterior have the same form

Beta prior + Bernoulli likelihood gives a Beta posterior
Also happens with binomial, geometric, . . . likelihoods

Dirichlet prior + categorical likelihood gives a Dirichlet posterior
Also happens with multinomial likelihood

When this happens, we say prior is conjugate to the likelihood

Prior and posterior come from the same “family” of distributions

X ∼ L(θ) θ ∼ P (α) implies θ | X ∼ P (α+)

Updated parameters α+ will depend on the data

Many computations become easier if we have a conjugate prior
But not all distributions have conjugate priors

And even when one exists, might not be convenient / a good choice

28 / 46

Outline

1 Categorical distribution

2 Discriminative classifiers

29 / 46

Discriminative classifiers

Generative classifiers model p(x, y), then use that to get p(y | x)
Often model p(y) (usually simple) and then p(x | y) (harder)

“When solving a problem of interest, do not solve a
more general problem as an intermediate step.”

— Vladimir Vapnik

An alternative philosophy: just directly model p(y | x)
Or even further: just directly learn a classification function

Modeling p(x) can be hard

Discriminative: “which pixels show me this picture is a dog?”
Generative: “what do pictures of dogs look like?”

30 / 46

Hierarchy of predictor types

Different types of models can answer different types of questions:

type example p(x, y) p(y | x) f(x) ≈ y

Generative näıve Bayes ✓ ✓ ✓

Discriminative (prob.) logistic regression ✗ ✓ ✓

Discriminative (non-prob.) SVM ✗ ✗ ✓

Problem usually gets “easier” as you model less

But you can’t do as much with it

Discriminative models can’t sample, do outlier detection, . . .
“Pure classifiers” can’t easily combine into broader inference (e.g. decision theory)

31 / 46

Discriminative models, binary data
Discriminative model with a full categorical parameterization:

Pr(spam | aardvark = 0, . . . , lotto = 0, . . . , zyzzyva = 0) = θ0···0···0
...

Pr(spam | aardvark = 1, . . . , lotto = 1, . . . , zyzzyva = 1) = θ1···1···1

Can represent any conditional distribution on binary data

Needs 2d parameters (versus 2(2d − 1) for “galaxy brain Bayes”)
(Why not 2d − 1?)

Fitting: y | x is a separate Bernoulli for each x; can just MLE/MAP for each one

But probably don’t see very many emails per x (and many have nx = 0)
Will probably overfit for almost every x
Want to share information across similar xs!

32 / 46

Linear parameterization of conditionals
Generally: would like to use a “parsimonious” parameterization

Full categorical distribution: can model anything, very many parameters
Making stronger assumptions: can’t model everything, much less complex model

Standard basic choice: assume a linear model, i.e. one of the form

p(y = 1 | x1, . . . , xd, w) = f(w1x1 + · · ·+ wdxd) = f(wTx)

where w is our vector of d parameters and f is some function from R to [0, 1]

Standard basic choice for f : sigmoid function, giving logistic regression

f(z) =
1

1 + exp(−z)
−6 −4 −2 0 2 4 6

0.2
0.4
0.6
0.8

z

σ
(z
)

33 / 46

Logistic regression inference

For a given w and x, logistic regression gives us a Bernoulli distribution over y:

Pr(Y = 1 | X = x,w) =
1

1 + exp(−wTx)

Usually just take the mode to predict most likely y

But can also:

Set a different confidence threshold, e.g. based on “decision theory”
Sample conditional ys given this x
Compute probability of seeing 5 positives out of 10 examples with this x
Compute the expected number of samples with this x to see a single positive
Ask how likely both an x and an independent x′ are to be positive
. . .

34 / 46

Maximum conditional likelihood

MLE for generative models: argmaxw p(X,y | w)
Can’t do that for discriminative models!

When we say MLE for discriminative models, we mean argmaxw p(y | X, w)

Treat X as fixed, maximize conditional likelihood

Logistic regression also makes sense for continuous x

Even though it’s only using binary probabilities!

Different than näıve Bayes:

Models X | Y , so continuous X needs to use a continuous distribution

35 / 46

Logistic (negative log-)likelihood

Logistic regression uses

p(y | X, w) =

n∏
i=1

p
(
y(i) | X, w

)
=

n∏
i=1

p
(
y(i) | x(i), w

)
so − log p(y | X, w) =

∑n
i=1− log p(y(i) | x(i), w)

Each − log p(y(i) | x(i), w) term is log
(
1 + exp

(
−ỹ(i)wTx(i)

))
, for ỹ ∈ {−1, 1}:

− log 1

1+exp(−wTx(i))
if y(i) = 1

− log

(
1− 1

1+exp(−wTx(i))

)
if y(i) = 0

=

{
log
(
1 + exp

(
−wTx(i)

))
if y(i) = 1

log
(
1 + exp

(
wTx(i)

))
if y(i) = 0

Usually convenient to use y ∈ {−1, 1} instead of {0, 1} for binary linear classifiers

36 / 46

MLE for logistic regression

MLE is equivalent to minimizing f(w) =
∑n

i=1 log(1 + exp(−y(i)wTx(i)))

Using y(i) ∈ {−1, 1} here
Equivalent to “binary cross-entropy”
Computational cost: need to compute the wTx(i), aka Xw, in time O(nd)
∇f(w) = −XT y

1+exp(y⊙Xw) , with elementwise operations for the y; also O(nd)

Convex function: no bad local minima

No closed-form solution in general from setting ∇f(w) = 0

But can solve with gradient descent or other iterative optimization algorithms

Best choice depends on n, d, desired accuracy, computational setup, . . .

37 / 46

MAP for logistic regression ≈ regularization

MAP with a Gaussian prior, wj ∼ N
(
0, 1

λ

)
, adds 1

2λ∥w∥
2 to the objective

Now “strongly convex”: optimization is usually faster

Typically gives better test error when λ is appropriate

MAP here is argmaxw p(w | X,y) = argmaxw p(y | X, w)p(w)

As opposed to generative MAP, argmaxw p(w | X,y) = argmaxw p(X,y | w)p(w)

38 / 46

Binary näıve Bayes is a linear model

Pr(Y = 1 | X = x) =
p(x | y = 1)p(y = 1)

p(x | y = 1)p(y = 1) + p(x | y = 0)p(y = 0)

=
1

1 + p(x|y=0)p(y=0)
p(x|y=1)p(y=1)

=
1

1 + exp
(
− log p(x|y=1)p(y=1)

p(x|y=0)p(y=0)

)
= σ

(
d∑

j=1

log
p(xj | y = 1)

p(xj | y = 0)
+ log

p(y = 1)

p(y = 0)

)

= σ

(
d∑

j=1

log
θ
xj

j|1(1− θj|1)
1−xj

θ
xj

j|0(1− θj|0)
1−xj

+ log
p(y = 1)

p(y = 0)

)

= σ

(
d∑

j=1

[
xj log

θj|1
θj|0

+ (1− xj) log
1− θj|1
1− θj|0

]
+ log

p(y = 1)

p(y = 0)

)

= σ

(
d∑

j=1

xj log
θj|1
θj|0

1− θj|0
1− θj|1︸ ︷︷ ︸

wj

+

d∑
j=1

log
1− θj|1
1− θj|0

+ log
p(y = 1)

p(y = 0)︸ ︷︷ ︸
b

)
= σ(wTx+ b)

Not generally the parameters that logistic regression would pick (so, lower likelihoods in logreg model)
39 / 46

Adding intercepts to linear models

Often we only talk about homogeneous linear models, f(wTx)

More generally inhomogeneous models, f(wTx+ b), are very useful in practice

Two usual ways to do this:

Treat b as another parameter to fit and put it in all the equations
Add a “dummy feature” X0 = 1; then corresponding weight w0 acts like b

Both of these ways make sense in probabilistic framing, too!

Just be careful about if you want to use the same prior on b/w0 or not

Often makes sense to “not care about y location,” i.e. use improper prior p(w0) ∝ 1

Another generally-reasonable scheme:

First centre the ys so 1
n

∑n
i=1 y

(i) = 0, then put some prior on w0 not being too big

40 / 46

Recap: tabular versus logistic regression

Tabular parameterization of a categorical:

Each θy|x is totally separate

2d parameters when everything is binary
Can model any binary conditional parameter
Tends to overfit unless 2d ≪ n

Logistic regression parameterization of a categorical:

Each θy|x is given by σ(wTx+ b)
d or d+ 1 parameters (depending on offset)
Can only model linear conditionals
Tends to underfit unless d is big or truth is linear

Simple versus complex model: subject of learning theory

41 / 46

“Fundamental trade-off”

Tabular and logistic models on different sides of the “fundamental trade-off”:

generalization error = train error+generalization error - train error︸ ︷︷ ︸
generalization gap (overfitting)

≥ irreducible error

If irreducible error > 0, small train error implies some overfitting / vice versa

Simple models, like logistic regression with few features:

Tend to have small generalization gaps: don’t overfit much
Tend to have larger training error (can’t fit data very well)

Complex models, like tabular conditionals with many features:

Tend to have small training error (fit data very well)
Tend to overfit more

42 / 46

Nonlinear feature transformations

Can go between linear and tabular with non-linear feature transforms:

Transform each x(i) into some new z(i)

Train a logistic regression model on z(i)

At test time, do the same transformation for the test features

Examples: polynomial features, radial basis functions, periodic basis functions, . . .

Can also frame kernel methods in this way

More complex features tend to decrease training error, increase overfitting

Performance is better if the features match the “true” conditionals better!

Gaussian RBF features/Gaussian kernels, with appropriate regularization (λ and
lengthscale σ chosen on a validation set), is often an excellent baseline

43 / 46

Learning nonlinear feature transformations with deep networks

Not always clear which feature transformations are “right”

Generally, deep learning tries to learn good features

Use “parameterized” features, optimize those parameters too
Use a flexible-enough class of features

Assuming you’ve seen fully-connected networks: one-layer version is

ŷ(x) = vTh(Wx)

where W is an m× d matrix (the “first layer” of feature transformation)
h is an element-wise activation function, e.g. ReLU(z) = max{0, z} or sigmoid,
v is a linear function of “activations”

Without h (e.g. h(z) = z), becomes a linear model: vT(Wx) = vTW︸ ︷︷ ︸
1×m

x

Need to fit parameters W and v

44 / 46

Fitting neural networks

ŷ(x) = vTh(Wx): with fixed W , this is a linear model in the transformed features
For binary classification, often use logistic likelihood

p(y | x,W, v) = σ (y ŷ(x))

Can then compute logistic negative log-likelihood
Minimize it with some variant of gradient descent

Deep networks do the same thing; a fully-connected L-layer network looks like

ŷ(x) = WLhL−1(WL−1hL−2(WL−2 · · ·h1(W1x) · · ·))
or more often, add bias terms

ŷ(x) = bL +WLhL−1(bL−1 +WL−1hL−2(bL−2 + · · ·h1(b1 +W1x) · · ·))
where each b is a vector with the same dimension as the activations at that layer

If Wj is dj × dj−1, jth layer activations are length dj , bj is also length dj
Can still apply same logistic likelihood, optimize in same way

45 / 46

Summary

Discriminative classifiers model p(y | x) instead of p(x, y)

Most of modern ML uses discriminative classifiers

Tabular parameterization models all possible conditionals

Parameterized conditionals add some structure

Linear models, like logistic regression, or deep models

“Fundamental trade-off” between fitting and overfitting

Next time: everything is regularization

46 / 46

	Categorical distribution
	Inference
	Learning

	Discriminative classifiers

