Categorical distributions; Discriminative models
CPSC 440/550: Advanced Machine Learning
cs.ubc.ca/~dsuth/440/24w2
University of British Columbia, on unceded Musqueam land

2024-25 Winter Term 2 (Jan—-Apr 2025)
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https://cs.ubc.ca/~dsuth/440/24w2

Admin admin

o If you need a form signed, post it (privately) on Piazza

@ Assignment 1 due Friday 11:59pm!
@ Quiz 1 happening now through Saturday; schedule a slot ASAP
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Last time

@ Generative classifiers: model p(z,y) and predict with e.g.
argmax, p(y | ) = argmax, p(r, 1)
@ Multivariate models: product of Bernoullis, assumes X; are all independent

e Naive Bayes: assume the X are independent given Y’
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“Galaxy Brain Bayes"

e Naive Bayes models p(y) as Bernoulli, p(x | y) as product of Bernoullis
o Makes a strong assumption: all the X; are independent given Y’

@ What if we avoided that assumption entirely?
e Could model p(x | y) with a full categorical distribution:

Pr(X1 :O,XQ :0,...,Xd:0 | YZO) :900...0‘0
PI‘(Xl :O,XQ :0,...,Xd: 1 | Y:O) :900...1‘0

PI‘(Xl = 1,X2 = 1,...,Xd: 1 | Y:O) :911...1‘0

..and the same for probabilities given Y =1
o 2% possible binary vectors, so need 2¢ — 1 parameters for each condition

@ MLE is again counting, 6 Ngly/My, as we'll see in a moment

zly —
o Different kind of “naivety” than naive Bayes: each bit-vector is totally separate
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Outline

@ Categorical distribution

5/46



Motivating problem: political polling

@ Want to know support for political parties among a voter group
o Helps candidates/parties target campaigning, etc

@ Where | live, the last election results:

o 40-4% 23.0% Liberal

o 30-7% 17.5% NDP

o 21.6% 12.31% Conservative
e 3:9% 2.2% Green

e 32% 1.8% PPC

e 43% no vote

e We want to estimate these quantities based on a sample (a poll)
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General problem: categorical density estimation

@ Special case of density estimation with a categorical variable:

e Input: n iid samples of categorical values (1), z(?) ... 2™ ¢ {1,2,...,k}
o Output: a probability model for Pr(X =1), Pr(X =2), ..., Pr(X =k)

e We'll remember, but not usually write down, that 1 = Lib, 2 = NDP, ...

@ As a picture: X € R™! contains our sample data
X is a random variable over {1,2,...,k} from the distribution
1
2 ‘ . Pr(X=1)=04
X = |3 density estimator PI‘(X _ 2) — 0.2
1 Pr(X =3)=04
3

o We'll start by revisiting previous concepts, but introduce some more
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Other applications of categorical density estimation

@ Some other questions we might ask:

@ What portion of my customers use cash, credit, debit?

@ What's the probability that a random patient will be able to receive this type of
blood?

© How many random tweets should | expect to look at before | see this particular word?

@ For categorical variables, we do not assume an ordering
o Category 4 isn't “closer” to category 3 than it is to category 1
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Ordinal variables bﬁ"‘is-(

@ Ordered categorical variables are called ordinal
Results of rolling dice, if you're trying to beat a specific number

]

o Survey results (“strongly disagree,” “disagree,” “neutral,” ...)
o Ratings (1 star, 2 stars, ...)

o Tumour severity (Grade I, ..., Grade IV)

@ We won't cover these for now, but lots of methods exist

@ "Ordinal logistic regression”: a loss function where “2 stars” is closer to “3 stars”
than “4 stars*
o But there might be a bigger “gap” between 2 and 3 stars than between 3 and 4

@ Can use this “ordinal loss” in neural nets
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Parametrizing categorical probabilities

e We typically use the categorical distribution (aka “multinoulli” (ugn)

e For k categories, have k parameters, 01,...,0, >0
Pr(X=1|61,...,0,) =61 - Pr(X=k|0,...,0,) =0
o Categories are mutually exclusive: can only pick one
e Require that i@c =1
c=1

@ More succinctly: if X ~ Cat(0) with @ = (04,...,0%),

pla|0) =01y Y
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Outline

@ Categorical distribution
@ Inference
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Inference task: union

Inference task: given @, compute probability of unions
For example: Pr(X =LibU X = NDP | 0)

e Can't be both, so: Pr(X =2UX =416) =02+ 04

Variation: Pr(X < ¢) for some cis 01 + 03+ -+ + 6,
Why do we care, since the categories are unordered?

F(c) = Pr(X < c¢) is the cumulative distribution function (cdf)
e Depends on (arbitrary) ordering, but very useful function as we'll see soon!
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Inference task: mode (decoding)

@ Inference task: given @, find the mode, arg max, p(z | 0)
e “Who's going to win the election?”

@ Also very easy: arg max, 0.
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Inference task: likelihood

@ Inference task: given and data X, find p(X | 6)
@ Assuming data is iid from Cat(8),

p(X16)=pW,. .. 2| 0)=]]p@="]0)
=1

. H ll(:p( )= 1 :13( )=2) ”9’1§L(x<i)=k)

20— ()= ng ()=
_ 0121:1 1( 1)92ZZ=1 1( 2) 9531:1 1( k)
= 07052 -0

.. defining at the end n. as the number of ¢s in X, like ng and nq for binary data

@ Like Bernoulli, the likelihood only depends on the counts

14 /46



Code for categorical likelihood

counts = np.zeros (k)

) Better version:
for x in X:

count [x] += 1 counts = np.bincount (X,
p=1 — minlength=k)
for theta_c, n_c in zip(theta, counts): log_p = counts € log_theta

p *= theta_c ** n_c

e Computational complexity (either way) is O(n + k)

o Usual case: n > k (many samples, few categories), this is just O(n)
o If k> n, could also easily get O(n) by only tracking categories with nonzero counts
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Inference task: sampling

@ Inference task: given @, generate samples from X ~ Cat(6)

Pr(X=1)=04 1
Pr(X =2)=02 % X=13
Pr(X =3) =04 3

@ Notice: not sampling “one value per class”; each sample is in one category
o Who will this voter (say they'll) vote for?
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Categorical sampling algorithm

e Will use a uniform sample from [0, 1] to construct a sample from Cat(0)
o Example: sample from 6 = (0.4,0.2,0.3,0.1) based on a single u ~ Unif([0, 1])

o Want X =1 40% of the time: if u < 0.4, return 1
Want X = 2 20% of the time:

o
e Want X = 3 30% of the time: if 0.6 < u < 0.9, return 3
e Want X =4 10% of the time: if 0.9 < w, return 4
return 1 return 3
P  ——
0 04 0.6 091
return 4

e Computing Pr(X < ¢) from € costs O(k)

o Use CDF, Pr(X <c¢)=01+---+6,: . _
o Would get O(k?) total time. . . but can save it

o Generate u ~ Unif([0, 1])

o ifu <Pr(X <1), return 1 cdf = np.cumsum(theta)

o else if u < Pr(X < 2), return 2 u = rng.random_sample(n_to_samp)

o samp = cdf.searchsorted(u, side='right')
o else return k e Takes O(k) upfront, O(log k) per sample
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Faster categorical sampling algorithms bonus!

@ Previous method is sometimes called “roulette wheel sampling”
o O(k) preprocessing (computing the CDF), O(log k) time per sample

e “Vose's alias method”: O(k) preprocessing but only O(1) time per sample

@ Really nice (long) article developing many variations:
Darts, Dice, and Coins: Sampling from a Discrete Distribution by Keith Schwarz
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https://www.keithschwarz.com/darts-dice-coins/

Outline

@ Categorical distribution

@ Learning

19/ 46



MLE for categorical distribution

@ How do we learn a categorical model?

[ NDP| Pr(X = Lib) = 0.404
Lib = =
Lib density estimator PI‘(X NDP) 0.307
X = e, 6= |Pr(X =CPC) = 0.216
CPC Pr(X = Grn) = 0.039
Pr(X = PPC) = 0.032

@ Like before, start with maximum likelihood estimation (MLE):

6 € argmaxp(X | 0)
0

o Like before, MLE will be 6. = "< (the portion of cs in the data)
@ Like before, derivation is more complicated than the result
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Derivation of the MLE that doesn't work

o The likelihood is
p(X]6) =0y" -0,

@ So, the log-likelihood is
logp(X | 6) =nyiloghy + - + ny log O

@ Take the derivative for a particular 6,.:

0 e
1 X|0)=—=
20, ogp(X | 0) 0.
@ Set the derivative to zero: n
9. ="

@ ... huh?
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Fixing the derivation

@ Setting the derivative to zero doesn't work
o Ignores the constraint that >~ 6. =1

@ Some ways to enforce constraints (see e.g. this StackExchange thread):
o Use Lagrange multipliers to find stationary point of the Lagrangian
o Define 0, =1 — Z]c:ll 0., replace in the objective function

o We'll take a different way here:

o Use a different parameterization 6. that doesn’t have this constraint
o Compute the MLE for the 0. by setting derivative to zero
o Convert from the 6, to 6,
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https://math.stackexchange.com/questions/2725539/maximum-likelihood-estimator-of-categorical-distribution

Unnormalized parameterization

@ Let's have 0~c be unnormalized:

Pr(X:c\él,...,ék)océc

o Still need each 0~C >0
@ Can then find B R
5 O 0.
ple]8) = —pts = °
Zf:l 0. Zg
@ The “normalizing constant” Z; makes the total probability 1

e Don’t need the explicit sum-to-1 constraint anymore
o Note: constant for different x; not constant for different 6

@ To convert from unnormalized to normalized: 6. = éc/Zé
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Derivation of the MLE that does work

@ The likelihood in terms of the unnormalized parameters is

~ 01 " O, " 1~ n
p(X|0) = =010
Zg Zg z3t k

@ So, the log-likelihood is

logp(X | 6) =niloghy + - - +nylog O — nlog Z
o Take the derivative for a particular 6,

;éClng(X 1 0) = %z — ;éng = gj — ;é since ;;C (§1+---+§k) =1
@ Set the derivative to zero:
nC n ~C nC
0. Zy o Z5 n

e Can check this objective is concave, so this is a max; also satisfies éc > 0 constraint
e Many solutions, but all the same after normalizing
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MAP estimate, Dirichlet prior

As before, might prefer MAP estimate over MLE

Often becomes more important for large k: lots of parameters!

Most common prior is the Dirichlet distribution:

p(01,...,0k | 01,..., ) 0(9?1—1“_0?;@—1

o Generalization of the beta distribution to k classes
e Requires each a. > 0

This is a distribution over 6
o Probability distribution over possible (categorical) probability distributions
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Dirichlet distribution

o Wikipedia's visualizations for k = 3:

10 = Isas)]

POF fix:a)

150

POF fix:a)

https://en.wikipedia.org/wiki/Dirichlet_distribution
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https://en.wikipedia.org/wiki/Dirichlet_distribution

MAP estimate for Dirichlet-Categorical

@ Reason to use the Dirichlet: again because posterior is simple

PO X,a) x p(X | 0)p(8 | ) o< 671 --- g% g1~ L ... gon!
— glmton)—1 - g(netar)—1
— Y1 k

i.e. it's Dirichlet again with parameters &, = n. + a.
@ A few more steps show MAP for a categorical with Dirichlet prior is

ho Ne + Qe — 1
Zﬁ’:l (ncl + Oéc/ - 1)

.=
(again as long as all n. + a. > 1)
@ Dirichlet has k hyper-parameters a.
e Often use a. = « for some a € R: one hyperparameter

o Makes the MLE d, — et @~ 1
n+k(a—1)

e a = 2 gives Laplace smoothing (add 1 “fake” count for each class)
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Conjugate priors
@ This is our second example where prior and posterior have the same form
o Beta prior 4+ Bernoulli likelihood gives a Beta posterior
@ Also happens with binomial, geometric, ... likelihoods
e Dirichlet prior + categorical likelihood gives a Dirichlet posterior
@ Also happens with multinomial likelihood

@ When this happens, we say prior is conjugate to the likelihood
@ Prior and posterior come from the same “family” of distributions

X ~L0O) 6~ Pla) implies 0] X~ P(a™)
o Updated parameters o will depend on the data

@ Many computations become easier if we have a conjugate prior
@ But not all distributions have conjugate priors
o And even when one exists, might not be convenient / a good choice
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Outline

© Discriminative classifiers
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Discriminative classifiers

@ Generative classifiers model p(z,y), then use that to get p(y | x)
o Often model p(y) (usually simple) and then p(z | y) (harder)

“When solving a problem of interest, do not solve a
more general problem as an intermediate step.”

— Vladimir Vapnik

@ An alternative philosophy: just directly model p(y | x)
o Or even further: just directly learn a classification function
e Modeling p(x) can be hard

e Discriminative: “which pixels show me this picture is a dog?”
o Generative: “what do pictures of dogs look like?"
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Hierarchy of predictor types

@ Different types of models can answer different types of questions:

type eample | p(z,y) plylz) flx)=y
Generative naive Bayes v v v
Discriminative (prob.) logistic regression X v v
Discriminative (non-prob.) SVM X X v

@ Problem usually gets “easier” as you model less
@ But you can't do as much with it

e Discriminative models can’t sample, do outlier detection, .
e "Pure classifiers” can't easily combine into broader mference (e.g. decision theory)
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Discriminative models, binary data

@ Discriminative model with a full categorical parameterization:

Pr(spam | aardvark =0, ...,lotto =0,...,zyzzyva = 0) = 6y...0...0

Pr(spam | aardvark = 1,...,lotto = 1,...,zyzzyva=1) = 01..1..1

Can represent any conditional distribution on binary data
Needs 27 parameters (versus 2(2¢ — 1) for “galaxy brain Bayes")
o (Why not 2¢ — 17)

Fitting: y | = is a separate Bernoulli for each x; can just MLE/MAP for each one
But probably don't see very many emails per  (and many have n, = 0)

o Will probably overfit for almost every x
o Want to share information across similar xs!
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Linear parameterization of conditionals

@ Generally: would like to use a “parsimonious” parameterization

o Full categorical distribution: can model anything, very many parameters
e Making stronger assumptions: can't model everything, much less complex model

@ Standard basic choice: assume a linear model, i.e. one of the form

p(y =1 ‘ Ti,. .. ,xd,w) = f(w1x1 + - —|—wdazd) = f(wa)

where w is our vector of d parameters and f is some function from R to [0, 1]
@ Standard basic choice for f: sigmoid function, giving logistic regression
0.8

,_.

()
ococo
CNNCN

6 —4 -2 0 2 4 6
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Logistic regression inference

@ For a given w and z, logistic regression gives us a Bernoulli distribution over y:

1
1+ exp(—wTz)

PriY =1 | X =z,w) =

@ Usually just take the mode to predict most likely y
@ But can also:

e Set a different confidence threshold, e.g. based on “decision theory”
Sample conditional ys given this z

Compute probability of seeing 5 positives out of 10 examples with this x
Compute the expected number of samples with this x to see a single positive
Ask how likely both an x and an independent z’ are to be positive
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Maximum conditional likelihood

@ MLE for generative models: argmax,, p(X,y | w)
e Can't do that for discriminative models!

@ When we say MLE for discriminative models, we mean arg max,, p(y | X, w)
o Treat X as fixed, maximize conditional likelihood

@ Logistic regression also makes sense for continuous x
e Even though it's only using binary probabilities!
o Different than naive Bayes:
e Models X | Y, so continuous X needs to use a continuous distribution
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Logistic (negative log-)likelihood

o Logistic regression uses

n n

p(y | X,w) = Tp (9 1 X,0) = T]p (47 20, w)

i=1 =1

so —logp(y | X, w) = Y1, —logp(y"¥ | z(i),w)

e Each —logp(y® | z(i),w) term is log (1+exp (—gj(i)wT:L'(i))), forye {-1,1}:

—log ———— L if ) =1 ) )
08 T+exp(—wTaz(®) "y B {log (1+exp (—wTz®)) ify® =1
~log (1 - 1+xp(—1wz<>)> if y =0 log (I +exp(wiz®)) ify® =0

e Usually convenient to use y € {—1,1} instead of {0, 1} for binary linear classifiers
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MLE for logistic regression Ceview

o MLE is equivalent to minimizing f(w) = Y7, log(1 + exp(—yPDwTz®))

o Using ¥y € {—1,1} here

e Equivalent to “binary cross-entropy"”

o Computational cost: need to compute the wTz®, aka Xw, in time O(nd)

o Vf(w)= —XTW, with elementwise operations for the y; also O(nd)
@ Convex function: no bad local minima
@ No closed-form solution in general from setting V f(w) =0
@ But can solve with gradient descent or other iterative optimization algorithms

e Best choice depends on n, d, desired accuracy, computational setup, ...
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MAP for logistic regression = regularization w

o MAP with a Gaussian prior, w; ~ A (0, 1), adds $A|lw|? to the objective
o Now “strongly convex": optimization is usually faster

@ Typically gives better test error when A is appropriate

@ MAP here is arg max,, p(w | X,y) = argmax,, p(y | X, w)p(w)
o As opposed to generative MAP, argmax,, p(w | X,y) = arg max,, p(X,y | w)p(w)

38/46



Binary naive Bayes is a linear model bonus!

pxly=1Dpy=1)
(]ly=1ply=1)+p(x|y=0)py=0)
1 1

- p(ely=0)p(y=0) (@|ly=1)p(y=1)
L+ oGlhv=oro=n) 1+exp (_ log %

Pr(Y =1|X=2) =
( | ) =3

)+ ng(y 1)
= ) p(y
d 017 1 0 1—z; _
— ZIOg i\]l( 3\1)1_1. +10gp(y 1)
= O5j0(1—6j10) 77 p(y = 0)
d
—Oin ply=1)
=7 z;log L= + (1 - ;) log J‘}-{-log
(5 e~ -smon =g ] e o=
g O 1= b0 , — 9 ply=1)
=@ z; log 2L ]O—i— 1 31+1 .
<]1 J 0 |0 1_63“ Zl 1_61\0 ( ( )
=

Not generally the parameters that logistic regression would pick (so, lower likelihoods in logreg model) -



Adding intercepts to linear models Ceview

Often we only talk about homogeneous linear models, f(w'x)

More generally inhomogeneous models, f(w'xz -+ b), are very useful in practice

@ Two usual ways to do this:

e Treat b as another parameter to fit and put it in all the equations
o Add a “dummy feature” Xy = 1; then corresponding weight wq acts like b

Both of these ways make sense in probabilistic framing, too!
@ Just be careful about if you want to use the same prior on b/wg or not
o Often makes sense to “not care about y location,” i.e. use improper prior p(wg) o< 1

Another generally—reasonable scheme:
e First centre the ys so = Z y(l = 0, then put some prior on wy not being too big
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Recap: tabular versus logistic regression

@ Tabular parameterization of a categorical:
Each 6, is totally separate

2¢ parameters when everything is binary
Can model any binary conditional parameter
Tends to overfit unless 2¢ < n

o Logistic regression parameterization of a categorical:
e Each 0,, is given by o(w'z +b)

d or d 4+ 1 parameters (depending on offset)

Can only model linear conditionals

Tends to underfit unless d is big or truth is linear

@ Simple versus complex model: subject of learning theory
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‘" ” E,VL/
Fundamental trade-off Ceview

@ Tabular and logistic models on different sides of the “fundamental trade-off":

generalization error = train error+-generalization error - train error > irreducible error

generalization gap (overfitting)

o If irreducible error > 0, small train error implies some overfitting / vice versa
@ Simple models, like logistic regression with few features:

e Tend to have small generalization gaps: don’t overfit much
o Tend to have larger training error (can't fit data very well)

o Complex models, like tabular conditionals with many features:

o Tend to have small training error (fit data very well)
o Tend to overfit more
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: : eview
Nonlinear feature transformations W/V

Can go between linear and tabular with non-linear feature transforms:

o Transform each z(® into some new z(%)
o Train a logistic regression model on z(*)
o At test time, do the same transformation for the test features

Examples: polynomial features, radial basis functions, periodic basis functions, ...

Can also frame kernel methods in this way

More complex features tend to decrease training error, increase overfitting
o Performance is better if the features match the “true” conditionals better!

Gaussian RBF features/Gaussian kernels, with appropriate regularization (A and
lengthscale o chosen on a validation set), is often an excellent baseline
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Learning nonlinear feature transformations with deep networks w

@ Not always clear which feature transformations are “right”

@ Generally, deep learning tries to learn good features
o Use “parameterized” features, optimize those parameters too
o Use a flexible-enough class of features

@ Assuming you've seen fully-connected networks: one-layer version is
fooN T
g(x) =v h(Wx)

where W is an m x d matrix (the “first layer” of feature transformation)
h is an element-wise activation function, e.g. ReLU(z) = max{0, z} or sigmoid,
v is a linear function of “activations”

o Without h (e.g. h(z) = z), becomes a linear model: vT (Wz) = @x

Ixm
o Need to fit parameters W and v
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Fitting neural networks Ceview

o §(z) = v"h(Wz): with fixed W, this is a linear model in the transformed features
e For binary classification, often use logistic likelihood
p(y |z, W,v) = o (y §(z))
@ Can then compute logistic negative log-likelihood
@ Minimize it with some variant of gradient descent

@ Deep networks do the same thing; a fully-connected L-layer network looks like
9(z) = Wrhp 1(Wp1hp 2o(Wr_2--- hiy(Whz)---))
or more often, add bias terms
g(x) =br + Wrhp—1(bp—1 + Wr_1hp—o(bp—2 + -+ - h1(by + Wiz)--+))

where each b is a vector with the same dimension as the activations at that layer
o If Wjis d; x dj_1, jth layer activations are length d;, b; is also length d;
o Can still apply same logistic likelihood, optimize in same way
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Summary

Discriminative classifiers model p(y | =) instead of p(x,y)
e Most of modern ML uses discriminative classifiers

Tabular parameterization models all possible conditionals
Parameterized conditionals add some structure

o Linear models, like logistic regression, or deep models

@ “Fundamental trade-off” between fitting and overfitting

Next time: everything is regularization
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