Mixture distributions

CPSC 440/550: Advanced Machine Learning

cs.ubc.ca/~dsuth/440/24w2

University of British Columbia, on unceded Musqueam land

2024-25 Winter Term 2 (Jan-Apr 2025)

Last time: Exponential families

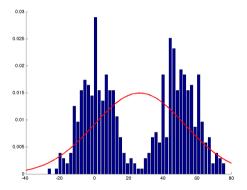
- Have sufficient statistics and canonical parameters
- Maximum likelihood becomes moment matching; always have conjugate priors
- Can build discriminative models e.g. using canonical parameter $\eta_x = w^\mathsf{T} x$
- Many things (but not everything!) are exponential families
 - Today: some things that aren't

Outline

- Mixture of Gaussians
- 2 Imputation to learn mixtures
- Mixture of Bernoullis
- Expectation Maximization
- 6 Advanced Mixtures
- 6 Kernel Density Estimation

1 Gaussian for Multi-Modal Data

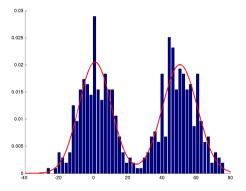
- One major drawback of Gaussian is that it is uni-modal
 - It gives a terrible fit to data like this:



- How can we fit this data?
- ullet Could use an exp. family, but only by harcoding possible mode locations in s(x)
- We'll want something more general...

2 Gaussians for Multi-Modal Data

• We can fit this data by using two Gaussians

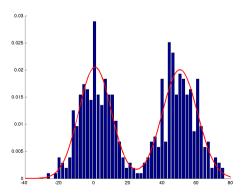


• Half the samples are from Gaussian one, half are from Gaussian two

• Our probability density in this example is given by

$$p(x \mid \mu_1, \mu_2, \Sigma_1, \Sigma_2) = \frac{1}{2} \underbrace{\mathcal{N}(x \mid \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1)}_{\text{pdf of Gaussian 1}} + \frac{1}{2} \underbrace{\mathcal{N}(x \mid \boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2)}_{\text{pdf of Gaussian 2}},$$

• We need the $\frac{1}{2}$ s for it to integrate to 1

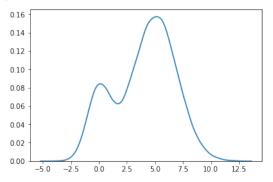


• If data comes from one Gaussian more often than the other, we could use

$$p(x \mid \mu_1, \mu_2, \Sigma_1, \Sigma_2, \pi_1, \pi_2) = \pi_1 \underbrace{\mathcal{N}(x \mid \pmb{\mu}_1, \pmb{\Sigma}_1)}_{\text{pdf of Gaussian 1}} + \pi_2 \underbrace{\mathcal{N}(x \mid \pmb{\mu}_2, \pmb{\Sigma}_2)}_{\text{pdf of Gaussian 2}},$$

where π_1 and π_2 are non-negative and sum to 1

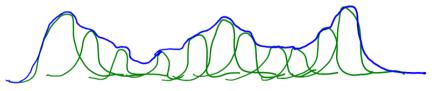
ullet π_1 is "probability that we take a sample from Gaussian 1"



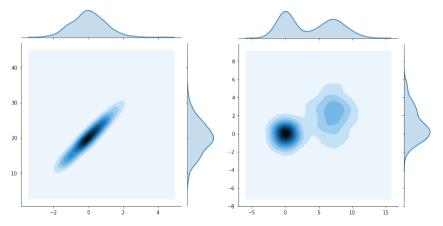
• In general we might have a mixture of k Gaussians with different weights

$$p(x \mid \mu, \Sigma, \pi) = \sum_{c=1}^{k} \pi_c \underbrace{\mathcal{N}(x \mid \pmb{\mu}_c, \pmb{\Sigma}_c)}_{\text{pdf of Gaussian } c}$$

- π_c are categorical distribution parameters (non-negative, sum to 1)
- If k is large, can model complicated densities with Gaussians (like RBFs)
- "Universal approximator" if $k \to \infty$
 - ullet Can model any continuous density on a bounded subset of \mathbb{R}^d

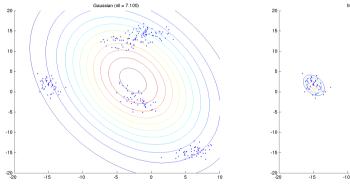


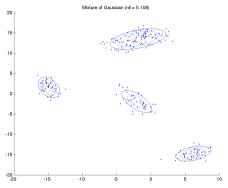
• Gaussian versus mixture of two Gaussians in 2D:



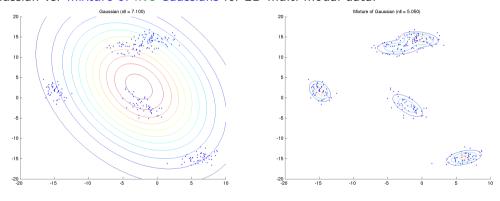
• Marginals will also be mixtures of Gaussians

• Gaussian versus mixture of four Gaussians for 2D multi-modal data:





• Gaussian vs. mixture of five Gaussians for 2D multi-modal data:



Latent-Variable Representation of Mixtures

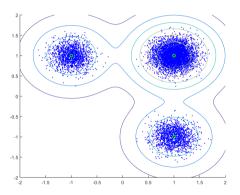
- ullet For inference/learning in mixture models, we often introduce variables $z^{(i)}$
 - Each $z^{(i)}$ is a categorical variable in $\{1, 2, \dots, k\}$ when we have k mixtures
 - ullet The value $z^{(i)}$ represents "which component this example came from"
 - We do not observe the $z^{(i)}$ values (called latent variables)
- Why this interpretation of "each $x^{(i)}$ comes from one Gaussian"?
 - Consider a model where $p(Z=c)=\pi_c$, and $X\mid (Z=c)\sim \mathcal{N}(\boldsymbol{\mu}_c,\boldsymbol{\Sigma}_c)$
 - Now marginalize over the $z^{(i)}$ in this model:

$$p(x \mid \mu, \Sigma, \pi) = \sum_{c=1}^{k} p(x, Z = c) = \sum_{c=1}^{k} p(Z = c)p(x \mid Z = c)$$
$$= \sum_{c=1}^{k} \pi_c \mathcal{N}(x \mid \boldsymbol{\mu}_c, \boldsymbol{\Sigma}_c)$$

which is the pdf of the mixture of Gaussians model

Ancestral sampling in mixture of Gaussians

- Generating samples with ancestral sampling in the latent variable representation:
 - **1** Sample cluster z based on prior probabilities π_c (categorical distribution)
 - 2 Sample example x based on mean μ_z and covariance Σ_z of Gaussian z



Inference for Gaussian mixtures

- Marginalization and computing conditionals is also easy
- Computing the marginal $p(z \mid x)$, or finding its mode, is easy (next slide)
- ullet Finding the mode for x in Gaussian mixtures is NP-hard

Inference Task: Computing Responsibilities

- ullet Consider computing probability that example i came from mixture c
 - We call this the responsibility of mixture c for example i:

$$\begin{split} r_c^{(i)} &= p(z^{(i)} = c \mid x^{(i)}) \\ &= \frac{p(z^{(i)} = c, x^{(i)})}{p(x^{(i)})} \\ &= \frac{p(z^{(i)} = c, x^{(i)})}{\sum_{c'=1}^k p(z^{(i)} = c', x^{(i)})} \\ &= \frac{p(z^{(i)} = c) p(x^{(i)} \mid z^{(i)} = c)}{\sum_{c'=1}^k p(z^{(i)} = c') p(x^{(i)} \mid z^{(i)} = c')} \\ &= \frac{\pi_c \, \mathcal{N}(x^{(i)} \mid \pmb{\mu}_c, \pmb{\Sigma}_c)}{\sum_{c'=1}^k \pi_{c'} \, \mathcal{N}(x^{(i)} \mid \pmb{\mu}_{c'}, \pmb{\Sigma}_{c'})} \end{split} \tag{we know all these values!}$$

- Avoid underflow in computation with log-space: bonus slides
- ullet Thinking of mixture components as clusters, this is probability of being in cluster c

Notation Alert: π vs. z vs. r (MEMORIZE)

- ullet In mixture models, many people confuse the quantities π , z, and r
- ullet Vector π has k elements in [0,1] and summing up to 1
 - ullet Number π_c is the "prior" probability that an example is in cluster c
 - This is a parameter (we learn it from data)
- Matrix ${f R}$ is an $n \times k$ matrix, summing to 1 across rows
 - \bullet Number $r_c^{(i)}$ is the "posterior" probability that example i is in cluster c
 - Computing these values is an inference task (assumes known parameters)
- Vector \mathbf{z} has n elements in $\{1, 2, \dots, k\}$
 - ullet Category $z^{(i)}$ is the actual mixture/cluster that generated example i
 - This is a "nuisance parameter" (unknown variable, not a part of the model)

Outline

- Mixture of Gaussians
- 2 Imputation to learn mixtures
- Mixture of Bernoullis
- 4 Expectation Maximization
- 6 Advanced Mixtures
- 6 Kernel Density Estimation

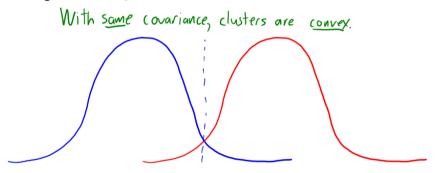
Learning mixture models with imputation

- Mixture of Gaussian parameters are $\{\pi_c, \mu_c, \Sigma_c\}_{c=1}^k$
 - Unfortunately, NLL is non-convex
 - Various optimization methods are used in practice
- If we optimize over $z^{(i)}$, we can decrease NLL with alternating optimization:
 - Given the clusters $z^{(i)}$, find the most likely parameters
 - That is, optimize $p(\mathbf{X} \mid \pi, \mu, \Sigma, \mathbf{z})$ with respect to $\{\pi_c, \mu_c, \Sigma_c\}_{c=1}^k$, for frozen $(z^{(i)})$
 - Set π_c based on frequency of seeing $z^{(i)} = c$
 - Set μ_c to the mean of examples in cluster c
 - ullet Set $oldsymbol{\Sigma}_c$ to the covariance of examples in cluster c
 - Q Given the parameters, find the most likely clusters
 - For each example i, compute responsibilities $r_c^{(i)} = p(z^{(i)} = c \mid x^{(i)}, \pi, \mu, \Sigma)$
 - Set $z^{(i)} = \arg\max_{c} r_c^{(i)}$
- Connection to Gaussian discriminant analysis (GDA), using clusters $z^{(i)}$ as labels:
 - Step 1 is the learning step in GDA; Step 2 is the prediction step in GDA

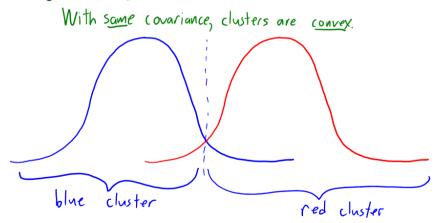
Special Case: k-Means

- ullet Algorithm from the previous slide is a generalization of k-means clustering
- Apply the algorithm assuming $\pi_c = 1/k$ and $\Sigma_c = \mathbf{I}$ for all c:
 - lacktriangledown Given the clusters $z^{(i)}$, find the most likely parameters
 - \bullet Set $\pmb{\mu}_c$ to the mean of examples in cluster c
 - Q Given the parameters, find the most likely clusters
 - ullet Set $z^{(i)}$ to the closest mean of example i
- As with k-means, initialization matters for fitting Gaussian mixtures
 - May need to do multiple random restarts, or clever initializations like k-means++

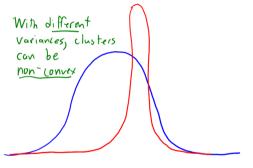
- k-means can be viewed as fitting a Gaussian mixture (all $\pi_c = \frac{1}{k}$, same $\mathbf{\Sigma} = \sigma^2 \mathbf{I}$)
 - ullet But using a variable Σ_c allows non-convex clusters



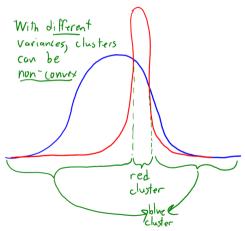
- k-means can be viewed as fitting a Gaussian mixture (all $\pi_c=rac{1}{k}$, same $\mathbf{\Sigma}=\sigma^2\mathbf{I}$)
 - ullet But using a variable Σ_c allows non-convex clusters



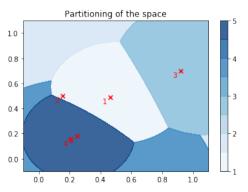
- k-means can be viewed as fitting a Gaussian mixture (all $\pi_c = \frac{1}{k}$, same $\Sigma = \sigma^2 \mathbf{I}$)
 - ullet But using a variable Σ_c allows non-convex clusters



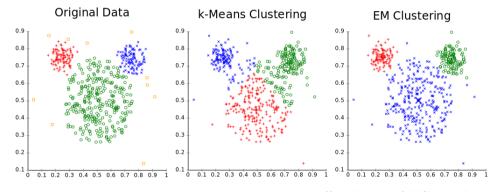
- k-means can be viewed as fitting a Gaussian mixture (all $\pi_c = \frac{1}{k}$, same $\Sigma = \sigma^2 \mathbf{I}$)
 - ullet But using a variable Σ_c allows non-convex clusters



- k-means can be viewed as fitting a Gaussian mixture (all $\pi_c = \frac{1}{k}$, same $\Sigma = \sigma^2 \mathbf{I}$)
 - ullet But using a variable $oldsymbol{\Sigma}_c$ allows non-convex clusters



- k-means can be viewed as fitting a Gaussian mixture (all $\pi_c = \frac{1}{k}$, same $\Sigma = \sigma^2 \mathbf{I}$)
 - ullet But using a variable Σ_c allows non-convex clusters



https://en.wikipedia.org/wiki/K-means_clustering

Digression: MLE does not exist

- For mixture of at least two Gaussians, there is no MLE
- You can make the likelihood arbitrarily large:
 - Set $\mu_c = x^{(i)}$ for some particular i and c, and make $\Sigma_c \to 0$
 - Optimizers often find models with degenerate components
 - Also often get empty clusters
- It is common to remove empty clusters and use a regularized update,

$$\Sigma_c = \frac{1}{\sum_{i=1}^n r_c^{(i)}} \sum_{i=1}^n r_c^{(i)} (x^{(i)} - \mu_c) (x^{(i)} - \mu_c)^{\mathsf{T}} + \lambda \mathbf{I}$$

which is MAP estimation with an L1 regularizer on diagonals of the precision

ullet The MAP estimate exists with this and other usual priors on $oldsymbol{\Sigma}_c$

Outline

- Mixture of Gaussians
- 2 Imputation to learn mixtures
- Mixture of Bernoullis
- Expectation Maximization
- 6 Advanced Mixtures
- 6 Kernel Density Estimation

Previously: Product of Bernoullis

A while ago we covered density estimation with discrete variables,

$$\mathbf{X} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

using a product of Bernoullis:

$$p(x^{(i)} | \theta) = \prod_{j=1}^{d} p(x_j^{(i)} | \theta_j)$$

- Easy to fit but very strong independence assumption:
 - Knowing $x_j^{(i)}$ tells you nothing about $x_k^{(i)}$
- A more powerful model: mixture of Bernoullis

Mixture of Bernoullis

- Consider a coin flipping scenario where we have two coins:
 - Coin 1 has $\theta_1=0.5$ (fair) and coin 2 has $\theta_2=1$ (biased)
- Half the time we flip coin 1, and otherwise we flip coin 2:

$$p(x^{(i)} = 1 \mid \theta_1, \theta_2) = \pi_1 \operatorname{Bern}(x^{(i)} = 1 \mid \theta_1) + \pi_2 \operatorname{Bern}(x^{(i)} = 1 \mid \theta_2)$$
$$= \frac{1}{2}\theta_1 + \frac{1}{2}\theta_2 = \frac{\theta_1 + \theta_2}{2}$$

- With one variable this mixture model is not very interesting
- It's exactly equivalent to flipping one coin with $\theta = 0.75$
- But mixture of product of Bernoullis can model dependencies. . .

• Consider a mixture of a product of Bernoullis:

$$p(x \mid \theta_1, \theta_2) = \frac{1}{2} \underbrace{\prod_{j=1}^d \mathrm{Bern}(x_j \mid \theta_{j|1})}_{\text{first set of Bernoullis}} + \underbrace{\frac{1}{2} \underbrace{\prod_{j=1}^d \mathrm{Bern}(x_j \mid \theta_{j|2})}_{\text{second set of Bernoullis}}$$

- Conceptually, we now have two sets of coins:
 - Half the time we throw the first set, half the time we throw the second set
- $\bullet \text{ With } d=4 \text{ we could have } \theta_{\cdot|1}=\begin{bmatrix}0 & 0.7 & 1 & 1\end{bmatrix} \text{ and } \theta_{\cdot|2}=\begin{bmatrix}1 & 0.7 & 0.8 & 0\end{bmatrix}$
 - Half the time we have $p(x_3^{(i)}=1)=1$, half the time it's 0.8
- Have we gained anything?

- Previous example: $\theta_{\cdot|1} = \begin{bmatrix} 0 & 0.7 & 1 & 1 \end{bmatrix}$ and $\theta_{\cdot|2} = \begin{bmatrix} 1 & 0.7 & 0.8 & 0 \end{bmatrix}$
- Here are some samples from this model:

$$\mathbf{X} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

- Unlike product of Bernoullis, features in samples are not independent
 - In this example knowing $x_1 = 1$ tells you that $x_4 = 0$
- This model can capture dependencies: $\underbrace{p(x_4=1 \mid x_1=1)}_{0.5} \neq \underbrace{p(x_4=1)}_{0.5}$

• Drawing the mixture of Bernoullis as a directed acyclic graph (DAG):



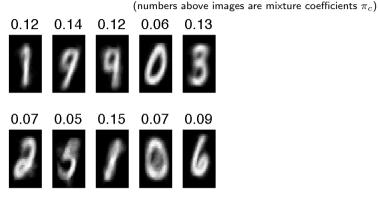
- If we know z, then each x_i is independent
- ullet Since we usually don't, there are dependencies between the x_i
 - We'll talk a bunch about this kind of reasoning soon ("graphical models")
- ullet This is the same graph as naive Bayes, with cluster z instead of class y
 - If you see one spammy word, it makes other spammy words more likely

• General mixture of independent Bernoullis:

$$p(x \mid \Theta) = \sum_{c=1}^{k} \pi_c p(x \mid z = c) = \sum_{c=1}^{k} \left[\pi_c \prod_{j=1}^{d} \theta_{j|c} \right]$$

- ullet Here Θ contains all the parameters: k values of π_c , and k imes d values of $heta_{j|c}$
- Mixture of Bernoullis can model dependencies between variables
 - Individual mixtures act like clusters of the binary data
 - Knowing cluster of one variable gives information about other variables
- With k large enough, mixture of Bernoullis can model any binary distribution
 - ullet With $k=2^d$, we can make all the $heta_{j|c}\in\{0,1\}$, and it becomes a tabular distribution
 - \bullet Hopefully, we can make a useful model with $k \ll 2^d \ldots$

ullet Plotting parameters $heta_c$ with 10 mixtures trained on MNIST digits (with "EM"):

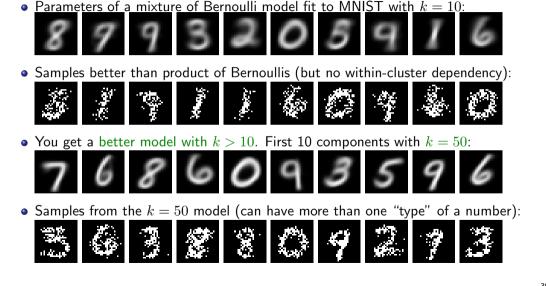


http:

 $// \texttt{pmtk3.googlecode.com/svn/trunk/docs/demoOutput/bookDemos/\%2811\%29-\texttt{Mixture_models_and_the_EM_algorithm/mixBerMnistEM.html}$

- Remember this is unsupervised: it hasn't been told there are ten digit classes
 - You could use this model to "fill in" missing parts of an image

Mixture of Bernoullis on Digits with k > 10



Outline

- Mixture of Gaussians
- 2 Imputation to learn mixtures
- Mixture of Bernoullis
- 4 Expectation Maximization
 - Justifying EM
- 6 Advanced Mixtures
- 6 Kernel Density Estimation

Big Picture: Training and Inference

- Many possible mixture model inference tasks:
 - Generate samples
 - Measure likelihood of test examples \tilde{x}
 - To detect outliers, for example
 - ullet Compute probability that test example belongs to cluster c
 - Compute marginal or conditional probabilities
 - "Fill in" missing parts of a test example
- Mixture model training phase:
 - Input is a matrix X, number of clusters k, and form of individual distributions
 - ullet Output is mixture proportions π_c and parameters of components
 - ullet The $heta_{\cdot|c}$ for Bernoulli, and the $\{oldsymbol{\mu}_c, oldsymbol{\Sigma}_c\}$ for Gaussians
 - ullet Also, maybe, the responsibilities $r_c^{(i)}$ or cluster assignments $z^{(i)}$

Fitting a Mixture of Bernoullis: Imputation of $z^{(i)}$

- Imputation approach to fitting mixture of Bernoullis, optimizing the $z^{(i)}$:
 - Find the most likely cluster $z^{(i)}$ for each example $x^{(i)}$,

$$z^{(i)} \in \arg\max_{c} p(z^{(i)} = c \mid x^{(i)}, \Theta)$$

Update the mixture probabilities as proportion of examples in cluster,

$$\pi_c = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(z^{(i)} = c)$$

Opdate the product of Bernoullis based on examples in cluster,

$$\theta_{j|c} = \frac{\sum_{i=1}^{n} \mathbb{1}(z^{(i)} = c)x_{j}^{(i)}}{\sum_{i=1}^{n} \mathbb{1}(z^{(i)} = c)}$$

• This picks a particular value for each $z^{(i)}$; sometimes called "hard assignments"

Fitting a Mixture of Bernoullis: Expectation Maximization

- Expectation maximization (EM) approach to fitting mixture of Bernoullis:
 - Find the responsibility of cluster $z^{(i)}$ for each example $x^{(i)}$:

$$r_c^{(i)} = p(z^{(i)} = c \mid x^{(i)}, \Theta) \propto \pi_c p(x^{(i)} \mid z^{(i)} = c, \Theta)$$

② Update the mixture probabilities as proportion of examples cluster is responsible for:

$$\pi_c = \frac{1}{n} \sum_{i=1}^{n} r_c^{(i)}$$

Opdate the product of Bernoullis based on examples cluster is responsible for:

$$\theta_{j|c} = \frac{\sum_{i=1}^{n} r_c^{(i)} x_j^{(i)}}{\sum_{i=1}^{n} r_c^{(i)}}$$

ullet This does "soft" (probabilistic) assignment for the $z^{(i)}$ variables

Fitting a Mixture of Gaussians: Expectation Maximization

- Expectation maximization (EM) approach to fitting mixture of Gaussians:
 - **①** Find the responsibility of cluster $z^{(i)}$ for each example $x^{(i)}$:

$$r_c^{(i)} = p(z^{(i)} = c \mid x^{(i)}, \Theta) \propto \pi_c p(x^{(i)} \mid z^{(i)} = c, \Theta)$$

Update the mixture probabilities as proportion of examples cluster is responsible for:

$$\pi_c = \frac{1}{n} \sum_{i=1}^{n} r_c^{(i)}$$

Opdate the Gaussian based on how many examples the cluster is responsible for:

$$\boldsymbol{\mu}_{c} = \frac{1}{\sum_{i=1}^{n} r_{c}^{(i)}} \sum_{i=1}^{n} r_{c}^{(i)} x^{(i)}, \quad \boldsymbol{\Sigma}_{c} = \frac{1}{\sum_{i=1}^{n} r_{c}^{(i)}} \sum_{i=1}^{n} r_{c}^{(i)} (x^{(i)} - \mu_{c}) (x^{(i)} - \mu_{c})^{\mathsf{T}}$$

• Video: https://www.youtube.com/watch?v=B36fzChfyGU

Fitting a Mixture of Exponential Families: Expectation Maximization

• Expectation maximization (EM) approach to fitting mixture of

$$p(x^{(i)} \mid z^{(i)} = c) = h(x^{(i)}) \exp\left(\theta_c^\mathsf{T} s\left(x^{(i)}\right)\right) / Z(\theta_c)$$

• Find the responsibility of cluster $z^{(i)}$ for each example $x^{(i)}$:

$$r_c^{(i)} = p(z^{(i)} = c \mid x^{(i)}, \Theta) \propto \pi_c p(x^{(i)} \mid z^{(i)} = c, \Theta) \propto \pi_c \exp\left(\theta_c^\mathsf{T} s\left(x^{(i)}\right)\right) / Z(\theta_c)$$

② Update the mixture probabilities as proportion of examples cluster is responsible for:

$$\pi_c = \frac{1}{n} \sum_{i=1}^{n} r_c^{(i)}$$

Opdate the parameters based on how many examples the cluster is responsible for:

solve
$$\underset{X \sim p_{\theta_c}}{\mathbb{E}} s(X) = \frac{1}{\sum_{i=1}^n r_c^{(i)}} \sum_{i=1}^n r_c^{(i)} s\left(x^{(i)}\right)$$

Expectation Maximization vs. Imputation

- The imputation method is optimizing $p(X, Z \mid \Theta)$ in terms of Z and Θ
 - ullet $p(\mathbf{X}, \mathbf{Z} \mid \Theta)$ is called the complete-data likelihood
 - Steps are $\mathbf{Z}^{(t+1)} \in \arg\max_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z} \mid \Theta^{(t)})$, $\Theta^{(t+1)} \in \arg\max_{\Theta} p(\mathbf{X}, \mathbf{Z}^{(t+1)} \mid \Theta)$
 - Each step can only increase $p(\mathbf{X}, \mathbf{Z} \mid \Theta)$; finds a local max
- Expectation maximization (EM) is optimizing $p(X \mid \Theta)$ in terms of Θ
 - ullet So we're integrating over ${f Z}$ values while optimizing Θ
 - $p(X \mid \Theta)$ is the usual likelihood, marginalizing over the Z
 - But doing $\max_{\Theta} \mathbb{E}_{\mathbf{Z}|\mathbf{X},\Theta} p(\mathbf{X},\mathbf{Z} \mid \Theta)$ doesn't give us nice optimization tricks

$$\log \underset{\mathbf{Z}\mid\mathbf{X},\Theta}{\mathbb{E}} p(\mathbf{X},\mathbf{Z}\mid\Theta) = \log \underset{\mathbf{Z}\mid\mathbf{X},\Theta}{\mathbb{E}} \prod_{i=1}^{n} \pi_{z^{(i)}} p(x^{(i)}\mid z^{(i)},\Theta) = \sum_{i=1}^{n} \log \left(\underset{z^{(i)}\mid x^{(i)},\Theta}{\mathbb{E}} \pi_{z^{(i)}} p(x^{(i)}\mid z^{(i)},\theta) \right)$$

- EM approximately maximizes this, as we'll see shortly
- EM is a general algorithm for parameter learning with missing data
 - For mixtures, the "missing" data is the $z^{(i)}$ variables
 - But EM can be used for any probabilistic model where we have missing data

Expectation Maximization Algorithm: Properties

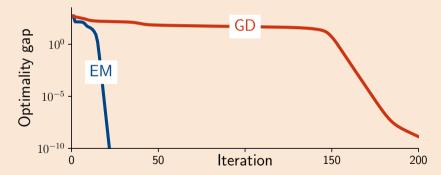
- EM monotonically increases likelihood, $p(\mathbf{X} \mid \Theta_{t+1}) \geq p(X \mid \Theta_t)$
 - Useful for debugging: if likelihood decreases, you have a bug
- EM doesn't need a step size, unlike many learning algorithms
- EM tends to satisfy constraints automatically
 - ullet Unlike gradient descent, don't need to worry about constraints on π_c and Σ_c
 - Assuming you have a prior to avoid degenerate situations where MLE does not exist
- EM iterations are parameterization-independent
 - Get the same performance under any re-parameterization of the problem
- EM is notorious for converging to bad local optima
 - Not really the algorithm's fault: we typically apply EM to hard problems

Expectation Maximization Algorithm: More Properties

- EM converges to a stationary point, under weak assumptions
- EM is at least as fast as gradient descent (with a constant step size)
 - In the worst case, for differentiable problems
 - EM can also be used for non-differentiable likelihoods
- EM converges faster as entropy of hidden variables decreases
 - If value of hidden variables is "obvious", it converges very fast
- EM can be arbitrarily faster than gradient descent
- Mark has a bunch of more detailed material on the EM algorithm here:
 - https://www.cs.ubc.ca/~schmidtm/Courses/440-W22/L34.5.pdf

Expectation Maximization vs. Gradient Descent

 Expectation maximization vs. gradient descent for fitting mixture of two Gaussians:



Outline

- Mixture of Gaussians
- 2 Imputation to learn mixtures
- Mixture of Bernoullis
- Expectation MaximizationJustifying EM
- 6 Advanced Mixtures
- 6 Kernel Density Estimation

Missing data models

- In general, EM lets us do MLE/MAP with observed data X and missing data Z
- ullet Maybe we just didn't observe $x_i^{(i)}\ldots$ EM still lets us use the rest of x_j and $x^{(i)}$
- For mixture models, Z are the component IDs
- Related: class labels in semi-supervised learning, for "pseudo-labels"

The ELBO

• The Evidence Lower BOund is key to variational inference as well as EM

$$\log p(\mathbf{X} \mid \Theta) = \int q(\mathbf{Z}) \log p(\mathbf{X} \mid \Theta) d\mathbf{Z}$$

$$= \int q(\mathbf{Z}) \log \left(\frac{p(\mathbf{X} \mid \Theta) p(\mathbf{Z} \mid \mathbf{X}, \Theta)}{p(\mathbf{Z} \mid \mathbf{X}, \Theta)} \right) d\mathbf{Z}$$

$$= \int q(\mathbf{Z}) \log \left(\frac{p(\mathbf{X}, \mathbf{Z} \mid \Theta)}{p(\mathbf{Z} \mid \mathbf{X}, \Theta)} \right) d\mathbf{Z} = \int q(\mathbf{Z}) \log \left(\frac{p(\mathbf{X}, \mathbf{Z} \mid \Theta) q(\mathbf{Z})}{p(\mathbf{Z} \mid \mathbf{X}, \Theta) q(\mathbf{Z})} \right) d\mathbf{Z}$$

$$= \int q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z} \mid \Theta) d\mathbf{Z} - \int q(\mathbf{Z}) \log q(\mathbf{Z}) d\mathbf{Z} + \int q(\mathbf{Z}) \log \left(\frac{q(\mathbf{Z})}{p(\mathbf{Z} \mid \mathbf{X}, \Theta)} \right) d\mathbf{Z}$$

 $= \underbrace{\mathbb{E}_{\mathbf{Z} \sim q}[\log p(\mathbf{X}, \mathbf{Z} \mid \Theta)] + \text{Entropy}[q]}_{\mathbf{Z} \sim q} + \text{KL}(q(\mathbf{Z}) \parallel p(\mathbf{Z} \mid \mathbf{X}, \Theta))$

- $\mathrm{KL}(q \parallel p) \geq 0$ is the Kullback-Leibler divergence: zero iff p = q
- Tells us that ELBO $\leq \log p(\mathbf{X} \mid \Theta)$ for any choice of distribution q

Information theory

- Entropy of a discrete random variable: $-\sum_x p(x) \log p(x) = \mathbb{E}_{X \sim p}[-\log p(X)]$
 - How efficiently can I encode a sample from p on average?
 - Entropy of a point mass is 0; of $\mathrm{Unif}(\{1,\ldots,k\})$ is $-\log\frac{1}{k}=\log k$
- Differential entropy of a continuous rv: $-\int_x p(x) \log p(x) = \mathbb{E}_{X \sim p}[-\log p(X)]$
 - Can be negative! If $X \sim \text{Unif}([0, 0.1])$, $\mathbb{E}[-\log p(X)] = -\log 10$
- KL divergence or relative entropy is $\mathrm{KL}(p \parallel q) = \mathbb{E}_{X \sim p} \left[\log \frac{p(X)}{q(X)} \right]$
 - How much do I lose by encoding a sample from p using a model for q?
 - $\mathrm{KL}(p \parallel q) = 0$ if p = q, otherwise positive: $f(x) = -\log(x)$ is convex, so (Jensen's)

$$\mathbb{E} f\left(\frac{q(x)}{p(x)}\right) \ge f\left(\mathbb{E} \frac{q(x)}{p(x)}\right) = -\log\left(\int_x \frac{q(x)}{p(x)} p(x) dx\right) = -\log\left(\int_x q(x) dx\right) = 0$$

- Not symmetric: $KL(p \parallel q) \neq KL(q \parallel p)$ in general
- Cross-entropy: $\mathbb{E}_{X \sim p}[-\log q(X)] = \text{Entropy}(p) + \text{KL}(p \parallel q)$
 - How efficiently does a code for q encode a sample for p?

Applying ELBO grease

• We'd like to do $\max_{\Theta} \log p(\mathbf{X} \mid \Theta)$, but it's hard. For any distribution q(z),

$$\log p(\mathbf{X} \mid \Theta) \ge \underset{\mathbf{Z} \sim q}{\mathbb{E}} [\log p(\mathbf{X}, \mathbf{Z} \mid \Theta)] + \text{Entropy}[q]$$

ullet If we choose Θ and q to get a large ELBO, we'd guarantee a large $\log p(\mathbf{X}\mid\Theta)$

$$\max_{\boldsymbol{\Theta}, \mathbf{q}} \mathbb{E} \log p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\Theta}) + \text{Entropy}[\mathbf{q}]$$

• The bound is tight when $q(\mathbf{Z}) = p(\mathbf{Z} \mid \mathbf{X}, \Theta)$, since the KL term is zero:

$$\log p(\mathbf{X} \mid \Theta) = \underset{\mathbf{Z} \sim p(\mathbf{Z} \mid \mathbf{X}, \Theta)}{\mathbb{E}} [\log p(\mathbf{X}, \mathbf{Z} \mid \Theta)] + \text{Entropy}[p(\mathbf{Z} \mid \mathbf{X}, \Theta)]$$

- So, for any Θ , the q that maximizes the ELBO is $p(\mathbf{Z} \mid \mathbf{X}, \Theta)$
- For any q, Θ maximizing ELBO is $\arg\max_{\Theta} \mathbb{E}_{\mathbf{Z} \sim q}[\log p(\mathbf{X}, \mathbf{Z} \mid \Theta)] + \mathrm{Entropy}[q]$
- Alternate $q^{(t+1)} \in \arg\max_{q} \text{ELBO}(\Theta^{(t)}, q), \ \Theta^{(t+1)} \in \arg\max_{\Theta} \text{ELBO}(\Theta, q^{(t+1)})$
 - ullet Ends at local max of ELBO, which implies local max of $p(\mathbf{X}\mid\Theta)$
- Succinct statement of general EM: $\Theta^{(t+1)} \in \arg \max_{\Theta} \mathbb{E}_{\mathbf{Z} \mid \mathbf{X}, \Theta^{(t)}} \log p(\mathbf{X}, \mathbf{Z} \mid \Theta)$

FM for Mixture Models

• If $Z^{(i)} \stackrel{iid}{\sim} \operatorname{Cat}(\pi)$ and $X^{(i)} \mid (Z^{(i)} = c) \sim \operatorname{Something}(\theta_c)$,

$$\mathbb{E}_{\mathbf{Z}|\mathbf{X},\Theta^{(t)}} \log p(\mathbf{X}, \mathbf{Z} \mid \Theta) = \sum_{i=1}^{n} \mathbb{E}_{z^{(i)}|x^{(i)},\Theta^{(t)}} \log p(x^{(i)}, z^{(i)} \mid \Theta)$$

$$= \sum_{i=1}^{n} \sum_{z^{(i)}|x^{(i)},\Theta^{(t)}|} \left(\log \pi_c + \log p(x^{(i)} \mid z^{(i)} = c, \theta_c)\right)$$

- So, each EM iteration of finding ⊖ can be written as two steps:
 - **1** Expectation step: compute responsibilities $r_c^{(i)}$ for all i and c, for current $\Theta^{(t)}$
 - Maximization step: maximize $\sum_{i} \sum_{c} r_c^{(i)} \log p(x^{(i)}, z^{(i)} \mid \Theta)$ by
 - Maximize over π_c : pick $\pi_c \propto \sum_i r_c^{(i)}$
 - Maximize over $heta_c$ for each component, with "data weights" $r_c^{(i)}$
- Might not always implement with explicitly separate "E" and "M" steps
- ullet EM best if $\mathbf{Z} \mid \mathbf{X}, \Theta$ is simple to compute, and $\log p(\mathbf{X}, \mathbf{Z} \mid \Theta)$ is easy to optimize

Outline

- Mixture of Gaussians
- 2 Imputation to learn mixtures
- Mixture of Bernoullis
- Expectation Maximization
- 6 Advanced Mixtures
- 6 Kernel Density Estimation

Combining Mixture Models with Other Models

- We can use mixtures in generative models:
 - Model $p(x \mid y)$ as a mixture instead of simple Gaussian or product of Bernoullis
- Or in discriminative models:
 - ullet Let $Y\mid X$ follow a mixture of Gaussians, with means chosen by a deep net
- We can do mixture of more complicated distributions:
 - Mixture of categoricals (can model arbitrary categorical vectors)
 - Mixture of student-t distributions
 - Not exponential family, so no simple closed-form update of parameters
 - Mixture of Markov chains, graphical models (later in the course)
- We can add features to mixture models for supervised learning:
 - Mixture of experts: have k regression/classification models
 - ullet Each model can be viewed as a "expert" for a cluster of $x^{(i)}$ values
 - GPT-4, Grok, ... are mixtures of Transformers
 - These models use conditional weights π_c ; some are 0 for computational savings

Less-Naive Bayes on Digits

• Naive Bayes θ_c values (independent Bernoullis for each class):

• One sample from each class:

• Generative classifier with mixture of 5 Bernoullis for each class (digits 1 and 2):

• One sample from each class:

Dirichlet Process

Non-parametric Bayesian methods allow us to consider infinite mixture model,

$$p(x \mid \Theta) = \sum_{c=1}^{\infty} \pi_c \, p_c(x \mid \Theta_c)$$

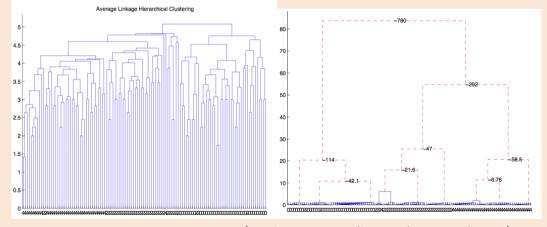
- Common choice for prior on π values is Dirichlet process:
 - Also called "Chinese restaurant process" and "stick-breaking process"
 - For finite datasets, only a fixed number of clusters have $\pi_c \neq 0$
 - But don't need to pick number of clusters; it grows with data size
- Gibbs sampling in Dirichlet process mixture model in action: https://www.youtube.com/watch?v=0Vh7qZY9sPs

Dirichlet Process

- Slides giving more details on Dirichelt process mixture models:
 - https://www.cs.ubc.ca/labs/lci/mlrg/slides/NP.pdf
- ullet We could alternately put a prior on number of clusters k:
 - Allows more flexibility than Dirichlet process as a prior
 - Computationally more difficult
- There are a variety of interesting variations on Dirichlet processes
 - Beta process ("Indian buffet process")
 - Hierarchical Dirichlet process
 - Polya trees
 - Infinite hidden Markov models

Bayesian Hierarchical Clustering

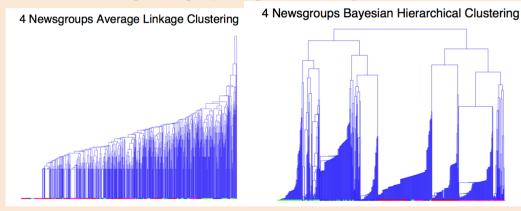
• Hierarchical clustering of $\{0, 2, 4\}$ digits using classic and Bayesian method:



http://www2.stat.duke.edu/~kheller/bhcnew.pdf (y-axis represents distance between clusters)

Bayesian Hierarchical Clustering

• Hierarchical clustering of newgroups using classic and Bayesian method:



http://www2.stat.duke.edu/~kheller/bhcnew.pdf (y-axis represents distance between clusters)

Continuous Mixture Models

ullet We can also consider mixture models where $z^{(i)}$ is continuous,

$$p(x^{(i)}) = \int_{z^{(i)}} p(z^{(i)}) p(x^{(i)} \mid z^{(i)} = c) dz^{(i)}$$

- Unfortunately, computing the integral might be hard
- Special case is if both probabilities are Gaussian (conjugate)
 - Leads to probabilistic PCA and factor analysis (OCEAN model in psychology)
 - Mark's old material: https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/L17.5.pdf
- Another special case is scale mixtures of Gaussians
 - ullet $p(x^{(i)} \mid z^{(i)})$ is Gaussian, and $p(z^{(i)})$ is a gamma prior on variance (conjugate)
 - \bullet Can represent many distributions in this form, like Laplace and student- t
 - ullet Leads to EM algorithms for fitting Laplace and student-t

Outline

- Mixture of Gaussians
- 2 Imputation to learn mixtures
- Mixture of Bernoullis
- 4 Expectation Maximization
- 6 Advanced Mixtures
- 6 Kernel Density Estimation

Non-Parametric Mixtures: Kernel Density Estimation

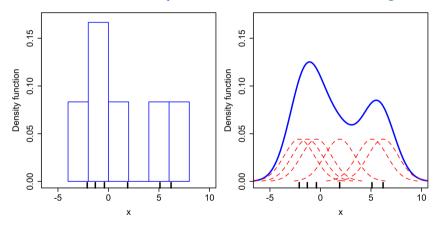
• A common non-parametric mixture model centers one cluster on each example:

$$p(x^{(i)}) = \frac{1}{n} \sum_{j=1}^{n} \mathcal{N}(x^{(i)} \mid x^{(j)}, \sigma^{2} \mathbf{I})$$

- This is called kernel density estimation (KDE) or the Parzen window method
 - Don't have to use a normal likelihood, though that's a common choice
 - ullet Scale σ^2 is viewed as a hyper-parameter
- Number of components, means, mixture weights are fixed from X; fitting is trivial
- Most inference tasks (except finding the mode) are easy, but slow (depend on n)
- Many variations exist; see bonus slides for generalizations
 - Tends to work great in low dimensions, and poorly in high dimensions

Histogram vs. Kernel Density Estimator

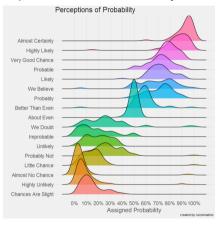
• You can think of a kernel density estimate as like a continuous histogram:



https://en.wikipedia.org/wiki/Kernel_density_estimation

Kernel Density Estimator for Visualization

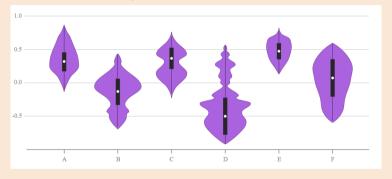
• Visualization of people's opinions about what "likely" and other words mean.



http://blog.revolutionanalytics.com/2017/08/probably-more-probably-than-probable.html

Violin Plot: Adding KDE to a Boxplot

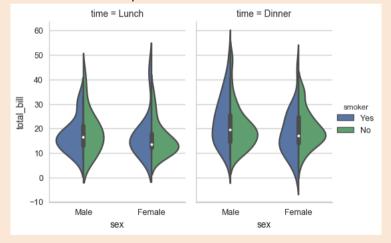
• Violin plot adds KDE to a boxplot:



https://datavizcatalogue.com/methods/violin_plot.html

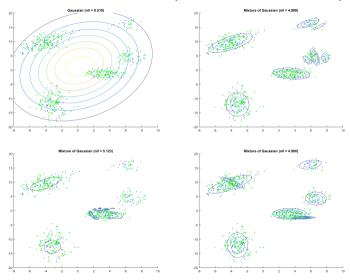
Violin Plot: Adding KDE to a Boxplot

• Violin plot adds KDE to a boxplot:



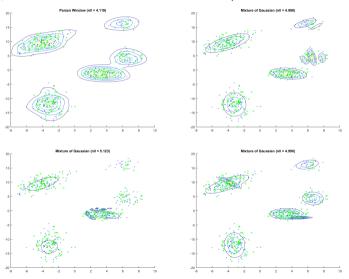
KDE vs. Mixture of Gaussian

• Single Gaussian vs mixture of Gaussians (different EM initializations):



KDE vs. Mixture of Gaussian

• Kernel density estimation vs mixture of Gaussians (different EM initializations):



Mean-Shift Clustering

- Mean-shift clustering uses KDE for clustering:
 - Define a KDE on the training examples, and then for test example \hat{x} :
 - Run gradient descent to maximize p(x) starting from \hat{x}
 - Clusters are points that reach same local minimum
- https://spin.atomicobject.com/2015/05/26/mean-shift-clustering
- Not sensitive to initialization, no need to choose number of clusters
- Can find non-convex clusters
- Similar to density-based clustering from 340
 - Doesn't require uniform density within cluster
 - Can be used for vector quantization
- "The 5 Clustering Algorithms Data Scientists Need to Know":
 - https://towardsdatascience.com/ the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68

Kernel Density Estimation on Digits

- Samples from a KDE model of digits:
 - Sample is on the left, right is the closest image from the training set.

- KDE just samples a training example then adds noise
 - Usually makes more sense for continuous data that is densely packed
- A variation with a location-specific variance (diagonal Σ instead of $\sigma^2 \mathbf{I}$):

Summary

- Mixture of Gaussians writes probability as convex combo of Gaussian densities
 - Can model arbitrary continuous densities
- Latent-variable representation of mixutres with cluster variables $z^{(i)}$
 - Allows ancestral sampling by sampling cluster than example
 - Responsibility is probability that an example belongs to a cluster
- Mixture of Bernoullis can model dependencies between discrete variables
 - Unsupervised version of naive Bayes; can model arbitrary binary distributions
- ullet Learning by alternating imputing z^i and fitting full model...or more commonly,
- Expectation maximization: algorithm for optimization with hidden variables
 - Instead of imputation, works with "soft" assignments to nuisance variables
 - Maximizes log-likelihood, weighted by all imputations of hidden variables
 - Simple and intuitive updates for fitting mixtures models
 - Appealing properties as an optimization algorithm, but only finds local optimum
- Kernel density estimation: non-parametric density estimation method
 - Center a mixture on each datapoint (smooth variation on histograms)
 - Data visualization, low-dimensional density estimation, mean-shift clustering
- Next time: hitting the casino

Avoiding Underflow when Computing Responsibilities

- Computing responsibility may underflow for high-dimensional $x^{(i)}$, due to $p(x^{(i)} \mid z^{(i)} = c, \Theta)$
- Usual ML solution: do all but last step in log-domain

$$\log r_c^i = \log p(x^i \mid z^i = c, \Theta) + \log p(z^i = c \mid \Theta)$$
$$-\log \left(\sum_{c'=1}^k p(x^i \mid z^i = c', \Theta^t) p(z^i = c' \mid \Theta) \right).$$

- To compute last term, use "log-sum-exp" trick
 - scipy.special.logsumexp

Log-Sum-Exp Trick

bonus

• To compute $\log(\sum_i \exp(v_i))$, set $\beta = \max_i v_i$ and use:

$$\log\left(\sum_{i} \exp(v_{i})\right) = \log\left(\sum_{i} \exp(v_{i} - \beta + \beta)\right)$$

$$= \log\left(\sum_{i} \exp(v_{i} - \beta) \exp(\beta)\right)$$

$$= \log\left(\exp(\beta)\sum_{i} \exp(v_{i} - \beta)\right)$$

$$= \log(\exp(\beta)) + \log\left(\sum_{i} \exp(v_{i} - \beta)\right)$$

$$= \beta + \log\left(\sum_{i} \exp(v_{i} - \beta)\right)$$

Avoids overflows in computing the exp operator

Mixture of Gaussians on Digits

• Mean parameters of a mixture of Gaussians with k = 10:

Samples:

• 10 components with k = 50 (might need a better initialization):

Samples:

EM for MAP Estimation

• We can also use EM for MAP estimation. With a prior on Θ our objective is:

$$\underbrace{\log p(X\mid\Theta) + \log p(\Theta)}_{\text{what we optimize in MAP}} = \log\left(\sum_{Z} p(X,Z\mid\Theta)\right) + \log p(\Theta).$$

• EM iterations take the form of a regularized weighted "complete" NLL,

$$\Theta^{t+1} \in \operatorname*{arg\,max}_{\Theta} \left\{ \underbrace{\sum_{Z} p(Z \mid X, \Theta^{t}) \log p(X, Z \mid \Theta)}_{+\log p(\Theta)} + \log p(\Theta) \right\},$$

- Now guarantees monotonic improvement in MAP objective.
 - Has a closed-form solution for mixture of exponential families with conjugate priors.
- For mixture of Gaussians with $-\log p(\Theta_c) = \lambda \text{Tr}(\Theta_c)$ for precision matrices Θ_c :
 - Closed-form solution that satisfies positive-definite constraint (no $\log |\Theta|$ needed).

Generative Mixture Models and Mixture of Experts

Classic generative model for supervised learning uses

$$p(y^i \mid x^i) \propto p(x^i \mid y^i)p(y^i),$$

and typically $p(x^i \mid y^i)$ is assumed Gaussian (LDA) or independent (naive Bayes).

• But we could allow more flexibility by using a mixture model,

$$p(x^{i} \mid y^{i}) = \sum_{c=1}^{k} p(z^{i} = c \mid y^{i}) p(x^{i} \mid z^{i} = c, y^{i}).$$

• Another variation is a mixture of disciminative models (like logistic regression),

$$p(y^{i} \mid x^{i}) = \sum_{c=1}^{k} p(z^{i} = c \mid x^{i}) p(y^{i} \mid z^{i} = c, x^{i}).$$

- Called a "mixture of experts" model:
 - Each regression model becomes an "expert" for certain values of x^i .

General Kernel Density Estimation

The 1D kernel density estimation (KDE) model uses

$$p(x^{i}) = \frac{1}{n} \sum_{j=1}^{n} k_{\sigma} \underbrace{(x^{i} - x^{j})}_{x},$$

where the PDF k is called the "kernel" and parameter σ is the "bandwidth".

• In the previous slide we used the (normalized) Gaussian kernel,

$$k_1(r) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{r^2}{2}\right), \quad k_{\sigma}(r) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{r^2}{2\sigma^2}\right).$$

ullet Note that we can add a "bandwith" (standard deviation) σ to any PDF k_1 , using

$$k_{\sigma}(r) = \frac{1}{\sigma} k_1 \left(\frac{r}{\sigma}\right),$$

from the change of variables formula for probabilities $(\left|\frac{d}{dx}\left[\frac{r}{a}\right]\right| = \frac{1}{a})$.

• Under common choices of kernels, KDEs can model any continuous density.

Efficient Kernel Density Estimation

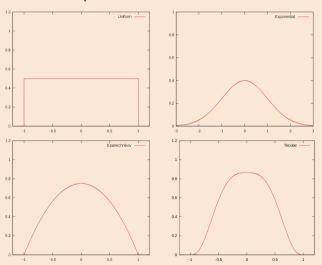
- KDE with the Gaussian kernel is slow at test time:
 - We need to compute distance of test point to every training point.
- A common alternative is the Epanechnikov kernel,

$$k_1(r) = \frac{3}{4} (1 - r^2) \mathcal{I}[|r| \le 1].$$

- This kernel has two nice properties:
 - Epanechnikov showed that it is asymptotically optimal in terms of squared error.
 - It can be much faster to use since it only depends on nearby points.
 - You can use hashing to quickly find neighbours in training data.
- It is non-smooth at the boundaries but many smooth approximations exist.
 - Quartic, triweight, tricube, cosine, etc.
- For low-dimensional spaces, we can also use the fast multipole method.

Visualization of Common Kernel Functions

Histogram vs. Gaussian vs. Epanechnikov vs. tricube:



Multivariate Kernel Density Estimation

The multivariate kernel density estimation (KDE) model uses

$$p(\tilde{x}) = \frac{1}{n} \sum_{i=1}^{n} k_A(\underbrace{\tilde{x} - x^{(i)}}_r),$$

• The most common kernel is a product of independent Gaussians,

$$k_I(r) = \frac{1}{(2\pi)^{\frac{d}{2}}} \exp\left(-\frac{\|r\|^2}{2}\right).$$

• We can add a bandwith matrix A to any kernel using

$$k_A(r) = \frac{1}{|A|} k_1(A^{-1}r)$$
 (generalizes $k_\sigma(r) = \frac{1}{\sigma} k_1\left(\frac{r}{\sigma}\right)$),

and in Gaussian case we get a multivariate Gaussian with $\Sigma=AA^T$

ullet Can help, but choices other than $A=\sigma I$ add a lot of parameters!