
Recurrent Neural Networks
CPSC 440/550: Advanced Machine Learning

cs.ubc.ca/~dsuth/440/23w2

University of British Columbia, on unceded Musqueam land

2023-24 Winter Term 2 (Jan–Apr 2024)

1 / 1
1

Last Time: Multi-Class Neural Networks
• We discussed multi-class classification with neural networks:

• We use the softmax function to convert the !𝑦! to probabilities:
– We use this for inference.
– Likelihood is softmax for true label.
– Last layer is all that changes.

• We train by minimizing the sum of negative log-likelihoods over i.
– We can add multiple layers, convolution layers, max pooling, ReLu, and so on. 2

Review: Word Representations
• How do we represent words with features?
• Lexical features:
– Represent words using a “1 of k” encoding

• Where k is the number of words in training data
– Or “words that appear at least 5 times in the training data”
– Set all these features to 0 for other words

– Or: sample a random high-dim vector per word
• If d really big but << k, still approximately orthogonal

• Latent-factor models like word2vec, GloVe, fasttext:
– Unsupervised learning of continuous features for each word

• Distances in this space may approximate semantic meaning
• May do sensible things for words not seen during training

http://sebastianruder.com/secret-word2vec
3

Motivation: Part of Speech (POS) Tagging
• Consider predicting part of speech for each word in a sentence:

• Input is a sequence of words
– Could be represented as “1 of k” or using continuous vectors like word2vec

• Output is a categorical label for each word
– In English there are ~40 reasonable categories

• And there are some dependencies in labels (like “only 1 verb in the clause”)

• General problem: sequence labeling
– Biological sequences, various language tasks, sound processing

https://medium.com/analytics-vidhya/pos-tagging-using-conditional-random-fields-92077e5eaa31 4

Individual-Word Neural Network Classifier

• We could train a neural network to predict label of a given word
– Above, show have 1 input feature for each word; usually have d > 1
– Also not showing the non-linear transform or bias variables.

• But this type of model would not capture dependencies
– Information from earlier in sentence does influence prediction

• “Don’t desert me in the desert!”
5

Recurrent Neural Network for Sequence Labeling

• Recurrent neural networks (RNNs):
– Add connections between adjacent different times to model dependencies
– Add an initial hidden state
– Use the same parameters across time

• Repeating parameters in different places is called parameter tying
– Convolutions use parameter tying across space
– By tying parameters across time, RNNs can label sequences of different lengths 6

Recurrent Neural Network for Sequence Labeling

7

Recurrent Neural Network Inference

– Assume we have:
• k different classes that each !𝑦t can take
• m hidden units at each time
• T times (length of sequence)

– Cost to compute all !𝑦! if each time has m units and we have T times:
• We need to do an O(md) operations T times to compute Wxt for all t
• We need to do an O(km) operation T times to compute !𝑦! for all t
• We need to do a O(m2) operation T times to compute each zt
• Total cost: O(Tmd + Tkm + Tm2)

– For the likelihood, we could use an independent softmax for each time
• p(y1:T | x1:T, W, V, U) = p(y1 | x1, W, V, U) p(y2 | x1:2, W, V, U)⋯ p(yT | x1:T, W, V, U)

– Each p(yt | x1:T, W, V, U) is given by softmax over !𝑦! values
– Conditioned on features and parameters, this assumes a “product of categoricals” model

8

RNN Learning
• The objective function we use to train RNNs is the NLL:

– Sequence i has length T(i) (might vary)
• Computing gradient is called “backpropagation through time” (BTT)
– Equations are the same as usual backpropagation/chain-rule

• If you do it by hand, make sure to add all terms for tied parameters
• Automatic differentiation will handle this automatically

• Usually trained with SGD
– Sample an example i on each iteration, do BTT, update all parameters
– This has the usual challenges

9

RNN Learning – Extra Challenges
• Computing gradient requires a lot of memory for long sequences
– There are a lot of intermediate calculations

• Parameter tying often leads to vanishing/exploding gradient problems
– For a linear RNN, if all the input features are zero:

• zT = U U U ⋯ U z0 = UT z0

• Usually zT either diverges exponentially or converges to zero exponentially
– If largest singular value of U is > 1, ||zT|| increases exponentially with T
– If largest singular value of U is < 1, ||zT|| converges to zero exponentially with T

• Usual SGD methods tend not to work well
– Often need to use optimizers like Adam or use gradient clipping:

• If norm of gradient is larger than some threshold, “shrink” norm to threshold:
– Special initialization / keeping ‘U’ orthogonal might help

• Makes all singular values 1 – some positive, some negative results on this
https://towardsdatascience.com/neural-network-optimization-7ca72d4db3e0 10

Deep RNNs
• Instead of drawing this:

• We often use diagrams like this:
– Up to some notation changes
– We connect everything in blocks

connected by arrows

• Deep RNNs add multiple hidden layers at each time:

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks 11

Bi-Directional RNNs
• Sometimes later information later changes meaning:
– "I've had a perfectly wonderful evening, but this wasn't it.” (“paraprosdokian”)

– “The old man the boat.” (“garden path sentence”)

• Bi-directional RNNs have hidden layers running in both directions:
– Different parameters for the

forward and backward directions

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks 12

Next Topic: Sequence to Sequence RNNs
(seq2seq)

13

Motivating Problem: Machine Translation
• Consider the problem of machine translation:
– Input is text from one language
– Output is text from another language with the same meaning

• A key difference with pixel labeling:
– Input and output sequences may have different lengths and “orders”

• We do not just “find the French word corresponding to the English word”

– We probably don’t know the output length 14

Sequence-to-Sequence RNNs
• Sequence-to-sequence RNNs encode and decode sequences:
– Each encoding step has one word as input, and no output
– Each decoding step outputs one word, with no input

• Encoding and decoding steps use different tied parameters

– Special “BOS” at end of input (says when encoding is done).
– Speical “EOS” at end of output (says when decoding is done).

x1

z1

x2

z2

x3

z3 z4 z5z0

y1 y2

15

Discussion: Sequence-to-Sequence Models
• Representing input and outputs:
– Could use lexicographic or word2vec representations
– Could just have a single character at each time

• Could make more sense for some languages
• May be able to better handle slang or typos

– These days, usually an in-between of tokens (more Monday)

• Loss function assuming independent labels given hidden states:

– This is just trying to get the label right at each “time”
• Not “trying to get the full sequence right” 16

Digression/Preview: Dependent Predictions
• Standard RNNs assume conditional independence of !𝑦" values
– We assume they are independent given the zt values (make inference easy)
– This makes inference easy, but !𝑦! “forgets” what was used for !𝑦!"#

• In many applications, you want to model dependencies in the !𝑦"
– A common way to do this is to add edges like this:

– Fine in training (where we know the yt values)
– But it makes inference and decoding challenging since the yt are dependent

• We’ll discuss variants like this after discussing Markov chains

z4 z5 z6 z7 z8z3z2z1z0

x1 x2 x3

y1 y2 y3 y4 y5

17

Next Topic: LSTMs

18

Exponential “Forgetting” in RNNs
• Sequence-to-sequence RNNs:
– Elegant way to handle inputs/outputs of different/unknown sizes
– Final “encoding” is the hidden states once the last input has been entered

• We hope this captures the semantics of the sentence

– The “decoding” steps try use the hidden states to output translation,
and also updates the hidden states

• Using tied parameters allows using the model for any sequence lengths
• But with tied parameters, we “forget” information exponentially fast
– If you want to “remember” something about x1, it has to go through U*U*U*⋯.

• “Initial conditions” for before the multiplication are forgotten at an exponential speed

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks 19

Adding a “Memory”
• One possible way to help RNNs remember is with skip connections:

– We will come back to several variations on this idea later
• Another idea is to add a memory where you can “save” and “load”:

• Relevant information can be saved to the memory,
then accessed at a much later time

20

Long Short Term Memory (LSTM)
• Long short term memory (LSTM) models are variant of RNNs:
– Modification to try to remember short-term and long-term dependencies

• In addition to usual hidden values z, LSTMs have memory cells c:
– Purpose of memory cells is to remember things for a long time

• LSTMs are maybe analogous to convolutions for RNNs:
– “The first trick that made them work in many applications”

• LSTMs have been used in a huge variety of settings:
– Cursive handwriting recognition https://www.youtube.com/watch?v=mLxsbWAYIpw

– Speech recognition and text-to-speech (Google, Apple, Amazon c. 2015-17)
– Machine translation (Google, Facebook c. 2016)
– iPhone autocorrect (c. 2016)
– AIs for Dota 2 (OpenAI 2018), Starcraft 2 (DeepMind 2019), …

21

https://www.youtube.com/watch?v=mLxsbWAYIpw

Long Short Term Memory – Ugly Equations
• Computing activations at time t in an RNN:

• Computing activations at time t in an LSTM:

22

Long Short Term Memory – Equation Intuition
• Conceptually, we think of LSTMs as having a “memory” ct:
• We update and access this memory with a set of “gates”:

– Gates take weighted combination of input and previous activation,
and output a value between 0 and 1 (differentiable approximation to binary values)
• In a computer these gates would be exactly 0 or 1, but we use sigmoids so “gate” can have values like 0.7

• “Forget gate” ft:
– If element ‘j’ of ft is 0, then we clear element ctj from the memory (set it to 0)

• If it is 1, then we keep the old value
– “Given the input and previous activation, are the elements in memory still relevant?”

• “Input gate” it:
– If element ‘j’ of it is 0, then we do not add any new information to ctj (no input)

• If it is 1, then we “value” to the memory (where “value” is also a function of input and previous at)
– “Given the input and previous activation, should I write something new to memory?”

• “Output gate” ot:
– If element ‘j’ of ot is 0, then we do not read value ctj from the memory (no output)

• If it is 1, then we load from the memory
– “Given the input and previous activation, should I read what is in memory?”

ct
0.3

-3.5

-0.2

0

0.4

0.3

-0.2

23

LSTM Equations (same slide as 2 slides ago)
• Computing activations at time ‘t’ in an RNN:

• Computing activations at time ‘t’ in an LSTM:

24

LSTM Activation Calculation as a Picture
• We often see pictures like this to represent the different operations:

• I find these pictures confusing unless you have gone through equations.
– For example, where are the weights?

https://colah.github.io/posts/2015-08-Understanding-LSTMs/ 25

Gated Recurrent Units (GRUs)
• Many variations on LSTMs exist.
– A popular one is gated recurrent units (GRUs).

• A bit simpler (merges “forget”+”input”, and “activation”+”memory”).
• Similar performance.

https://colah.github.io/posts/2015-08-Understanding-LSTMs/ 26

Deep LSTM Models
• LSTM model with one hidden layer (pixel labeling version):

• LSTM model with two hidden layers:
– As with regular RNNs,

activations feed into
next layer and next time

– Each layer has own memory
• Parameter tying only within layers

– Might have residual connections
https://colah.github.io/posts/2015-08-Understanding-LSTMs/ 27

Next Topic: Multi-Modal Models

28

Encoding-Decoding For Different Data Types
• Consider the encoding and decoding phase as separate “models”:

– Encoder takes a sequence and returns a set of numbers
– Decoding takes a set of numbers and outputs a sequence

• We have also seen encoding and decoding of images:

– Encoder takes an image and returns a set of numbers
– Decoder takes a set of numbers and outputs an image (or a class or set of labels)

z4 z5 z6 z7 z8

z3z2z1z0

x1 x2 x3

y1 y2 y3 y4 y5

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Noh_Learning_Deconvolution_Network_ICCV_2015_paper.pdf

29

LSTMs for Image Captioning
• Use a CNN to do the encoding and an RNN to do the decoding

• To train this model, we need images and corresponding captions
– So the image encoder and sequence decoder are trained together

https://arxiv.org/pdf/1411.4555.pdf
30

Image Captioning Application: PDF to LaTeX
• Use CNN to encode an image, use RNN to decode LaTeX

• Unlike generic image captioning, there is a “correct” label
– Although not necessarily unique

https://arxiv.org/pdf/1609.04938v1.pdf
32

LSTMs for Video Captioning

http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf
33

LSTMs for Video Captioning

http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf
34

Video Captioning Application: Lip Reading

• Unlike generic video captioning, there is a “correct” label
https://www.youtube.com/watch?v=5aogzAUPilE

35

RNNs/CNNs for Poetry
• Generating poetry:

• Image-to-poetry:

• Movie script:
– https://www.youtube.com/watch?v=LY7x2Ihqjmc

https://medium.com/artists-and-machine-intelligence/adventures-in-narrated-reality-6516ff395ba3
36

https://www.youtube.com/watch?v=LY7x2Ihqjmc

State-space models
• Model with a “latent state” that evolves over time (like RNNs)
– Continuous-time SSMs use differential equations (limit of small steps)

• Usually linear evolution of underlying state

– Can integrate as a layer of a deep network

https://arxiv.org/abs/2212.14052
37

https://arxiv.org/abs/2212.14052

Summary
• Recurrent neural networks (RNNs):

– Neural networks for sequence predictio.
– Have connections between hidden units at

adjacent times
– Use parameter tying across time.

• Allows sequences of different lengths
• Leads to vanishing and exploding gradients

• Sequence-to-Sequence RNNs:
– Encoding phase takes in one input at a time until

we reach “BOS”
– Decoding phase outputs one output at a time

until we output “EOS”
– Allows input and output sequences whose

lengths differ
– But: standard RNNs lead to exponential

forgetting of information

• Long short term memory:
– The trick that made RNNs start working
– Gating functions which update “memory cells”

for long-range interactions

• Multi-modal learning:
– Encoder and decoder may work with different

types of data
– For example, CNN as encoder and RNN as

decoder for image-to-text

• Next time: ChatGPT

38

