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Motivation: probabilistic inference

Given a general model, we often want to make inferences

Marginals: what’s the probability that Xi = c?
Conditionals: what’s the probability that Xi = c, given that Xi′ = c′?

This has been simple for the models we’ve seen so far

For Bernoulli/categorical, computing probabilities is straightforward
For product of Bernoullis (or categoricals), assumed everything is independent

For many models, inference has no closed form or might be NP-hard

In these cases, we’ll often use Monte Carlo approximations
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Monte Carlo: marginalization by sampling
A basic Monte Carlo method for estimating probabilities of events:

Step 1: Generate a lot of samples x(i) from our model

X =


0 0 1 0
1 1 1 0
0 1 1 1
1 1 1 1


Step 2: Count how often the event occurred in the samples

Pr(X2 = 1) ≈ 3

4
Pr(X3 = 0) ≈ 0

This very simple idea is one of the most important algorithms in ML/statistics
Modern versions developed to build better nuclear weapons :/

“Sample” from a physics simulator, see how often it leads to a chain reaction
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Monte Carlo to approximate probabilities

Monte Carlo estimate of the probability of an event A:

number of samples where A happened

number of samples
=

1

n

n∑
i=1

1(A happened in x(i))

You can think of this as the MLE of a binary variable 1(A happened)

Approximating probability of a pair of independent dice adding to 7:

Roll two dice, check if they add to 7
Roll two dice, check if they add to 7
Roll two dice, check if they add to 7
Roll two dice, check if they add to 7
Roll two dice, check if they add to 7
Roll two dice, check if they add to 7
. . .
Monte Carlo estimate: fraction where they add to 7
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Monte Carlo to approximate probabilities

Recall the problem of modeling (Lib, CPC, NDP, GRN, PPC)

From 100 samples, what’s the probability that nLib > max(nCPC, nNDP, . . . )?

Can answer this in closed form with math . . . or think less and do Monte Carlo

Generate 100 samples, check who won
Generate 100 samples, check who won
. . .
Approximate probability by fraction of times they won

Another example: probability that Beta(α, β) is above 0.7
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Monte Carlo to estimate the mean
A Monte Carlo estimate for the mean: the mean of the samples

E[X] ≈ 1

n

n∑
i=1

x(i)

A Monte Carlo approximation of the expected value of X2:

E[X2] ≈ 1

n

n∑
i=1

(
x(i)
)2

A Monte Carlo approximation of the expected value of g(X):

E[g(X)] ≈ 1

n

n∑
i=1

g
(
x(i)
)

E[g(X)] =
∑
x∈X

p(x)g(x) or

∫
x∈X

p(x)g(x)dx

Most general form: g(x) = x, g(x) = x2, g(x) = 1(A happens on x)

E[1(A happens on x)] =

∫
x∈X

p(x)1(A happens on x)dx =

∫
x:A happens

p(x)dx = Pr(A)
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Monte Carlo: theory

Let µ = E[g(X)] be the value we want to compute, µ̂ our estimate

Assume σ2 = Var[g(X)] exists and is bounded (“not infinite”)

With iid samples, Monte Carlo gives an unbiased estimate of µ

Expected value of µ̂, over samples we might draw, is exactly µ

Monte Carlo estimate “converges to µ” as n → ∞
Estimate gets arbitrarily close to µ as n increases: (strong) law of large numbers

Expected squared error is exactly E(µ̂− µ)2 = σ2

n

µ̂ is approximately normal with mean µ and variance σ2

n (central limit theorem)
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Example application: Snakes and Ladders

Kid’s game “Snakes and Ladders”:

Start at 1, roll die, move the marker, follow snake/ladder
Absolutely no decision-making: can simulate the game

How long does this game go for?

Run the game lots of times, see how many turns it took

https://www.datagenetics.com/blog/november12011/
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Conditional probabilities with Monte Carlo

“How much loooonger will this game go?”

Just simulate starting from current game state

“What’s the probability the game will go >100 turns, if it’s already gone 50?”

One approach:

Pr(A | B) =
Pr(A ∩B)

Pr(B)
≈

1
n

∑n
i=1 1(A and B happened on x(i))
1
n

∑n
i=1 1(B happened on x(i))

This is one instance of rejection sampling (more later)

If B is rare, most samples are wasted
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MLE for categorical distribution

How do we learn a categorical model?

X =


NDP

Lib

Lib

CPC
...


density estimator−−−−−−−−−−→ θ =


Pr(X = Lib) = 0.404
Pr(X = NDP) = 0.307
Pr(X = CPC) = 0.216
Pr(X = Grn) = 0.039
Pr(X = PPC) = 0.032



Like before, start with maximum likelihood estimation (MLE):

θ̂ ∈ argmax
θ

p(X | θ)

Like before, MLE will be θc =
nc
n (the portion of cs in the data)

Like before, derivation is more complicated than the result

12 / 31



Derivation of the MLE that doesn’t work

We showed last time that the likelihood is

p(X | θ) = θn1
1 · · · θnk

k

So, the log-likelihood is

log p(X | θ) = n1 log θ1 + · · ·+ nk log θk

Take the derivative for a particular θc:

∂

∂θc
log p(X | θ) = nc

θc

Set the derivative to zero:
nc

θc
= 0

. . . huh?
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Fixing the derivation

Setting the derivative to zero doesn’t work

Ignores the constraint that
∑

c θc = 1

Some ways to enforce constraints (see e.g. this StackExchange thread):

Use “Lagrange multipliers,” find stationary point of the “Lagrangian”
Define θk = 1−

∑k−1
c=1 θc, replace in the objective function

We’ll take a different way:

Use a different parameterization θ̃c that doesn’t have this constraint
Compute the MLE for the θ̃c by setting derivative to zero
Convert from the θ̃c to θc
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Unnormalized parameterization

Let’s have θ̃c be unnormalized:

Pr(X = c | θ̃1, . . . , θ̃k) ∝ θ̃c

Still need each θ̃c ≥ 0

Can then find

p(c | θ̃) = θ̃c∑k
i=1 θ̃c

=
θ̃c
Zθ̃

The “normalizing constant” Zθ̃ makes the total probability 1

Don’t need the explicit sum-to-1 constraint anymore
Note: constant for different x; not constant for different θ

To convert from unnormalized to normalized: θc = θ̃c/Zθ̃
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Derivation of the MLE that does work
The likelihood in terms of the unnormalized parameters is

p(X | θ̃) =

(
θ̃1
Zθ̃

)n1

· · ·

(
θ̃k
Zθ̃

)nk

=
1

Zn
θ̃

θ̃n1
1 · · · θ̃nk

k

So, the log-likelihood is

log p(X | θ̃) = n1 log θ̃1 + · · ·+ nk log θ̃k − n logZθ̃

Take the derivative for a particular θ̃c:

∂

∂θ̃c
log p(X | θ̃) = nc

θ̃c
− n

Zθ̃

∂Zθ̃

∂θ̃c
=

nc

θ̃c
− n

Zθ̃

since
∂

∂θ̃c

(
θ̃1 + · · ·+ θ̃k

)
= 1

Set the derivative to zero:

nc

θ̃c
=

n

Zθ̃

so
θ̃c
Zθ̃

=
nc

n

Can check this objective is concave, so this is a max
Many solutions, but all the same after normalizing
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MAP estimate, Dirichlet prior

As before, might prefer MAP estimate over MLE

Often becomes more important for large k: lots of parameters!

Most common prior is the Dirichlet distribution:

p(θ1, . . . , θk | α1, . . . , αk) ∝ θα1−1
1 · · · θαk−1

k

Generalization of the beta distribution to k classes
Requires each αc > 0

This is a distribution over θ

Probability distribution over possible (categorical) probability distributions
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Dirichlet distribution

Wikipedia’s visualizations for k = 3:
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https://en.wikipedia.org/wiki/Dirichlet_distribution
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MAP estimate for Dirichlet-Categorical
Reason to use the Dirichlet: again because posterior is simple

p(θ | X,α) ∝ p(X | θ)p(θ | α) ∝ θn1
1 · · · θnk

k θα1−1
1 · · · θαk−1

k

= θ
(n1+α1)−1
1 · · · θ(nk+αk)−1

k

i.e. it’s Dirichlet again with parameters α̃c = nc + αc

A few more steps show MAP for a categorical with Dirichlet prior is

θ̂c =
nc + αc − 1∑k

c′=1(nc′ + αc′ − 1)

Dirichlet has k hyper-parameters αc

Often use αc = α for some α ∈ R: one hyperparameter

Makes the MLE θ̂c =
nc + α− 1

n+ k(α− 1)
α = 2 gives Laplace smoothing (add 1 “fake” count for each class)
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Conjugate priors
This is our second example where prior and posterior have the same form

Beta prior + Bernoulli likelihood gives a Beta posterior
Also happens with binomial, geometric, . . . likelihoods

Dirichlet prior + categorical likelihood gives a Dirichlet posterior
Also happens with multinomial likelihood

When this happens, we say prior is conjugate to the likelihood

Prior and posterior come from the same “family” of distributions

X ∼ L(θ) θ ∼ P (λ) implies θ | X ∼ P (λ′)

Updated parameters λ will depend on the data

Many computations become easier if we have a conjugate prior
But not all distributions have conjugate priors

And even when one exists, might not be convenient
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Multi-class classification

Often have classification with categorical labels and/or features

X =


Cough Low fever Normal breathing

Cough High fever Shortness of breath

No cough High fever Normal breathing

No cough Low fever Normal breathing

Cough Medium fever Normal breathing

 y =


Cold

Pneumonia

Covid

Covid

Cold


Can adapt all of our previous binary classification methods:

Näıve Bayes
Tabular probabilities
Logistic regression / neural nets
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Product of categoricals, multi-class Näıve Bayes

Start: multivariate categorical density estimation

Input: n iid samples of categorical vectors x(1), . . . , x(n)

Output: model giving probability for any assignment of values x1, . . . , xd

X =


A C C T T T A G C

A C C G T T A G G

A C C T T T A G C

A A C T T T C G G

 density estimator−−−−−−−−−−−→

...
Pr(X1 = A, X2 = C, . . . , X9 = C) = 0.11

(49 possible values)

Like for product of Bernoullis, we could use product of categoricals

Assumes Xj are mutually independent: strong assumption that makes things easy

Pr(X1 = c1, . . . , Xd = cd) = Pr(X1 = c1) . . .Pr(Xd = cd) = θ1,c · · · θd,cd

Parameter θj,c is probability that jth entry is in cth class

Like before, could use product of categoricals conditional on Y to get categorical
näıve Bayes
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Multi-class näıve Bayes on MNIST

Binarized MNIST: label is categorical, but images are still product of Bernoullis

Parameter of the Bernoulli for each class:

One sample from each class:
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Tabular probabilities for categorical data

Can use a tabular parameterization: with two binary features, three-way label,

Pr(Y = 1 | X1 = 0, X2 = 0) = θ1|00 Pr(Y = 2 | X1 = 0, X2 = 0) = θ2|00 Pr(Y = 3 | X1 = 0, X2 = 0) = θ3|00

Pr(Y = 1 | X1 = 0, X2 = 1) = θ1|01 Pr(Y = 2 | X1 = 0, X2 = 1) = θ2|01 Pr(Y = 3 | X1 = 0, X2 = 1) = θ3|01

Pr(Y = 1 | X1 = 1, X2 = 0) = θ1|10 Pr(Y = 2 | X1 = 1, X2 = 0) = θ2|10 Pr(Y = 3 | X1 = 1, X2 = 0) = θ3|10

Pr(Y = 1 | X1 = 1, X2 = 1) = θ1|11 Pr(Y = 2 | X1 = 1, X2 = 1) = θ2|11 Pr(Y = 3 | X1 = 1, X2 = 1) = θ3|11

Don’t necessarily need θ3|x; can use θ3|x = 1− θ1|x − θ2|x

MLE has simple closed form: θ̂y|x = ny|x/nx

Just the categorical MLE for each condition

Can use a Dirichlet (or whatever other) prior and do MAP

Will overfit unless you have small number of distinct x
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Parameterizing conditionals
Tabular treats each θy|x totally separately

Could instead share information for “similar” x

Can no longer express every possible distribution, potentially computationally harder
Statistically much easier to fit

One choice: weight wc for each class, get zc = wT
c x for each c

Need to turn the zc into parameters of a categorical distribution

Binary data: mapped one z into (0, 1) with sigmoid f(z) = 1/(1 + exp(−z))

But using θc = f(zc) won’t sum to one

Softmax function first makes nonnegative by taking exp, then normalizes:

θc = [softmax(z)]c =
exp(zc)∑k

c′=1 exp(zc′)
∝ exp(zc)

Don’t have to use softmax, other options exist, but this is default
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Categorical features as inputs

How do we use categorical data in the features x?

Usually convert to set of binary features (“one-hot”/“one of k” encoding)

Age City Income

23 Van 26,000
25 Sur 67,000
19 Bur 16,500
43 Sur 183,000

→

Age Van Bur Sur Income

23 1 0 0 26,000
25 0 0 1 67,000
19 0 1 0 16,500
43 0 0 1 183,000

If you see a new category in test data: usually, just set all of them to zero
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Softmax and binary logistic regression

With two categories: using a “dummy” value z2 = 0

[softmax ((z, 0))]1 =
exp(z)

exp(z) + exp(0)
× exp(−z)

exp(−z)
=

1

1 + exp(−z)

Two-class softmax regression with one weight frozen at zero is logistic regression

28 / 31



Softmax loss

Taking the negative log-likelihood:

− log p(y | W,X) = −
n∑

i=1

log p(y(i) | W,x(i)) = −
n∑

i=1

log
 exp

(
wT
y(i)

x(i)
)

∑k
c=1 exp(w

T
c x

(i))


=

n∑
i=1

[
−wT

y(i)
x(i) + log

(
k∑

c=1

exp(wT
c x

(i)

)]

Convex (note log-sum-exp is convex), differentiable: can use gradient descent
Often add a regularizer (i.e. a prior on W )

Gradient has a nice form:

∂

∂wc
[− log p(y | W,X)] = −

n∑
i=1

1(y(i) = c)x(i) +

n∑
i=1

exp(wT
c x

(i))∑k
c′=1 exp(w

T
c′x

(i))︸ ︷︷ ︸
p(y(i)=c|x(i),W )

x(i)
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Multi-label versus multi-class classification

Before: we saw multi-label classification, where y is a binary vector of length k

“This image has a chair and a person, but no frog”

Multi-class, e.g. with softmax loss: y has exactly one of k discrete labels

“This is an image of a frog”

Could have multiple categorical labels (some of which might be binary)

“This paper’s arXiv primary class is stat.ML, and the first author is a student”
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Summary

Monte Carlo is a general way to estimate expectations when you can sample

Including probabilities: expectations of indicators

Next time: everything is regularization
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Law of the Unconscious Statistician

These inequalities sometimes called “Law of the Unconscious Statistician”:

E[g(X)] =
∑
x∈X

g(x)p(x) E[g(X)] =

∫
x∈X

g(x)p(x)dx

Two explanations I’ve heard for “unconscious”:

You can compute expectations without thinking
Or: people don’t realize this is actually a theorem to prove, not a definition

Y = g(X)

E[Y ] =
∑
y

yPr(Y = y) =
∑
y

y
∑

x:g(x)=y

p(x) =
∑
x

g(x)p(x)
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Mean and Variance of Monte Carlo

µ̂ = 1
n

∑n
i=1 g(x

(i)) is an unbiased estimate of µ = E[g(x)]:

E

[
1

n

n∑
i=1

g(x(i))

]
=

1

n

n∑
i=1

E
[
g(x(i))

]
=

1

n

n∑
i=1

µ = µ

If Var(g(x(i))) = σ2 for some finite σ, then

Var

(
1

n

n∑
i=1

g(x(i))

)
=

1

n2

n∑
i=1

Var
(
g(x(i))

)
︸ ︷︷ ︸

σ2

− 2

n2

∑
i ̸=j

Cov
(
g(x(i)), g(x(j))

)
︸ ︷︷ ︸

0

=
1

n2
nσ2 =

σ2

n

Expected squared error is σ2/n:

E

( 1

n

n∑
i=1

g(x(i))− µ

)2
 =

(
E
1

n

n∑
i=1

g(x(i))− µ

)2

+Var

(
1

n

n∑
i=1

g(x(i))

)
= 0+

σ2

n
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Monte Carlo as a stochastic gradient method

Can view as SGD on f(µ̂) = 1
n∥µ̂− µ∥2 with learning rate 1

i+1 :

µ̂n = µ̂n−1 −
1

n

(
µ̂n−1 − x(i)

)
=

(
1− 1

n

)
µ̂n−1 +

1

n
x(i)

=
n− 1

n

(
1

n− 1

n−1∑
i=1

x(i)

)
+

1

n
x(i)

=
1

n

n−1∑
i=1

x(i) +
1

n
x(i) =

1

n

n∑
i=1

x(i)
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