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Motivation: probabilistic inference

Given a general model, we often want to make inferences

e Marginals: what's the probability that X; = ¢?
o Conditionals: what's the probability that X; = ¢, given that X;; = ¢'?

This has been simple for the models we've seen so far

e For Bernoulli/categorical, computing probabilities is straightforward
o For product of Bernoullis (or categoricals), assumed everything is independent

For many models, inference has no closed form or might be NP-hard

In these cases, we'll often use Monte Carlo approximations
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Monte Carlo: marginalization by sampling

@ A basic Monte Carlo method for estimating probabilities of events:
@ Step 1: Generate a lot of samples () from our model

0010

X=ly 110

1111
@ Step 2: Count how often the event occurred in the samples
Pr(X, = 1) ~ % Pr(Xs = 0) ~ 0

This very simple idea is one of the most important algorithms in ML /statistics
Modern versions developed to build better nuclear weapons :/
e “Sample” from a physics simulator, see how often it leads to a chain reaction
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Monte Carlo to approximate probabilities

@ Monte Carlo estimate of the probability of an event A:

number of samples where A happened 1

Z]I(A happened in (")

number of samples n <~
1=

@ You can think of this as the MLE of a binary variable 1(A happened)
@ Approximating probability of a pair of independent dice adding to 7:

e Roll two dice, check if they add to 7
Roll two dice, check if they add to 7
Roll two dice, check if they add to 7
Roll two dice, check if they add to 7
Roll two dice, check if they add to 7
Roll two dice, check if they add to 7

Monte Carlo estimate: fraction where they add to 7
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Monte Carlo to approximate probabilities

@ Recall the problem of modeling (Lib, CPC, NDP, GRN, PPC)

e From 100 samples, what's the probability that npi, > max(ncpc, nxpp, - - )?

@ Can answer this in closed form with math ... or think less and do Monte Carlo

Generate 100 samples, check who won
Generate 100 samples, check who won

Approximate probability by fraction of times they won

@ Another example: probability that Beta(«, ) is above 0.7
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Monte Carlo to estimate the mean

@ A Monte Carlo estimate for the mean: the mean of the samples
I~
E[X] ~ — @)
X]~ — Z}x

@ A Monte Carlo approximation of the expected value of X?:

n

E[X?] ~ %Z (M)Q

i=1
@ A Monte Carlo approximation of the expected value of g(X):
1< ,
Elg(X)] ~ — gaj(’) Elg(X)] = p(x)g(z or/ p(x)g(x)dr
[9(X)] n;( ) Elg(X)) ;{()H | p@9@)

o Most general form: g(z) =z, g(z) = 2>

E[1(A happens on x)] = /
TEX

, g(xz) = 1(A happens on z)

p(z) 1(A happens on x)dx = / p(z)dz = Pr(A)
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Monte Carlo: theory

Let © = E[g(X)] be the value we want to compute, ji our estimate
e Assume o2 = Var[g(X)] exists and is bounded (“not infinite")

e With iid samples, Monte Carlo gives an unbiased estimate of p
e Expected value of [i, over samples we might draw, is exactly u

@ Monte Carlo estimate “converges to i as n — oo
o Estimate gets arbitrarily close to p as n increases: (strong) law of large numbers
. ~ 2 0.2
o Expected squared error is exactly E(4 — p)* = -
~A . . . . 2 .
® /i is approximately normal with mean 4 and variance %~ (central limit theorem)
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Example application: Snakes and Ladders

o Kid's game “Snakes and Ladders":

o Start at 1, roll die, move the marker, follow snake/ladder
o Absolutely no decision-making: can simulate the game

@ How long does this game go for?
o Run the game lots of times, see how many turns it took

Percentage chance of finishing game in n-moves
Cummulative pr
game in n=moves

https://www.datagenetics.com/blog/november12011/
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Conditional probabilities with Monte Carlo

@ “How much loooonger will this game go?”
e Just simulate starting from current game state

“What's the probability the game will go >100 turns, if it's already gone 507"

One approach:

Pr(ANB) _ =31, 1(A and B happened on z()
Pr(B) LS 1(B happened on z()

Pr(A| B) =

This is one instance of rejection sampling (more later)

If B is rare, most samples are wasted
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@ Categorical MLE, MAP
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MLE for categorical distribution

@ How do we learn a categorical model?

[ NDP| Pr(X = Lib) = 0.404
Lib = =
Lib density estimator PI‘(X NDP) 0.307
X = e, 6= |Pr(X =CPC) = 0.216
CPC Pr(X = Grn) = 0.039
Pr(X = PPC) = 0.032

@ Like before, start with maximum likelihood estimation (MLE):

6 € argmax p(X | 0)
0

o Like before, MLE will be 6. = "¢ (the portion of cs in the data)
@ Like before, derivation is more complicated than the result
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Derivation of the MLE that doesn't work

@ We showed last time that the likelihood is
p(X | 6) = 67t - o}
@ So, the log-likelihood is
logp(X | 0) = niloghy + - -+ + ny log O

@ Take the derivative for a particular 6,:

15) Ne
1 X1|10)=—
2. ogp(X | 0) 0
@ Set the derivative to zero:
Nc
g, "

@ ...huh?
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Fixing the derivation

@ Setting the derivative to zero doesn't work
o Ignores the constraint that >~ 6. =1

@ Some ways to enforce constraints (see e.g. this StackExchange thread):
o Use “Lagrange multipliers,” find stationary point of the “Lagrangian”
o Define 8, =1 — Z]c:ll 0., replace in the objective function

o We'll take a different way:

o Use a different parameterization 6. that doesn’t have this constraint
o Compute the MLE for the 0. by setting derivative to zero
o Convert from the 6, to 6,
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Unnormalized parameterization

@ Let's have 0~c be unnormalized:

Pr(X:c\él,...,ék)océc

o Still need each 0~C >0
@ Can then find B R
5 O 0.
ple]8) = —pts = °
Zf:l 0. Zg
@ The “normalizing constant” Z; makes the total probability 1

e Don’t need the explicit sum-to-1 constraint anymore
o Note: constant for different x; not constant for different 6

@ To convert from unnormalized to normalized: 6. = éc/Zé
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Derivation of the MLE that does work

@ The likelihood in terms of the unnormalized parameters is

~ 01 " O, " 1~ n
p(X|0)= =010
Zg Zg z3t k

@ So, the log-likelihood is

logp(X | 6) = niloghy + - - +nylog O — nlog Z
o Take the derivative for a particular 6,

0 ~ e n 04; n. n ) 0 (=
@ Set the derivative to zero:
Ne n ~c Ne
0 Z; O Z; n

o Can check this objective is concave, so this is a max
e Many solutions, but all the same after normalizing

):1
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MAP estimate, Dirichlet prior

As before, might prefer MAP estimate over MLE

Often becomes more important for large k: lots of parameters!

Most common prior is the Dirichlet distribution:

p(01,...,0k | a1,... ) ocH‘f“_l"-H?’“_l

o Generalization of the beta distribution to k classes
e Requires each a. > 0

This is a distribution over 6
o Probability distribution over possible (categorical) probability distributions
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Dirichlet distribution

o Wikipedia's visualizations for k = 3:

10 = Isas)]

POF fix:a)

150

POF fix:a)

https://en.wikipedia.org/wiki/Dirichlet_distribution
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MAP estimate for Dirichlet-Categorical

@ Reason to use the Dirichlet: again because posterior is simple

PO X,a) o p(X | 0)p(8 | @) o< 671 --- g% g1~ L .. gon!
— glmton)=1 - g(netagr)—1
- Y1 k

i.e. it's Dirichlet again with parameters &, = n. + a.
o A few more steps show MAP for a categorical with Dirichlet prior is

ho Ne + e — 1
Z?’:l(nd + oy — 1)

c =

@ Dirichlet has k hyper-parameters a
e Often use a, = « for some a € R: one hyperparameter

. )
o Makes the MLE §, — et =1
n+k(a—1)

o a = 2 gives Laplace smoothing (add 1 “fake” count for each class)
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Conjugate priors
@ This is our second example where prior and posterior have the same form
e Beta prior + Bernoulli likelihood gives a Beta posterior
@ Also happens with binomial, geometric, ... likelihoods
e Dirichlet prior + categorical likelihood gives a Dirichlet posterior
e Also happens with multinomial likelihood

@ When this happens, we say prior is conjugate to the likelihood
@ Prior and posterior come from the same “family” of distributions

X ~ L) 6~ PN implies 6| X ~ P()\)
o Updated parameters A\ will depend on the data

@ Many computations become easier if we have a conjugate prior
@ But not all distributions have conjugate priors
o And even when one exists, might not be convenient
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© Muilti-class classification
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Multi-class classification

e Often have classification with categorical labels and/or features

Cough Low fever Normal breathing Cold

Cough High fever Shortness of breath Pneumonia
X = [No cough High fever Normal breathing y = Covid
No cough Low fever Normal breathing Covid
Cough Medium fever Normal breathing Cold

@ Can adapt all of our previous binary classification methods:
o Naive Bayes
o Tabular probabilities
o Logistic regression / neural nets
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Product of categoricals, multi-class Naive Bayes

@ Start: multivariate categorical density estimation

o Input: n iid samples of categorical vectors (1), ... z(™
e Output: model giving probability for any assignment of values x1,..., x4
A C CTTT A G C
X — A C C G T T A G density estimator .
A ¢c C T TTA G C Pr(X: =A,X2=¢C,...,X9g=C)=0.11
A A CTTTO COG GG (4° possible values)

@ Like for product of Bernoullis, we could use product of categoricals
o Assumes X; are mutually independent: strong assumption that makes things easy

Pr(Xi=c,....,.Xqg=cqg) =Pr(X1=c1)...Pr(Xg=cq) =01 Oar,

o Parameter §; . is probability that jth entry is in cth class

o Like before, could use product of categoricals conditional on Y to get categorical
naive Bayes
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Multi-class naive Bayes on MNIST

@ Binarized MNIST: label is categorical, but images are still product of Bernoullis

@ Parameter of the Bernoulli for each class:

@ One sample from each class:
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Tabular probabilities for categorical data

o Can use a tabular parameterization: with two binary features, three-way label,

Pr(Y =1 X1 =0,X2=0)=0;90 Pr(Y =2|X1=0,X2=0)=0a9 Pr(Y=3]|X1=0,X2=0)=0300
Pr(Y =1| X1 =0,Xa=1) =69 Pr(Y =2| X1 =0,Xa=1) =059 Pr(¥Y =3| X1 =0,Xz=1) =050
Pr(Y =1|X1=1,X2=0) =050 Pr(Y =2| X1 =1,X2=0) =050 Pr(Y =3| X1 =1,X2=0) =031
Pr(Y =1][X1=1,Xo=1)=0;;; Pr(Y=2|X1=1,Xa=1)=0;; Pr(Y=3|X1=1Xs=1)=0

o Don't necessarily need 03),; can use 03, =1 — 01, — b,
@ MLE has simple closed form: éy‘m = Ny|z/N

o Just the categorical MLE for each condition
@ Can use a Dirichlet (or whatever other) prior and do MAP

o Will overfit unless you have small number of distinct x
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Parameterizing conditionals

Tabular treats each 6

yl totally separately
@ Could instead share information for “similar’ x

e Can no longer express every possible distribution, potentially computationally harder
e Statistically much easier to fit

One choice: weight w, for each class, get z. = w]x for each ¢

Need to turn the z. into parameters of a categorical distribution
Binary data: mapped one z into (0, 1) with sigmoid f(z) = 1/(1 + exp(—=z))
e But using 6. = f(2.) won't sum to one

@ Softmax function first makes nonnegative by taking exp, then normalizes:

exp(zc)

k
-1 exp(zc)

0. = [softmax(z)]. = x exp(zc)

e Don’t have to use softmax, other options exist, but this is default
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Categorical features as inputs

@ How do we use categorical data in the features z7?

@ Usually convert to set of binary features (“one-hot” /“one of k" encoding)

Age City Income Age Van Bur Sur Income
23 Van 26,000 23 1 0 0 26,000
25  Sur 67,000 — 25 0 0 1 67,000
19 Bur 16,500 19 0 1 0 16,500
43 Sur 183,000 43 0 0 1 183,000

o If you see a new category in test data: usually, just set all of them to zero
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Softmax and binary logistic regression

@ With two categories: using a “"dummy” value zo =0

exp(z) y exp(—2) 1

softmax (2, 0)J = T2 o)~ exp(—z) — T+ oxp(—2)

@ Two-class softmax regression with one weight frozen at zero is logistic regression
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eview
Softmax loss Ceview

@ Taking the negative log-likelihood:

P e 0
—logp(y | W,X) = log p(y® | W, 2@ log
=1 =1 Zc—l exp(wT ())
= Z [ y(z)x ) 4+ log (Z exp( w;rm( )>]
c=1

o Convex (note log-sum-exp is convex), differentiable: can use gradient descent
o Often add a regularizer (i.e. a prior on W)

@ Gradient has a nice form:

0 exp w, :1:(1)) .
logp(y | W, X)] 1(y ) =c)x ’)—i— Ay
811),;[ g ( ‘ Z Z / 1exp(w 20 ))

p(y(l) :(;|g;(1> 7V[/)
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Multi-label versus multi-class classification

@ Before: we saw multi-label classification, where g is a binary vector of length k
e “This image has a chair and a person, but no frog”

@ Multi-class, e.g. with softmax loss: y has exactly one of k discrete labels
e "“This is an image of a frog"”

e Could have multiple categorical labels (some of which might be binary)
e "This paper's arXiv primary class is stat.ML, and the first author is a student”
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Summary

@ Monte Carlo is a general way to estimate expectations when you can sample
e Including probabilities: expectations of indicators

o Next time: everything is regularization
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Law of the Unconscious Statistician bonus!

@ These inequalities sometimes called “Law of the Unconscious Statistician”:
B0 = X g@pl@)  Blo()]= [ g@plas
zEX S

@ Two explanations I've heard for “unconscious”:

e You can compute expectations without thinking
o Or: people don't realize this is actually a theorem to prove, not a definition

Y =g(X)

E[Y] =Y yPr(Y Zy > pla) = g(x)p(x)

Y x:g(x)=y
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Mean and Variance of Monte Carlo bonus!

LS, g(z) is an unbiased estimate of = E[g(z)]:

E [jb Zg(w@)] = S E[®] =2 > u=p
j i=1 i=1

o If Var(g(z())) = o2 for some finite o, then

(i i:g > 3 zn:Var ( (.TU(i))) —% Z Cov (g(ac(i)), g(:):(j))>
=] N e

i=1 i#j ~
0

° i

o2

1 5, o2
= —Sno’ = —
n n
o Expected squared error is 02 /n:

n 2 n 2 -
B {(;zgw» —u) ] - (E;Zgw”) —u) Y (;zgu@)) — 0%
=1 ] ]



Monte Carlo as a stochastic gradient method bonus!

Can view as SGD on f(1) = +||i — pl|* with learning rate 5

T n

. . 1/, ;
fin = fin—1 — = (unq = Jr(’))
n

1 1 .
— (1= 3) nca # 720
n n

n—1 n

1 il ;
= 320+ 2o = 230

i=1 =1
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