
Categorical variables and Monte Carlo
CPSC 440/550: Advanced Machine Learning

cs.ubc.ca/~dsuth/440/23w2

University of British Columbia, on unceded Musqueam land

2023-24 Winter Term 2 (Jan–Apr 2024)

1 / 22

https://cs.ubc.ca/~dsuth/440/23w2

Admin

Quiz 1: ongoing. Let me know if there are issues

Quiz 2: next week! Make sure to reserve

Covering lectures 5 through today, possibly some stuff from 8 (Monday) but lightly

A1 solutions up (see Piazza/Canvas)

Grading for A1 ongoing, probably out in about a week (sorry for delay)

Grading for the short-answer parts of Q1 also probably by late next week

Possible transit strike extension, Saturday – Monday

I’ll be here, and try to set up a livestream Monday (Panopto-but-live or Zoom)

Shouldn’t significantly affect Q2 plans, but keep an eye on your email

2 / 22

Outline

1 Categorical variables

2 Monte Carlo

3 / 22

Motivating problem: political polling

Want to know support for political parties among a voter group

Helps candidates/parties target campaigning, etc

Where I live, the last election results:

40.4% 23.0% Liberal
30.7% 17.5% NDP
21.6% 12.31% Conservative
3.9% 2.2% Green
3.2% 1.8% PPC
43% no vote

We want to estimate these quantities based on a sample (a poll)

4 / 22

General problem: categorical density estimation

Special case of density estimation with a categorical variable:

Input: n iid samples of categorical values x(1), x(2), . . . , x(n) ∈ {1, 2, . . . , k}
Output: a probability model for Pr(X = 1), Pr(X = 2), . . . , Pr(X = k)

We’ll remember, but not usually write down, that 1 = Lib, 2 = NDP, . . .

As a picture: X ∈ Rn×1 contains our sample data
X is a random variable over {1, 2, . . . , k} from the distribution

X =

1
2
3
1
3

 density estimator−−−−−−−−−−→
Pr(X = 1) = 0.4
Pr(X = 2) = 0.2
Pr(X = 3) = 0.4

We’ll start by revisiting previous concepts, but introduce some more

5 / 22

Other applications of categorical density estimation

Some other questions we might ask:
1 What portion of my customers use cash, credit, debit?
2 What’s the probability that a random patient will be able to receive this type of

blood?
3 How many random tweets should I expect to look at before I see this particular word?

For categorical variables, we do not assume an ordering

Category 4 isn’t “closer” to category 3 than it is to category 1

6 / 22

Ordinal variables

Ordered categorical variables are called ordinal

Results of rolling dice, if you’re trying to beat a specific number
Survey results (“strongly disagree,” “disagree,” “neutral,” . . .)
Ratings (1 star, 2 stars, . . .)
Tumour severity (Grade I, . . . , Grade IV)

We won’t cover these for now, but lots of methods exist

“Ordinal logistic regression”: a loss function where “2 stars” is closer to “3 stars”
than “4 stars“

But there might be a bigger “gap” between 2 and 3 stars than between 3 and 4

Can use this “ordinal loss” in neural nets

7 / 22

Parametrizing categorical probabilities

We typically use the categorical distribution (aka “multinoulli” (ugh))

For k categories, have k parameters, θ1, . . . , θk ≥ 0

Pr(X = 1 | θ1, . . . , θk) = θ1 . . .Pr(X = k | θ1, . . . , θk) = θk

Categories are mutually exclusive: can only pick one

Require that
k∑

c=1

θc = 1

More succinctly: if X ∼ Cat(θ) with θ = (θ1, . . . , θk),

p(x | θ) = θ
1(x=1)
1 θ

1(x=2)
2 · · · θ1(x=k)

k

8 / 22

Inference task: union

Inference task: given θ, compute probability of unions

For example: Pr(X = Lib ∪X = NDP | θ)

Can’t be both, so: Pr(X = 2 ∪X = 4 | θ) = θ2 + θ4

Variation: Pr(X ≤ c) for some c is θ1 + θ2 + · · ·+ θc

Why do we care, since the categories are unordered?

F (c) = Pr(X ≤ c) is the cumulative distribution function (cdf)

Depends on (arbitrary) ordering, but very useful function as we’ll see soon!

9 / 22

Inference task: mode (decoding)

Inference task: given θ, find the mode, argmaxx p(x | θ)
“Who’s going to win the election?”

Also very easy: argmaxc θc

10 / 22

Inference task: likelihood

Inference task: given and data X, find p(X | θ)
Assuming data is iid from Cat(θ),

p(X | θ) = p(x(1), . . . , x(n) | θ) =
n∏

i=1

p(x(i) | θ)

=

n∏
i=1

θ
1(x(i)=1)
1 θ

1(x(i)=2)
2 · · · θ1(x

(i)=k)
k

= θ
∑n

i=1 1(x
(i)=1)

1 θ
∑n

i=1 1(x
(i)=2)

2 · · · θ
∑n

i=1 1(x
(i)=k)

k

= θn1
1 θn2

2 · · · θnk
k

. . . defining at the end nc as the number of cs in X, like n0/n1 for binary data

Like Bernoulli, the likelihood only depends on the counts

11 / 22

Code for categorical likelihood

counts = np.zeros(k)

for x in X:

count[x] += 1

p = 1

for theta_c, n_c in zip(theta, counts):

p *= theta_c ** n_c

Better version:

counts = np.bincount(X,

minlength=k)↪→

log_p = counts @ np.log(theta)

Computation complexity (either way) is O(n+ k)

Usual case: n ≫ k (many samples, few categories), this is just O(n)
If k ≫ n, could also easily get O(n) by only tracking categories with nonzero counts

12 / 22

Inference task: sampling

Inference task: given θ, generate samples from X ∼ Cat(θ)

Pr(X = 1) = 0.4
Pr(X = 2) = 0.2
Pr(X = 3) = 0.4

sampling−−−−−→ X =

13
3

Notice: not sampling “one value per class”; each sample is in one category

Who will this voter (say they’ll) vote for?

13 / 22

Categorical sampling algorithm
Will use a uniform sample from [0, 1] to construct a sample from Cat(θ)

Example: sample from θ =
(
0.4, 0.2, 0.3, 0.1

)
based on a single u ∼ Unif([0, 1])

Want X = 1 40% of the time: if u < 0.4, return 1
Want X = 2 20% of the time: if 0.4 ≤ u < 0.6, return 2
Want X = 3 30% of the time: if 0.6 ≤ u < 0.9, return 3
Want X = 4 10% of the time: if 0.9 ≤ u, return 4

0

return 1

0.4
return 2

0.6

return 3

0.9
return 4

1

Use CDF, Pr(X ≤ c) = θ1 + · · ·+ θc:

Generate u ∼ Unif([0, 1])
if u ≤ Pr(X ≤ 1), return 1
else if u ≤ Pr(X ≤ 2), return 2
. . .
else return k

Computing Pr(X ≤ c) from θ costs O(k)

O(k2) total time. . . but can precompute!

cdf = np.cumsum(theta)

u = rng.random_sample(n_to_samp)

samp = cdf.searchsorted(u, side='right')

Takes O(k) upfront, O(log k) per sample

14 / 22

Faster categorical sampling algorithms

Previous method is sometimes called “roulette wheel sampling”

O(k) preprocessing (computing the CDF), O(log k) time per sample

“Vose’s alias method”: O(k) preprocessing but only O(1) time per sample

Really nice (long) article developing many variations:
Darts, Dice, and Coins: Sampling from a Discrete Distribution by Keith Schwarz

15 / 22

https://www.keithschwarz.com/darts-dice-coins/

Outline

1 Categorical variables

2 Monte Carlo

16 / 22

Motivation: probabilistic inference

Given a general model, we often want to make inferences

Marginals: what’s the probability that Xi = c?
Conditionals: what’s the probability that Xi = c, given that Xi′ = c′?

This has been simple for the models we’ve seen so far

For Bernoulli/categorical, computing probabilities is straightforward
For product of Bernoullis (or categoricals), assumed everything is independent

For many models, inference has no closed form or might be NP-hard

In these cases, we’ll often use Monte Carlo approximations

17 / 22

Monte Carlo: marginalization by sampling
A basic Monte Carlo method for estimating probabilities of events:

Step 1: Generate a lot of samples x(i) from our model

X =

0 0 1 0
1 1 1 0
0 1 1 1
1 1 1 1

Step 2: Count how often the event occurred in the samples

Pr(X2 = 1) ≈ 3

4
Pr(X3 = 0) ≈ 0

This very simple idea is one of the most important algorithms in ML/statistics
Modern versions developed to build better nuclear weapons :/

“Sample” from a physics simulator, see how often it leads to a chain reaction
18 / 22

Monte Carlo to approximate probabilities

Monte Carlo estimate of the probability of an event A:

number of samples where A happened

number of samples
=

1

n

n∑
i=1

1(A happened in x(i))

You can think of this as the MLE of a binary variable 1(A happened)

Approximating probability of a pair of independent dice adding to 7:

Roll two dice, check if they add to 7
Roll two dice, check if they add to 7
Roll two dice, check if they add to 7
Roll two dice, check if they add to 7
Roll two dice, check if they add to 7
Roll two dice, check if they add to 7
. . .
Monte Carlo estimate: fraction where they add to 7

19 / 22

Monte Carlo to approximate probabilities

Recall the motivating problem of modeling (Lib, CPC, NDP, GRN, PPC)

From 100 samples, what’s the probability that nLib > max(nCPC, nNDP, . . .)?

Can answer this in closed form with math . . . or think less and do Monte Carlo

Generate 100 samples, check who won
Generate 100 samples, check who won
. . .
Approximate probability by fraction of times they won

Another example: probability that Beta(α, β) is above 0.7

20 / 22

Monte Carlo to estimate the mean
A Monte Carlo estimate for the mean: the mean of the samples

E[X] ≈ 1

n

n∑
i=1

x(i)

A Monte Carlo approximation of the expected value of X2:

E[X2] ≈ 1

n

n∑
i=1

(
x(i)

)2

A Monte Carlo approximation of the expected value of g(X):

E[g(X)] ≈ 1

n

n∑
i=1

g
(
x(i)

)
E[g(X)] =

∑
x∈X

p(x)g(x) or

∫
x∈X

p(x)g(x)dx

Most general form: g(x) = x, g(x) = x2, g(x) = 1(A happens on x)

E[1(A happens on x)] =

∫
x∈X

p(x)1(A happens on x)dx =

∫
x:A happens

p(x)dx = Pr(A)

21 / 22

Monte Carlo: theory

Let µ = E[g(X)] be the value we want to compute

Assume σ2 = Var[g(X)] exists and is bounded (“not infinite”)

With iid samples, Monte Carlo gives an unbiased estimate of µ

Expected value of the Monte Carlo estimate, over samples we might draw, is exactly
µ

Monte Carlo estimate “converges to µ” as n → ∞
Estimate gets arbitrarily close to µ as n increases: (strong) law of large numbers

Expected squared error is exactly E(µ̂− µ)2 = σ2

n

µ̂ is approximately normal with mean µ and variance σ2

n (central limit theorem)

Can be viewed as a special case of SGD

22 / 22

	Categorical variables
	Monte Carlo

