Categorical variables and Monte Carlo

CPSC 440/550: Advanced Machine Learning

cs.ubc.ca/~dsuth/440/23w2

University of British Columbia, on unceded Musqueam land

$$
\text { 2023-24 Winter Term } 2 \text { (Jan-Apr 2024) }
$$

Admin

- Quiz 1: ongoing. Let me know if there are issues
- Quiz 2: next week! Make sure to reserve
- Covering lectures 5 through today, possibly some stuff from 8 (Monday) but lightly
- A1 solutions up (see Piazza/Canvas)
- Grading for A1 ongoing, probably out in about a week (sorry for delay)
- Grading for the short-answer parts of Q1 also probably by late next week
- Possible transit strike extension, Saturday - Monday
- I'll be here, and try to set up a livestream Monday (Panopto-but-live or Zoom)
- Shouldn't significantly affect Q2 plans, but keep an eye on your email

Outline

(1) Categorical variables
(2) Monte Carlo

Motivating problem: political polling

- Want to know support for political parties among a voter group
- Helps candidates/parties target campaigning, etc
- Where I live, the last election results:
- $40.4 \% 23.0 \%$ Liberal
- 30.7% 17.5\% NDP
- $21.6 \% 12.31 \%$ Conservative
- 3.9\% 2.2\% Green
- $3.2 \% 1.8 \%$ PPC
- 43% no vote
- We want to estimate these quantities based on a sample (a poll)

General problem: categorical density estimation

- Special case of density estimation with a categorical variable:
- Input: n iid samples of categorical values $x^{(1)}, x^{(2)}, \ldots, x^{(n)} \in\{1,2, \ldots, k\}$
- Output: a probability model for $\operatorname{Pr}(X=1), \operatorname{Pr}(X=2), \ldots, \operatorname{Pr}(X=k)$
- We'll remember, but not usually write down, that $1=\mathrm{Lib}, 2=\mathrm{NDP}, \ldots$
- As a picture:
$\mathbf{X} \in \mathbb{R}^{n \times 1}$ contains our sample data X is a random variable over $\{1,2, \ldots, k\}$ from the distribution

$$
\mathbf{X}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
1 \\
3
\end{array}\right] \xrightarrow{\text { density estimator }} \begin{aligned}
& \operatorname{Pr}(X=1)=0.4 \\
& \operatorname{Pr}(X=2)=0.2 \\
& \operatorname{Pr}(X=3)=0.4
\end{aligned}
$$

- We'll start by revisiting previous concepts, but introduce some more

Other applications of categorical density estimation

- Some other questions we might ask:
(1) What portion of my customers use cash, credit, debit?
(2) What's the probability that a random patient will be able to receive this type of blood?
(3) How many random tweets should I expect to look at before I see this particular word?
- For categorical variables, we do not assume an ordering
- Category 4 isn't "closer" to category 3 than it is to category 1

Ordinal variables

- Ordered categorical variables are called ordinal
- Results of rolling dice, if you're trying to beat a specific number
- Survey results ("strongly disagree," "disagree," "neutral," ...)
- Ratings (1 star, 2 stars, ...)
- Tumour severity (Grade I, ..., Grade IV)
- We won't cover these for now, but lots of methods exist
- "Ordinal logistic regression": a loss function where " 2 stars" is closer to " 3 stars" than "4 stars"
- But there might be a bigger "gap" between 2 and 3 stars than between 3 and 4
- Can use this "ordinal loss" in neural nets

Parametrizing categorical probabilities

- We typically use the categorical distribution (aka "multinoulli" (ugh))
- For k categories, have k parameters, $\theta_{1}, \ldots, \theta_{k} \geq 0$

$$
\operatorname{Pr}\left(X=1 \mid \theta_{1}, \ldots, \theta_{k}\right)=\theta_{1} \ldots \operatorname{Pr}\left(X=k \mid \theta_{1}, \ldots, \theta_{k}\right)=\theta_{k}
$$

- Categories are mutually exclusive: can only pick one
- Require that $\sum_{c=1}^{k} \theta_{c}=1$
- More succinctly: if $X \sim \operatorname{Cat}(\boldsymbol{\theta})$ with $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{k}\right)$,

$$
p(x \mid \boldsymbol{\theta})=\theta_{1}^{1(x=1)} \theta_{2}^{1(x=2)} \cdots \theta_{k}^{1(x=k)}
$$

Inference task: union

- Inference task: given $\boldsymbol{\theta}$, compute probability of unions
- For example: $\operatorname{Pr}(X=\mathrm{Lib} \cup X=$ NDP $\mid \boldsymbol{\theta})$
- Can't be both, so: $\operatorname{Pr}(X=2 \cup X=4 \mid \boldsymbol{\theta})=\theta_{2}+\theta_{4}$
- Variation: $\operatorname{Pr}(X \leq c)$ for some c is $\theta_{1}+\theta_{2}+\cdots+\theta_{c}$
- Why do we care, since the categories are unordered?
- $F(c)=\operatorname{Pr}(X \leq c)$ is the cumulative distribution function (cdf)
- Depends on (arbitrary) ordering, but very useful function as we'll see soon!

Inference task: mode (decoding)

- Inference task: given $\boldsymbol{\theta}$, find the mode, $\arg \max _{x} p(x \mid \boldsymbol{\theta})$
- "Who's going to win the election?"
- Also very easy: $\arg \max _{c} \theta_{c}$

Inference task: likelihood

- Inference task: given and data \mathbf{X}, find $p(\mathbf{X} \mid \boldsymbol{\theta})$
- Assuming data is iid from $\operatorname{Cat}(\boldsymbol{\theta})$,

$$
\begin{aligned}
p(\mathbf{X} \mid \boldsymbol{\theta}) & =p\left(x^{(1)}, \ldots, x^{(n)} \mid \boldsymbol{\theta}\right)=\prod_{i=1}^{n} p\left(x^{(i)} \mid \boldsymbol{\theta}\right) \\
& =\prod_{i=1}^{n} \theta_{1}^{\mathbb{1}\left(x^{(i)}=1\right)} \theta_{2}^{\mathbb{1}\left(x^{(i)}=2\right)} \cdots \theta_{k}^{\mathbb{1}\left(x^{(i)}=k\right)} \\
& =\theta_{1}^{\sum_{i=1}^{n} \mathbb{1}\left(x^{(i)}=1\right)} \theta_{2}^{\sum_{i=1}^{n} \mathbb{1}\left(x^{(i)}=2\right)} \cdots \theta_{k}^{\sum_{i=1}^{n} \mathbb{1}\left(x^{(i)}=k\right)} \\
& =\theta_{1}^{n_{1}} \theta_{2}^{n_{2}} \cdots \theta_{k}^{n_{k}}
\end{aligned}
$$

- ... defining at the end n_{c} as the number of $c s$ in \mathbf{X}, like n_{0} / n_{1} for binary data
- Like Bernoulli, the likelihood only depends on the counts

Code for categorical likelihood

```
counts = np.zeros(k)
for x in X:
    count[x] += 1
p = 1
for theta_c, n_c in zip(theta, counts): log_p = counts @ np.log(theta)
    p *= theta_c ** n_c
Better version:
counts = np.bincount(X,
    minlength=k)
```

- Computation complexity (either way) is $\mathcal{O}(n+k)$
- Usual case: $n \gg k$ (many samples, few categories), this is just $\mathcal{O}(n)$
- If $k \gg n$, could also easily get $\mathcal{O}(n)$ by only tracking categories with nonzero counts

Inference task: sampling

- Inference task: given $\boldsymbol{\theta}$, generate samples from $X \sim \operatorname{Cat}(\boldsymbol{\theta})$

$$
\begin{aligned}
& \operatorname{Pr}(X=1)=0.4 \\
& \operatorname{Pr}(X=2)=0.2 \\
& \operatorname{Pr}(X=3)=0.4
\end{aligned} \quad \xrightarrow{\text { sampling }} \quad \mathbf{X}=\left[\begin{array}{l}
1 \\
3 \\
3
\end{array}\right]
$$

- Notice: not sampling "one value per class"; each sample is in one category
- Who will this voter (say they'll) vote for?

Categorical sampling algorithm

- Will use a uniform sample from $[0,1]$ to construct a sample from $\operatorname{Cat}(\boldsymbol{\theta})$
- Example: sample from $\boldsymbol{\theta}=(0.4,0.2,0.3,0.1)$ based on a single $u \sim \operatorname{Unif}([0,1])$
- Want $X=140 \%$ of the time: if $u<0.4$, return 1
- Want $X=220 \%$ of the time: if $0.4 \leq u<0.6$, return 2
- Want $X=330 \%$ of the time: if $0.6 \leq u<0.9$, return 3
- Want $X=410 \%$ of the time: if $0.9 \leq u$, return 4

$$
\text { return } 1 \quad \text { return } 3
$$

| 0 | 0.4
 return 2 | 0.91
 return 4 |
| :--- | :---: | :---: | :---: |

- Use CDF, $\operatorname{Pr}(X \leq c)=\theta_{1}+\cdots+\theta_{c}$:
- Generate $u \sim \operatorname{Unif}([0,1])$
- if $u \leq \operatorname{Pr}(X \leq 1)$, return 1
- else if $u \leq \operatorname{Pr}(X \leq 2)$, return 2
- ...
- else return k
- Computing $\operatorname{Pr}(X \leq c)$ from $\boldsymbol{\theta}$ costs $\mathcal{O}(k)$
- $\mathcal{O}\left(k^{2}\right)$ total time. . . but can precompute!

```
cdf = np.cumsum(theta)
u = rng.random_sample(n_to_samp)
samp = cdf.searchsorted(u, side='right')
- Takes \(\mathcal{O}(k)\) upfront, \(\mathcal{O}(\log k)\) per sample
```


Faster categorical sampling algorithms

- Previous method is sometimes called "roulette wheel sampling"
- $\mathcal{O}(k)$ preprocessing (computing the CDF), $\mathcal{O}(\log k)$ time per sample
- "Vose's alias method": $\mathcal{O}(k)$ preprocessing but only $\mathcal{O}(1)$ time per sample
- Really nice (long) article developing many variations: Darts, Dice, and Coins: Sampling from a Discrete Distribution by Keith Schwarz

Outline

(1) Categorical variables
(2) Monte Carlo

Motivation: probabilistic inference

- Given a general model, we often want to make inferences
- Marginals: what's the probability that $X_{i}=c$?
- Conditionals: what's the probability that $X_{i}=c$, given that $X_{i^{\prime}}=c^{\prime}$?
- This has been simple for the models we've seen so far
- For Bernoulli/categorical, computing probabilities is straightforward
- For product of Bernoullis (or categoricals), assumed everything is independent
- For many models, inference has no closed form or might be NP-hard
- In these cases, we'll often use Monte Carlo approximations

Monte Carlo: marginalization by sampling

- A basic Monte Carlo method for estimating probabilities of events:
- Step 1: Generate a lot of samples $x^{(i)}$ from our model

$$
X=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

- Step 2: Count how often the event occurred in the samples

$$
\operatorname{Pr}\left(X_{2}=1\right) \approx \frac{3}{4} \quad \operatorname{Pr}\left(X_{3}=0\right) \approx 0
$$

- This very simple idea is one of the most important algorithms in ML/statistics
- Modern versions developed to build better nuclear weapons :/
- "Sample" from a physics simulator, see how often it leads to a chain reaction

Monte Carlo to approximate probabilities

- Monte Carlo estimate of the probability of an event A :

$$
\frac{\text { number of samples where } A \text { happened }}{\text { number of samples }}=\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\left(A \text { happened in } x^{(i)}\right)
$$

- You can think of this as the MLE of a binary variable $\mathbb{1}$ (A happened)
- Approximating probability of a pair of independent dice adding to 7:
- Roll two dice, check if they add to 7
- Roll two dice, check if they add to 7
- Roll two dice, check if they add to 7
- Roll two dice, check if they add to 7
- Roll two dice, check if they add to 7
- Roll two dice, check if they add to 7
- ...
- Monte Carlo estimate: fraction where they add to 7

Monte Carlo to approximate probabilities

- Recall the motivating problem of modeling (Lib, CPC, NDP, GRN, PPC)
- From 100 samples, what's the probability that $n_{\text {Lib }}>\max \left(n_{\mathrm{CPC}}, n_{\mathrm{NDP}}, \ldots\right)$?
- Can answer this in closed form with math ... or think less and do Monte Carlo
- Generate 100 samples, check who won
- Generate 100 samples, check who won
- Approximate probability by fraction of times they won
- Another example: probability that $\operatorname{Beta}(\alpha, \beta)$ is above 0.7

Monte Carlo to estimate the mean

- A Monte Carlo estimate for the mean: the mean of the samples

$$
\mathbb{E}[X] \approx \frac{1}{n} \sum_{i=1}^{n} x^{(i)}
$$

- A Monte Carlo approximation of the expected value of X^{2} :

$$
\mathbb{E}\left[X^{2}\right] \approx \frac{1}{n} \sum_{i=1}^{n}\left(x^{(i)}\right)^{2}
$$

- A Monte Carlo approximation of the expected value of $g(X)$:

$$
\mathbb{E}[g(X)] \approx \frac{1}{n} \sum_{i=1}^{n} g\left(x^{(i)}\right) \quad \mathbb{E}[g(X)]=\sum_{x \in \mathcal{X}} p(x) g(x) \text { or } \int_{x \in \mathcal{X}} p(x) g(x) \mathrm{d} x
$$

- Most general form: $g(x)=x, g(x)=x^{2}, g(x)=\mathbb{1}(A$ happens on $x)$

$$
\mathbb{E}[\mathbb{1}(A \text { happens on } x)]=\int_{x \in \mathcal{X}} p(x) \mathbb{1}(A \text { happens on } x) \mathrm{d} x=\int_{x: A \text { happens }} p(x) \mathrm{d} x=\operatorname{Pr}(A)
$$

Monte Carlo: theory

- Let $\mu=\mathbb{E}[g(X)]$ be the value we want to compute
- Assume $\sigma^{2}=\operatorname{Var}[g(X)]$ exists and is bounded ("not infinite")
- With iid samples, Monte Carlo gives an unbiased estimate of μ
- Expected value of the Monte Carlo estimate, over samples we might draw, is exactly μ
- Monte Carlo estimate "converges to μ " as $n \rightarrow \infty$
- Estimate gets arbitrarily close to μ as n increases: (strong) law of large numbers
- Expected squared error is exactly $\mathbb{E}(\hat{\mu}-\mu)^{2}=\frac{\sigma^{2}}{n}$
- $\hat{\mu}$ is approximately normal with mean μ and variance $\frac{\sigma^{2}}{n}$ (central limit theorem)
- Can be viewed as a special case of SGD

