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Next Topic: CNN review



Motivation: X-ray abnormality detection
• Want to build a system that recognizes abnormalities in x-rays:

• Applications:
– Fast detection of tuberculosis, pneumonia, lung cancer, etc

• Deep learning has led to incredible progress on computer vision tasks
– Much of this progress driven by convolutional neural networks (CNNs)

“Abnormality detected”
  (binary classification)
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Convolutional Neural Network (CNN) motivation

• Consider training neural networks on 500 pixel by 500 pixel images
– So the number of inputs d to first layer is 250,000 (or 3x that, if colour)

• If first layer has k=10,000, then W has 2.5 billion parameters
– We want to avoid this huge number (due to storage and overfitting)

• CNNs drastically reduce the number of parameters by:
– Having activations only depend on a small number of inputs
– Using the same parameters on the connections of many activations

• Done using layers that look like “convolutions” in signal processing
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Illustration of 2D Convolution
• 2D convolution:
– Inputs: an “input” image x and a “filter” image w
– Output: new image z whose pixels are dot products of filter and image region)

https://scientistcafe.com/ids/convolutional-neural-network.html

Filter image
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Illustration of 2D Convolution
• 2D convolution:
– Inputs: an “input” image x and a “filter” image w
– Output: new image z whose pixels are dot products of filter and image region)

• As a formula:

– Final image z can be written as usual z=W’ x
• W’ will be sparse, with filter values in W repeated

• 3D convolution (for colour images):
– Weighted dot product across all 

three dimensions
https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1
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Formal Convolution Definition
• We have defined the convolution as:

• In other classes you may see it defined as:

• For simplicity we’re skipping the “reverse” step,
and assuming w and x are sampled at discrete points (not functions)

• But keep this mind if you read about convolutions elsewhere
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Convolutions
• Pre-2012, people often designed the filters by hand
– Filters can approximate “derivatives” or “integrals” of the image regions.

• Derivative filters will up to 0, integral filters will add up to 1
– Three of the most-common filters that people used:

• Gaussian filters: integral filter, giving the average brightness in a region
– Variance of the Gaussian controls the amount of smoothness
– This produces a pixel feature that is less sensitive to noise than pixel’s raw value

• Gabor filters: derivative filters, measuring changes in brightness along a direction
– We typically compute these for different orientations and “frequencies”
– This gives a set of features that is useful in describing edges in the image

• Laplacian of Gaussian filter: total second-derivative filter
– Complements Gabor filters: helps describe if change is due to an edge, line, or continuous change

– Similar filters may be used early in the eyes visual processing
– Results of convolutions kind of like the “bag of words” making up images
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples
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Unsupervised Learning of Filters for Image Patches

• Consider building an unsupervised model of image patches:
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Unsupervised Learning of Filters for Image Patches

• Some methods to do this generate Gaussian/LoG/Gabor filters:
– These filters are motivated from both neuroscience and ML experiments.

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf
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Motivation for Convolutional Neural Networks
• Classic vision methods use fixed convolutions as features:
– Usually have different types/variances/orientations
– Can do subsampling or take maxes across locations/orientations/scales
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Motivation for Convolutional Neural Networks
• Convolutional neural networks learn the convolutions:
– Learning W and v automatically chooses types/variances/orientations
– Don’t pick from fixed convolutions, but learn the elements of the filters
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Motivation for Convolutional Neural Networks
• Convolutional neural networks learn the convolutions:
– Learning W and v automatically chooses types/variances/orientations
– Can do multiple layers of convolution to get deep hierarchical features

http://fortune.com/ai-artificial-intelligence-deep-machine-learning/
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Convolutional Neural Networks
• Classic architecture of a convolutional neural network:

• Convolution layers:
– Apply convolution with several different filters
– Sometimes these have a “stride”: skip several pixels between applying filter

• Pooling layers:
– Aggregate regions to create smaller images (usually “max pooling”)

• Fully-connected layers: usual “multiplication by Wl” in layer
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://github.com/vdumoulin/conv_arithmetic
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Max Pooling Example
• Max pooling:

• Decreases size of hidden layer, so we need fewer parameters
– Gives some local translation invariance:

• The precise location of max is not important

• This is continuous and piecewise-linear but non-differentiable
– Like ReLU, we can still optimize this type of objective with SGD 25



LeNet Convolutional Neural Networks
• Classic convolutional neural network (LeNet):

• Visualizing the “activations”:
– http://scs.ryerson.ca/~aharley/vis/conv
– http://cs231n.stanford.edu

http://scs.ryerson.ca/~aharley/vis/harley_vis_isvc15.pdf 26

http://scs.ryerson.ca/~aharley/vis/conv
http://cs231n.stanford.edu/


ImageNet Competition 
• ImageNet: Millions of labeled images, 1000 object classes
– Task is to classify images into one of the 1000 class labels.

• We will discuss multi-class classification in Part 2 of the course.

– Everyone submits their “best” model, winners announced.

https://www.youtube.com/watch?v=40riCqvRoMs
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AlexNet Convolutional Neural Network
• Modern CNN era started with AlexNet (won 2012 competition):
– 15.4% error vs. 26.2% for closest competitor
– 5 convolutional layers
– 3 fully-connected layers
– SG with momentum
– ReLU non-linear functions
– Data translation/reflection/

cropping
– L2-regularization + Dropout
– 5-6 days on two GPUs

• at the time – could run much faster with current hardware
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf 28



ImageNet Insights
• Filters and stride got smaller over time
– Popular VGG approach uses 3x3 convolution layers with stride of 1

• 3x3 followed by 3x3 simulates a 5x5, and another 3x3 simulates a 7x7, and so on
• Speeds things up and reduces number of parameters
• Also increases number of non-linear ReLU operations

https://www.cs.toronto.edu/~frossard/post/vgg16/ 29



ImageNet Insights
• Filters and stride got smaller over time.
– Popular VGG approach uses 3x3 convolution layers with stride of 1.
– GoogLeNet used multiple filter sizes (“inception layer”), but not as popular.

• Eventual switch to “fully-convolutional” networks.
– No fully connected layers.

• ResNets allow easier training of deep networks.
– Won all 5 tasks in 2015, training 152 layers for 2-3 weeks on 8 GPUs. 

• Ensembles help.
– 2016 winner combined predictions of previous networks.

• Competition ended in 2017!
http://www.themtank.org/a-year-in-computer-vision
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Discussion of CNNs
• Convolutional layers reduce the number of parameters in two different ways:

– Each hidden unit only depends on small number of inputs from previous layer
– We use the same filters across the image

• So we do not learn a different weight for each “connection” like in classic neural networks

• CNNs give some amount of translation invariance/equivariance:
– Because the filters are used across the image, they can detect a pattern anywhere in the image

• Even in image locations where the pattern has never been seen
– The pooling layer can also give some local invariance, against small translations of the image

• CNNs are not only for images!
– Can use CNNs for 1D sequences like sound or language
– Can use CNNs for 3D objects like videos or medical image volumes
– Can use CNNs for graphs

• But you do need some notion of “neighbourhood” for convolutions to make sense.
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Next Topic: Autoencoders



Autoencoders

• Autoencoders try to make their output the same as the input
– Usually have a bottleneck layer with dimension k < input d
– First layers “encode” the input into bottleneck
– Last layers “decode” the bottleneck into a (hopefully valid) input



Autoencoders

• This is an unsupervised learning method.
– There are no labels y

• Relationship to principal component analysis (PCA):
– With squared error and linear network, equivalent to PCA

• Size of bottleneck layer gives number of latent factors k in PCA
– With non-linear transforms: a non-linear/deep generalization of PCA



Encoder as Learning a Representation
• Consider the encoder part of the network:
– Takes features xi and makes low-dimensional zi

• Ways you could use the encoder:
– Use zi as compressed input (reduce memory needed)
– Set bottleneck size to 2, and plot the z(i) to visualize the data
– Try to interpret what the bottleneck features z(i) mean
– Use the z(i) as features for supervised learning

• For the special case of PCA and regression with L2 loss, this is called “partial least squares”
– You could add a supervised yi to final layer of trained autoencoder + fit with SGD

• This is called “unsupervised pre-training”
• If you use unlabeled data to do this initialization, an example of “self-supervised” learning

– Usually it is easier to get a lot of unlabeled data than it is to get labeled data.



PCA vs. Deep Autoencoder (Document Data)

https://www.cs.toronto.edu/~hinton/science.pdf (these days t-SNE is the usual way to make visualizations like this; see these guidelines)

https://distill.pub/2016/misread-tsne/


Unsupervised pre-training
• One version of this: semi-supervised learning
– 1. Train an autoencoder on all of Instagram (e.g.)
– 2. Use its features for softmax regression on your (small) labeled dataset

• Could also “fine-tune” the whole network;
this would be one version of unsupervised pre-training



Some clarification about unsupervised pre-training

• What “unsupervised pre-training” used to mean
• Old scheme for deep networks: stacked denoising autoencoders
– Train a two-layer denoising autoencoder
– Freeze the encoder layer as first layer of your deep net
– Train a denoising autoencoder on activations from that layer
– Freeze its encoder as the second layer of your deep net
– Repeat
– Fine-tune with SGD at the end

• People don’t do this anymore: we can do end-to-end SGD now



Decoder as Generative Model
• Consider the decoder part of the network:
– Takes low-dimensional z(i) and makes features !𝑥(i)

• Can be used for outlier detection:
– Check distance to original features to detect outliers

• Can be used to generate “new data”:
– If the decoder is good, new values of z that “look like real z” should decode 

into !𝑥 that “look like real x”
– To do this “properly,” need to estimate the distribution p(z)

• This is what “Stable Diffusion” does



Font Manifold
• Going from encoding to decoding for different fonts:

• Demo here.
– The above was generated by a Gaussian process and not an autoencoder.
– But the decoder part of autoencoders is trying to do something like this.

http://entangled.systems/fragments/20160729-learning-a-manifold-of-fonts-machine-learning-research-from-2014-by-dr-neill-campbell-provides-an-interactive-exploration-of.html

http://vecg.cs.ucl.ac.uk/Projects/projects_fonts/projects_fonts.html


Latent Space Interpolation

https://arxiv.org/abs/2204.06125

• Encode both ends; decode various points on a line between



Neural Networks with Multiple Outputs
• Previous neural networks we have seen only have 1 output y.
• In autoencoders, we have d outputs (one for each feature).

• For training, we add up the loss across all j:

• Fit with SGD (sampling random i), and usual deep learning tricks can be used
– Even though network has multiple outputs, f is a scalar so autodiff works as before
– For images, may want to use convolution layers



Denoising Autoencoders
• A common variation on autoencoders is denoising autoencoders:
– Use “corrupted” inputs, and learn to reconstruct uncorrupted originals

– “Learn a model that removes the noise”. Easy to get lots of training data.
• You can apply the model to denoise new images.
• Do not necessarily need a “bottleneck” layer.

https://www.pyimagesearch.com/2020/02/24/denoising-autoencoders-with-keras-tensorflow-and-deep-learning/
https://www.deeplearningbook.org/contents/autoencoders.html



What Denoising Autoencoders Learn

Alain and Bengio (2012)

• Can use to estimate “Hyvärinen score” !!
∗ " #"
$#

≈ ∇" log 𝑝(𝑥)
• Closely related to diffusion models (later in the course!)

https://arxiv.org/abs/1211.4246


• Gallery: http://iizuka.cs.tsukuba.ac.jp/projects/colorization/extra.html
• Video: https://www.youtube.com/watch?v=ys5nMO4Q0iY

Image Colourization

http://iizuka.cs.tsukuba.ac.jp/projects/colorization/en/

http://iizuka.cs.tsukuba.ac.jp/projects/colorization/extra.html
https://www.youtube.com/watch?v=ys5nMO4Q0iY


• Instead of noisy inputs, you use de-coloured inputs:

• Another application is super-resolution:
– Learn to output a high-resolution image based on low-resolution images.

Image Colourization

http://iizuka.cs.tsukuba.ac.jp/projects/colorization/en/



Next Topic: Multi-Label Classification



Motivation: Multi-Label Classification
• Consider multi-label classification:

• Which of the k objects are in this image?
– There may be more than one “correct” class label.

http://image-net.org/challenges/LSVRC/2013/



Independent Classifier Approach
• One way to build a multi-label classifier:
– Train a classifier for each label

• Train a neural network that predicts +1 if the image contains a dog, and -1 otherwise
• Train a neural network that predicts +1 if the image contains a cat, and -1 otherwise
• …

– To make predictions for the k classes, concatenate predictions of the k models

• Can think of this as a “product of independent classifiers”

• Drawbacks:
– Lots of parameters: k*(number of parameters for base classifier).
– Each classifier needs to “relearn from scratch”

• Each classifier needs to learn its own Gabor filters, how corners and light works, and so on
• A lot of visual features for “dog” might also help us predict “cat”



Encoding-Decoding for Multi-Label Classification
• Multi-label classification with an encoding-decoding approach:

– Input is connected to a hidden layer.
– Hidden layer is connected to multiple output units.

• Prediction: compute hidden layer, compute activations, compute output:

• Number of parameters and cost is O(dm + mk) for k classes and m hidden units.
– If we trained a separate network for each class, number of parameters and cost would be O(kdm) (for ‘W’ for each class)

• Might have multiple layers, convolution layers, and so on.
• No need to have a “bottleneck” layer – ”encoder”/”decoder” is just terminology



Encoding-Decoding for Multi-Label Classification

• We usually assume that the classes are independent given last layer:

– Conditioned on features/parameters, this is ultimately a fancy product of Bernoullis model:
• p(y1, y2,…,yk | x, W, V) = p(y1 | x, W, V)p(y2 | x, W, V)⋯p(yk | x, W, V), where p(yc = 1| x, W, V)= 𝜃! .
• This makes decoding and other inference problems easy: you do inference on each yc independently.



Encoding-Decoding for Multi-Label Classification
• The negative log-likelihood we optimize for MLE:

• Use backpropagation or AD to compute gradient, train by SGD.
– You randomly sample a training example i and compute gradient for all labels
– The updates of W lead to features that are useful across classes
– The updates of V focus on getting the class labels right given the features

• Important:
– We assumed independence of labels given the last layer
– But the last layer can reflect dependencies

• If “dog” and “human” are frequently together, this should be reflected in the hidden layer
– For example, 𝜃"#$%& might be higher when the features give a high value for 𝜃'()



Pre-Training for Multi-Label Classification
• Consider a scenario where we get a new class label
– For example, we get new images that contain horses (not seen in training)

• Instead of training from scratch, we could:
– Add an extra set of weights vk+1 to the final layer for the new class
– Train these weights with the encoding weights W fixed

• This is a simple/convex logistic regression problem
• If we already have “features” that are good for many classes,

we may be able to learn a new class with very few training examples!



Pre-Training for Multi-Label Classification
• Using an existing network for new problems is called “pre-training”
– Typically, we start with a network trained on a large dataset
– We use this network to give us features to fit a smaller dataset

• “Few-shot learning”

• Depending the setup, you may also update W and the other vc
– Useful if you have a lot of data on the new class
– In this case, would typically mix in new examples with old ones

• Increasing trend in vision and language to using pre-training a lot
– No need to learn everything about language for every language task!



Next Topic: Fully-Connected Networks



Motivation: Pixel Classification
• Suppose we want to assign a binary label to each pixel in an image:
– Tumour vs. non-tumour, pedestrian vs. non-pedestrian, and so on

• How can we use CNNs for this problem?
https://ipsjcva.springeropen.com/articles/10.1186/s41074-019-0062-2
https://www.youtube.com/watch?v=YbNmL6hSNKw



Naïve Approach: Sliding Window Classifier
• Train a CNN that predicts pixel label given its neighbourhood

• To label all pixels, apply the CNN to each pixel
– Advantages:

• Turns pixel labeling into image classification
• Can be applied to images of different sizes

– Disadvantage: this is slow
• (Cost of applying CNN) * (number of pixels in the image)

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53



Encoding-Decoding for Pixel Classification
• Similar to multi-label, could use CNN to generate an image encoding
– With output layer making a prediction at each pixel

• Much-faster classification
– Small number of “global” convolutions, instead of repeated “local” convolutions

• But, the encoding has mixed up all the space information
– Fully-connected layers throw all that information out
– Fully-connected layer needs to learn “how to put the image together”

• And images must be the same size

Convolution ReLU Pool Convolution ReLU

https://ipsjcva.springeropen.com/articles/10.1186/s41074-019-0062-2

Pool Fully-
Connected

Fully-
Connected

ReLU



Fully-Convolutional Networks
• Fully-convolutional networks (FCNs):
– CNNs with no fully-connected layers (only convolutional and pooling)

• Maintains fast classification of the encoding-decoding approach
• Same parameters used across space at all layers
– This allows using the network on inputs of different sizes
– Needs upsampling layer(s) to get back to image size

• FCNs quickly achieved state of the art results on many tasks
https://ipsjcva.springeropen.com/articles/10.1186/s41074-019-0062-2

Convolution ReLU Pool Convolution ReLU Pool Convolution ReLU
Up-

sample



Traditional Upsampling Methods
• In upsampling, we want to go from a small image to a bigger image
– This requires interpolation: guessing “what is in between the pixels”

• Classic upsampling operator is nearest neighbours interpolation:
– But this creates blocky/pixelated images

https://towardsdatascience.com/transposed-convolution-demystified-84ca81b4baba



Traditional Upsampling Methods
• Another classic method is bilinear interpolation:
– Weighted combination of corners:
– More smooth methods include “bicubic” and “splines”

• In FCNs, we learn the upsampling/interpolation operator

https://towardsdatascience.com/transposed-convolution-demystified-84ca81b4baba



Upsampling with Transposed Convolution
• FCN Upsampling layer is implemented with a transposed convolution

– Sometimes called “deconvolution” in ML or “fractionally-strided convolution”
• But not related to deconvolution in signal processing

• Convolution generates 1 pixel by taking weighted combination of several pixels
– And we learn the weights

• Transposed convolution generates several pixels by weighting 1 pixel
– And we learn the weights
– This generates overlapping regions, which get added together to make final image

https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Noh_Learning_Deconvolution_Network_ICCV_2015_paper.pdf



Upsampling with Transposed Convolution

• Animations here and here.
https://towardsdatascience.com/transposed-convolution-demystified-84ca81b4baba

https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1
https://medium.com/apache-mxnet/transposed-convolutions-explained-with-ms-excel-52d13030c7e8


Why is it called “transposed” convolution?
• We can write the convolution operator as a matrix multiplication, z = W’ x.

• In transposed convolution, non-zero pattern of ‘W’ is transposed from convolution
– You can implement transposed convolution as a convolution

• In this example the filter is the same, but does not need to be:
– Transposed convolution is not the “reverse” of convolution (it only “reverses” the size)

https://www.machinecurve.com/index.php/2019/09/29/understanding-transposed-convolutions/



Increasing Resolution: FCN Skip Connections
• Convolutions and pooling lose a lot of information
• Original FCN paper considered adding skip connections to help upsampling:

• Allows using high-resolution information from earlier layers
• They first trained the low-resolution FCN-32, then FCN-16, then FCN-8

– “First learn to encode at a low resolution”, then slowly increase resolution
– Parameters of transposed convolutions initialized to simulate “bilinear interpolation”

https://arxiv.org/pdf/1411.4038.pdf



Increasing Resolution: Deconvolution Networks
• Alternate resolution-increasing method is deconvolution networks:

• Includes transposed convolution layers and unpooling layers
– Store the max pooling argmax values
– Restores “where” activation happened

• Still loses the “non-argmax” information

https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Noh_Learning_Deconvolution_Network_ICCV_2015_paper.pdf
https://towardsdatascience.com/transposed-convolution-demystified-84ca81b4baba



Increasing Resolution: U-Nets
• Another popular variant is u-nets:

• Decoding has connections to same-resolution encoding step
https://arxiv.org/pdf/1505.04597.pdf



Source of Labels
• Labeling every pixel takes a long time.
• Where we get the labels from?
– Domain expert (medical images)
– Grad students or paid labelers (ImageNet)
– Simulated environments

• High number of
lower-quality examples

• Often a net gain with 
fine-tuning on real images

• Can get data at night, in fog,
or dangerous situations

https://arxiv.org/pdf/1608.01745v1.pdf



Source of Labels
• Recent works recognize you do not need to label every pixel
– You can evaluate loss/gradient on a subset of labeled pixels
– Could have labeler click on a few pixels inside objects, and a few outside

• Many variations are possible, that let you label a lot of images in a short time

• Penguin counting based “single pixel” labels in training data:
– And some tricks to separate objects and remove false positives:

https://arxiv.org/pdf/1807.09856.pdf



End of Part 1 (“Binary Variables”): Key Concepts

• We discussed binary density estimation
– Model the proportion of times a binary event happens

• We discussed the Bernoulli parameterization
• We discussed various inference tasks, given the parameter:
– Compute probabilities, find decoding, generate samples

• We discuss different learning strategies, given data:
– Maximum likelihood estimation (MLE), maximum a posteriori (MAP)
– Beta distribution as a prior gives a beta distribution as posterior (“∝”)

• We discussed modeling binary variables conditioned on features:
– Tabular parameterization is flexible but has too many parameters
– Logistic regression is limited but has a linear number of parameters



End of Part 1 (“Binary Variables”): Key Concepts
• We discussed multivariate binary density estimation

– Refined inference tasks when we have more than one random variable:
• Joint probability, marginal probability, and conditional probability

– Product of Bernoullis assumes variables are independent
• Fast inference/learning but a strong assumption

• We discussed generative classifiers:
– Build a model of the joint probability of features and labels

• Compared to usual discriminative classifiers that model labels given features
– Naïve Bayes assumes features are independent given label

• We discussed neural networks:
– Model that learns the features and classifier simultaneously
– Alternate between linear and non-linear transformations (universal approximator)
– Training is a non-convex problem, but SGD often works better than expected:

• For large-enough networks we often find global, and SGD seems to have implicit regularization



End of Part 1 (“Binary Variables”): Key Concepts

• We discussed deep learning with multiple hidden layers
– Biological motivations and efficient representation of some functions
– Vanishing gradient problem and modern solutions:

• ReLU, skip connections, ResNets

• We discussed automatic differentiation to generate gradient code
– Code that generates gradient code for you (using chain rule)

• We discussed convolutional neural networks (CNNs):
– Include convolution layers that measure image features
– Include max pooling layers that highlight top features across space
– Reduces number of parameters and gives some spatial invariance



End of Part 1 (“Binary Variables”): Key Concepts
• We discussed autoencoders:
– Networks where the output is the input
– Encodes input into a bottleneck layer, then decodes back to input
– Non-linear dimensionality reduction
– Denoising autoencoders learn to enhance images

• We discussed multi-label classification:
– Where each training examples can have 0-k correct labels
– We discussed an encoding approach where the classes shares hidden layers

• Reduces parameters and captures dependencies between labels
– We discussed pre-training to learn new tasks with fewer labeled examples

• We discussed pixel labeling:
– Fully-convolutional networks maintain spatial information at all layers

• Requires upsampling to original image size
• Can label images of different sizes


