A whirlwind review /overview of deep learning
CPSC 440/550: Advanced Machine Learning

cs.ubc.ca/~dsuth/440/23w2
University of British Columbia, on unceded Musqueam land

2023-24 Winter Term 2 (Jan—-Apr 2024)

Admin

Quiz 1 delayed to next week
You’ll be able to book a session starting tomorrow
Tentative plan is Quiz 2 and on stick to original timing

— Quiz 2 week after next, future ones every two weeks of class from then

Ten of you didn’t hand in assignment 1!
— Count doesn’t include auditors or small number of people I've spoken to
— Some probably are about to drop and it just didn’t process yet
— Others: if something came up/etc, please talk to me

Last Time: Neural Networks

* We started with neural networks with one hidden layer:

©,
O——®
@ @NW\?@ -V }’)(W X)

@ oty PR
® — ®
&

h R = P% (must by Vlm'/W«x)
— “Simultaneously learn the features and the linear model.”
— Often perform better with bias variables and/or residual/skip connections.

— Probabilistic framing: a different parameterization of Pr(Y =y | x) = 0,
* We still usually assume Y | X = x ~ Bern(6,,) and do MLE/MAP
* Leads to non-convex training objective; train with SGD

Universal approximation

* For most activation functions, wide networks are “universal approximators”
— Any continuous function can be approximated arbitrarily well on a bounded domain
— Even with only one hidden layer

e But this result is for a non-parametric setting of the parameters:
— The width of the hidden layer needs to grow with n
— A fixed-size network is not a universal approximator

e Other universal approximators (always non-parametric):
— K-nearest neighbours — if k grows with n (but fixed kK would be non-parametric anyway)
— Linear models on polynomial feature transformations — if degree grows with n
— Linear models with Gaussian RBFs as non-linear features (with one basis per training x)
— Linear models with a Gaussian kernel
— Deep networks with fixed width (at least d+2), growing depth

Is Training Neural Networks Scary?

* Learning:
— For binary classification, the NLL under the sigmoid loss is:

(W)= 2'09(”””(’”’% s

~7T 2
* With W fixed this is convex, but with W and v as variables it is non-convex.
* Finding the global optimum of non-convex functions is NP-hard in general.

— Nearly always trained with variations on stochastic gradient descent (SGD).

W/("/: W/r /fv {w
Sl - kmr(;%

* Many variations exist (adding ‘momentum”, AdaGrad, Adam, and so on).

Iy s a N

Vimy e*q"‘f4 (6'97'\

bn L
" ar,v,/’, /qm/w”

* SGD is not guaranteed to reach a global minimum for non-convex problems.
* |s non-convexity a big drawback compared to logistic regression?

— And if k is large, is this likely to overfit?

Neural Networks = Logistic Regression

* Consider a neural network with one hidden layer and connections from input to output layer.
— The extra connections are called “skip” connections.

+ VT l‘\(Wx >
| inewr \-’V“/

Muk/ Newral HW(VLMI’

b
N

You could first set v=0, then optimize w using logistic regression.
— This is a convex optimization problem that gives you the logistic regression model.
You could then set W and v to small random values, and start SGD from the logistic regression model.
— Even though this is non-convex, the neural network can only improve on logistic regression (improves “residual” error).
And if you are worried about overfitting, you could stop SGD by checking performance on validation set.
— This is called regularization by “early stopping”.
In practice, we typically optimize everything at once (which usually works better than the above).

“Hidden” Regularization in Neural Networks

* Fitting single-layer neural network with SGD and no regularization:

MNIST CIFAR-10
0.06f —Training H —Training
—Test (at convergence) 0.6 —Test (at convergence)
0.05¢]
0.5f i
0.04¢ 1
§ § 0.41
[0.03f T o 4l
0.02 0.2}
0.01} 01l
94 8 16 32 64 128 256 512 1K 2K 4K 92 8 16 32 64 128 256 512 1K 2K 4K
Hidden Units # Hidden Units

* On each step of the x-axis, the network is re-trained from scratch.
* Training goes to 0 with enough units: we’re finding a global min.
 What should happen to training and test error for larger #hidden?

“Hidden” Regularization in Neural Networks

Fitting single-layer neural network with SGD and no regularization:

MNIST CIFAR-10
T e 07— —_ ——
0.06f —Training H —Training
—Test (at convergence) 0.6 —Test (at convergence))|
0.05}]
0.5¢]
0.04¢ 1
§ § 0.41 1
g 0.03 5 o 4l
0.02f 02l
0.01f 01
94 8 16 32 64 128 256 512 1K 2K 4K 92 8 16 32 64 128 256 512 1K 2K 4K
Hidden Units # Hidden Units

Test error continues to go down!?!
— What happened to “more complex models overfit more”???

There do exist global mins with large #hidden units have test error = 1.
— But among the global minima, SGD is somehow converging to “good” ones.

Multiple Global Minima?

e For standard objectives, there is a global min function value f*:

Tedin error
eregr

Multiple Global Minima?

e For standard objectives, there is a global min function value f*:

Tedin error
eregr

/___’ 3‘0’0«' ffﬂmf__\

Pafqm‘h(

e But this may be achieved by many different parameter values.

10

Multiple Global Minima?

eregr

Pafqm‘h(
* These training-error global minima may have very different test errors.

 Some of these global minima may be “more regularized” than others.

11

bon U\S.(

/—\

Implicit Regularization of (S)GD

 There is empirical evidence that using SGD regularizes parameters.

— We call this the “implicit regularization” of the optimization algorithm.
* Beyond empirical evidence, we know this happens in simpler cases.
 Example of implicit regularization:

— Consider a least squares problem where there exists a w where Xw=y.
* Residuals are all zero, we fit the data exactly.

* If d > n, there are infinitely many exact solutions.

— You run [stochastic] gradient descent starting from w=0, small learning rate

— Converges to the solution Xw=y that has the minimum L2-norm.
e Using (S)GD is equivalent to (infinitesimal) L2-regularization here; regularization is “implicit”.
* Usingw = np.linalg.solve(X, y) givesyou this same solution.

bomAS_(
Implicit Reg. of (S)GD for linear regression: Proof sketch

e Assume that (stochastic) gradient descent converges to a local min
— It's a smooth, convex optimization problem
* When “interpolation” is possible (e.g. d > n), implies that Xw,, =y

* During training, gradient looks like Vf =)., Z(WTx(i) — y(i))x(i)
— (S)GD only ever moves in the span of the data
e Must have wy, = wy + X for some «

* Combining: X(WO + XTa) =y, a = (XXT)_1 (y — Xwy)
~Weo = XT(XXT)™" (y — Xwo) +wo = X" (XXT) "y + (I - X"(XXT) "' X) w,

— “Closest interpolator to wy”; when wy = 0, the minimum-norm interpolator

“Classical” regime: one global min bonus!

.

—— ground truth
—— ground truth e samples

® samples best minimizer

s | »,_»\., degree 19
degree 1 degree 3 / X /
aid) (I
.) 1A
. Y

_J‘/
—— ground truth
® samples
Many global minima: degree 25 best minimizer
—— ground truth —— ground truth
® samples ® samples
best minimizer min-norm, Legendre basis
o o 0

0
[\ o [l
- l/ 0/
2 0
\J\/ - v
—— ground truth
@ sampl

(" ” . .
best min-norm, basis 1 min-tom, Vandermorde b
min- norm basis 2

https://windowsontheory.org/2019/12/05/deep-double-descent/
https://colab.research.google.com/drive/1oMuUz3_BOENSoaOVOymLoB2mHeYBex8S

Extreme overparameterization: degree 1000 bonus!

/—\
—— ground truth —— ground truth
® samples ® samples
best ERM min-norm, Legendre basis
2 9 0o o0 0o o0

‘./,——\“

'/ °‘:M v \ / // \N\e /
" \ . N A N
. JJ | NV M\]

o 1 . .
best mln—norm’ baSIS 1 —— ground truth, .
o . =meMin-norm, basis 2
Many global minima: degree 25

@

min-norm, Vandermonde basis

—— ground truth —— ground truth
® samples ® samples
best minimizer min-norm, Legendre basis

RN /7N N

7’ N t oy A\ / /"/ AN /

| _ﬂ// . \\J// ° ; N

—— ground truth
® samples

7 ” . .
beSt mln—norm’ baSIS 1 —— min-norm, Vandermonde basis | -
min-norm, basis 2

https://windowsontheory.org/2019/12/05/deep-double-descent/
https://colab.research.google.com/drive/1oMuUz3_BOENSoaOVOymLoB2mHeYBex8S

Implicit Regularization of (S)GD

Ioon U\S.(

/—\

 Example of implicit regularization:

— Consider a logistic regression problem where data is linearly separable.
* Alinear model can perfectly separate the data.
— You run gradient descent from any starting point.

— Converges to max-margin solution of the problem (minimum L2-norm solution; SVM).
* So using gradient descent is equivalent to encouraging large margin.

— Perfect classifier wilh maximym "“margin"
\ (laget disforce to cloest exam L)
X;l
Ooooo
A 4
2]
K‘x::(0o® %o o
K'gk ooooo
xx Oopn0
3 :X ¥ X 0% o
\ Xit

e Related results are known for (some cases of) non-separable logistic regression,
non-separable SVMs, boosting, matrix factorization, deep homogeneous nets...

Double Descent Curves

Expected

0.7 (Classical Statistics)
_ ™
S 06 '
LU
- '
‘o 0.5
= 3
~ ,"
2 04 ~
2 Reality \\M\\,_\

0.3

0.2

1 10 20 30 40 50 60

Model Size (ResNet18 Width)
* What is going on???

Worst vs. Best “Global Minimum”

"ps‘f Cvror (WW‘S’, 9'0‘\,,’ Min)

Crror

','raiw errol

Mode size

19

Worst vs. Best “Global Minimum”

105‘/ Cvror (WW‘S’, 9'0‘\,,’ Min)
Al
¢

>x

Sy

Sl

Crror

>
>

s

IR PRI
IR

Cam errof

1 —

Model size
* Learning theorists usually analyze the worst global min (in test error)

— Actual test error for many global minima may be better than worst case bound

— Theory is correct, but maybe “worst overfitting possible” is too pessimistic?

20

Worst vs. Best “Global Minimum”

105‘/ evror (WW‘S’, 9'0“,,’ Min)

oy

Sl

Crror

>
>

g

q' w N
of (l?"’"" cj\OL

v

>R~
w30 8% <

Mode size

* Think about instead the global min with best test error
— With small models, “minimize training error” leads to unique (or similar) global mins
— With larger models, there is a lot of flexibility in the space of global mins (gap between best/worst)

* Gap between “worst” and “best” global min can grow with model complexity

21

Worst vs. Best “Global Minimum”

105‘/ evror (WW‘S’, 9'0“,,’ Min)

oy

Sl

Crror

>
>

g

q' w N
of (L,,.f" cj\OL

v

>R~
w30 8% <

Mode size

* (Can get “double descent” curve in practice if parameters roughly track “best” global min shape
— One way (ish) to do this: increase regularization as you increase model size
 Maybe “neural network trained with SGD” has “more implicit regularization for bigger models”?

— But this behavior is not specific to implicit regularization of SGD and not specific to neural networks.
22

Implicit Regularization of SGD (as function of size)

 Why would implicit regularization of SGD increase with dimension?

— Maybe SGD finds low-norm solutions?
* In higher dimensions, might be more flexibility in global mins to have a low norm

— Maybe SGD stays closer to starting point as we increase dimension?
* This would be more like a regularizer of the form | |w —w?°||.

Training loss Relative change in norm of weights from initialization
—— Width 10 0.30{ —— Width 10
Width 100 Width 100
20 —— Width 1000 —— Width 1000

15

Loss

lwio)]]
o
(=]
w

[lw(n) — w(0)]

1.0

0.5

0.0

0 200 400 600 800 1000 0 200 400 600 800 1000
Step Step (n) 23

Next Topic: Deep Learning

Deep Learning

* Deep learning models have more than one hidden layer:

2y
@
lu) —
()
M a
'-Tn{u} 'qu(l'*lchl»a_/\]qyef i JJW ' 7“(2

e We transform our activations one or more times.

25

bon (AS,(

Why Multiple Layers? -

* Historically, deep learning was motivated by “connectionist” ideas:

— Brain consists of network of highly-connected simple units.
* Same units repeated in various places.

Computations are done in parallel.

Information is stored in distributed way.

Learning comes from updating of connection strengths.

One learning algorithm used everywhere.

bon U\S.‘

Why Multiple Layers? -

* And theories on the hierarchical organization of the visual system:

DEEP HIERARCHIES IN THE VISUAL SYSTEM

LOCATION FEATURE RECEPTIVE FIELD SIZE
RETINA PHOTORECEPTOR oo

GANGLION CELL (01O,
THALAMUS LGN oe

uremcencoremcss @ @

..";""" Temporal
y
N | Q.
Temporal = N Thalamus Vi SIMPLE CELL S~ I)
g © o

COMPLEX CELL OO O™

) B ‘a‘ X
TEXTURE-DEFINED ILLUSORY BORDER
CONTOURS CONTOURS OWNERSH

Pulvinar nucleus """

Lateral geniculate —— (V3)
nucleus
Superior colliculus = V4 ((‘ ;
CURVATURE LUMINANCE-INVARIANT e P
SELECTIVITY HUE
Optic radiation =
) VENTRAL DORSAL
\ Primary visual cortex PATHWAY PATHWAY
1 S D= n
SIMPLE SHAPE : [
LS ANALYSIS OF SPACE
*
N . ACTION PLANING
T ¥O 8
COMPLEX FEATURE 27

CONFIGURATIONS

Ioon U\S.‘

Why Multiple Layers? -

* The idea of multi-layer designs appears in engineering too:

— Deep hierarchies in camera design:

G1
£ G2 60
E1 63
— / by
\ '
- LC Vi) Y
£5 g1 7 E13 N
E4 - . £12 F13EIS . | N /\) |
£10 E7/E16 L1 £20 ‘ / f -
E8 £18 £79 . | LN White Light > !
Iris— £/ / lllll . 3 / (
\\ SSSSS H y/ \ Almmlzd/‘"\l Tnage
/ . \ raveionl Reference Plane
' i / e \ i ‘ Sphtical
] = 4 Wavehont
)
Object 3
PPPPP < 7 7/ 222 Image
77 12 19 25 g i

e
Q
AN
%
\‘Q
% -
X
RN
N
A
N8
N
N
Ny
\-._
—
&
&
-

28

Ioon U\S.(

Why Multiple Layers? -

* There are also mathematical motivations for using multiple layers:

— 1 layer gives us a universal approximator of any (reasonable) function.
* But this layer might need to be huge.

— With deep networks:

* Some functions can be approximated with exponentially-fewer parameters.
— Compared to a network with 1 hidden layer.

e So deep networks may need fewer parameters than “shallow but wide” networks.

— And hence may need less data to train.

e Relevant video:

— https://www.youtube.com/watch?v=aircAruvnKk

https://www.youtube.com/watch?v=aircAruvnKk

Inference In Deep Neural Networks

* The “textbook” choice for deep neural networks:
— Alternate between doing linear transformations and non-linear transforms.

\? = v h(Wh(Whw'h(Wk))))

— Each “layer” might have a different size.

e Wlisk!xd z[1] = W1*x

z!s 2X) for layer in 2:nLayers
: wS :2 t3§t2' z[layer] = Wm[layer-1]*h(z[layer-1])
®* VIS X 1.

— We use the same non-linear transform, such as sigmoid, at each layer.
— Cost for prediction, which is called “forward propagation”:

* Cost of the matrix multiplies: O(kd + k2k! + k3k? + k*k3)

* Cost of the non-linear transforms is O(k! + k? + k3 + k#), so does not change cost.

— Once you have J, inference works as it does for Bernoulli with 8 = 1/(1+exp(-y)).
30

New Issue: Vanishing Gradients

Consider the sigmoid function:

Away from the origimn, the grmadﬂioentc is nea rIy Zero.
The problem gets worse when you take the sigmoid of a sigmoid:

In deep networks, many gradients can be nearly zero everywhere.
— And numerically they will be set to 0.

31

Rectified Linear Units (RelLU)

* Modern networks almost always replace sigmoid with RelLUs:
Max§0>2,-cg

o
14?"/’(3»'()

——

* Just sets negative values z;. to zero.
— Reduces vanishing gradient problem (positive region is never flat).
— @Gives sparser activations.
— Still gives a universal approximator if size of hidden layers grows with n.

32

Skip Connections in Deep Learning

e Skip connections can also reduce vanishing gradient problem:

* Makes “shortcuts” from input to output with fewer transformations.
— Many variations exist on skip connections locations and how they are used.

wwwww

ResNet “Blocks” _L

Residual networks (ResNets) are a variant on skip connections.
— Consist of repeated “blocks”, first methods that successfully used 100+ layers.

Usual computation of activation based on previous 2 layers:

+ + 4
o= h(WH h (W)
/t/”qc/li/q'li(ll/\ ﬁ* ‘ﬁy@f /['

42 4 L+ 1/ x
ResNet “block”: ot = h(a'+ W hWw'a')) i]
. . " ’ F(x) lrelu .
— Adds activations from “2 layers ago”. Cweientiaver | | i enity
Differences from usual skip connections: A

— Activations vectors a' and a*?2 must have the same size.

— No weights on a', so W' and W"*! must focus on “updating” a' (fit “residual”).
* |If you use RelLU, then W'=0 implies a'*2=al.

DenseNet

Ioon U\S.‘

e Another variation is “DenseNets”:

— Each layer can see all the values from many previous layers.

— Significantly reduces
vanishing gradients.

— May get same performance
with fewer parameters/layers.

https://arxiv.org/pdf/1512.03385v1.pdf

-

~
ye-

L2
== 5i1|0/ -
Fars
L

Figure 1: A 5-layer dense block with a growth rate of £k = 4.

. . 35
Each layer takes all preceding feature-maps as input.

Learning in Deep Neural Networks

e Usual training procedure is again stochastic gradient descent (SGD).
— Deep networks are highly non-convex and notoriously difficult to tune.

— But we are discovering sets of tricks that often make things easier to tune.
* Data standardization (“centering” and “whitening”).
* Adding bias variables.
* Parameter initialization: “small but different", standardizing within layers.
» Step-size selection: “babysitting", Bottou trick.
* Momentum: heavy-ball and Nesterov-style modfications.
 Step size for each coordinate: AdaGrad, RMSprop, Adam.

* Rectified linear units (ReLU): replace sigmoid with max{0,h} to avoid gradients close to O.
— Makes objective non-differentiable, but we now know SGD still converges in this setting.

e Batch normalization: adaptive standardizing within layers.
— Often allows sigmoid activations in deep networks.

* Residual/skip connections: connect layers to multiple previous layers.
— We now know that such connections make it more likely to converge to good minima.

* Neural architecture search: try to cleverly search through the space of hyper-parameters.
— This gets expensive!

Missing Theory Behind Training Deep Networks

* Unfortunately, we do not understand many of these tricks very well.

— Large portion of theory is on degenerate case of linear neural networks.
e Or other weird cases like “1 hidden unit per layer”.

— A lot of research is performed using “grad student descent”.
* Several variations are tried, ones that perform well empirically are kept.

* Popular Examples:

— Batch normalization originally proposed to fix “internal covariate shift”.
* Internal covariate shift not really defined in original paper, batch norm does seem to reduce it.
— Famously singled out as an example of “alchemy” in ML research.
* Like many heuristics, people use batch norm because they found that it often helps.
— Many people have worked on better explanations.

— Adam optimizer is a nice combination of ideas from several existing algorithms.
* Such as “momentum” and “AdaGrad”, both of which are well-understood theoretically.
— Theory in the original paper was incorrect; Adam fails at solving some very-simple optimization problems.

* Butis Adam is often used because it is amazing at training some networks.
— It’s been hypothesized that we “converged” towards networks that are easier for current SGD methods like Adam.

Regularization in Deep Neural Networks

 Some common tricks to reduce overfitting:

— Standard L2-regularization or L1-regularization (“weight decay”).
* Sometimes with different A for each layer.
e Recent work shows this can introduce bad local optima.

— Early stopping of the optimization based on validation accuracy.
— Dropout: randomly zeroes activations z values to discourage dependence.
— Implicit regularization from using SGD.

— Special architectures like convolutional neural networks.

Next Topic: Automatic Differentiation

More-Complicated Layers

Modern networks often have more complicated structures:
— Each step might be doing a different operation.
— This makes coding up the gradient both time-consuming and prone to errors.

HXW X7 HXW Lumlpance
(Input 1mage)

Colorization
Mid-Level Features Network

HXW

Network ' H W
Fusion layer 777
Low-Level %\‘ 0
I
Features H W =
Network .~ Shared 878 0w Upsampling
weights T .
Chrominance
&
14x14 . ~Co=iy F— 20.60% Formal Garden
s 77 S===-y Classification igigj iﬁih
56X56 28x%28 L % () ey
- Network 7.07% Botanical Garden Predicted label
. redicte apels
Global Features Network 6.53% Golf Course

Developing networks like this is made easier using automatic differentiation.

bon U\S,‘

40

Automatic Differentiation (AD)

* Automatic differentiation (AD):

— Input: code computing a function.

— Qutput: code to compute one or more derivatives of the function.
* No loss in accuracy, unlike finite-difference approximations.
* The output code has the same asymptotic runtime as the input code.
e Does not give you a “formula” for the derivative, just code that computes it.

A ..8 e
AUutomat

[t] cdifferentiation AN

{f(x) {...};J — - " df(‘x)»{ },

human

programmer

= f(x) N P R v G LV TR +y = f’(x)J

symbolic differentiation

—————

(human/computer) 41

“Reverse Mode” Automatic Differentiation (AD)

* In machine learning, we typically use “reverse mode” AD.
— Gives code for computing the gradient of a differentiable function.
* The slides will exclusively talk about “reverse mode”. For “forward mode”, see bonus.

— AD can compute gradient of any differentiable layer you can implement.
* Use this gradient to train the via SGD.

* Has a close connection to backpropagation.

— Classic algorithm to compute the gradient of neural netw
e “Apply the chain rule, store the redundant calculations”. TP F(’f) - 9(L(/<))

— When you implement backpropagation, Fhen F'ly) = 9'(4,(,(»“)
it uses the same sequence of operations as AD. g

— AD basically just writes every operation as instance of the chain rule.

Automatic Differentiation — Single Input+Output

e Consider the function f(x) = 10*log(1+exp(-2*x)).
* We write the function as a series of compositions: fc(f,(f5(f,(f;(x))))).

* So we have f,(x) =-2, f,’(z) = exp(z), f3'(z) = 1, f,/(z) = 1/z, f'(z) = 10.
— These all cost O(1).

* Recursively applying the chain rule we get:
— f'(x) = f5'()*f4'()15) ¥, (11 (), ().

10 ¥ '/|r';(f;{ﬁ(x») ¥ | K @"V\fﬁm R ,‘ﬁ@fjﬁ
expl=<x

ex'a/Jx)

|
"hox’;("l)()

43

Automatic Differentiation — Single Input+Output

Our function written as a set of compositions:

— fs(f4(f5(f,(f1(x)))).

The derivative written using the chain rule::

— f(x) = f5'()*E4()*f5°()65 (1 0a) ().
Notice that this leads to repeated calculations.

— For example, we use four different times.

— We can use dynamic programming to avoid redundant calculations.
First, the “forward pass” will compute and store the expressions:

* 4= , 0y = , Q3 = , 0y = , O = = f(x).
Next, the “backward pass” uses stored «;, values and f;’ functions:
* Bs=1%(as), Ba= Bs™Fi (a3), B3 = B4*F5'(a2), B2 = B3, (1), B1 = B2*f1'(x) = F(x).
A generic method to make code computing f’(x) for same cost as f(x).

44

Automatic Differentiation — Multiple Parameters

* In ML problems, we often have more than 1 parameter.
— And we want to compute the gradient for the same cost as the function.

* To generalize AD to this case, we define a computation graph:
— A directed acyclic graph (DAG).
— Root nodes are the parameters (and inputs).

— Intermediate nodes are computed values (a values).
— Leaf node is the function value.

 Computing the gradient with AD:

— The forward pass evaluates the function and stores intermediate values.
* Going from the roots through the intermediate nodes to the leaf.

— The backward pass applies the f” functions to the a values.

* Accumulating the needed pieces of the chain rule until each root has its partial derivative.

45

Automatic Differentiation — Multiple Parameters

* Wikipedia’s example of a computation graph:

— For computing the gradient of f(x{,x,) = sin(x;) + X;Xx,.

— Using w for a, w for 5.

Backward propagation
of derivative values

f(Xl,XQ)

Automatic Differentiation - Discussion

AD is amazing — get gradient for the same cost as the function.
— You can try out lots of stuff, and enjoy thoroughly overfitting validation set!
— Modern AD codes have lots of features, like built-in derivatives of matrix operations.

But reverse-mode AD has some drawbacks:

— Need to store all intermediate calculations, so requires a lot of storage.

* For basic deep neural networks, hand-written code would only need to store the activations.
— Modern code has some of these space savings built in.

* For other functions, the storage cost of AD is much higher than handwritten derivative code.
— “Checkpointing” exists to reduce storage, but increases computational cost.

— Has the same cost as computing the function, which is a pro and a con.
* For basic deep neural networks, these have the same cost so this is what we want.
* For other functions, the gradient might be possible to compute at a lower cost than the function value.

— May miss opportunities for parallelism, or miss tricks to avoid numerical problems.

AD only makes sense at points where the function is differentiable.
— TensorFlow and PyTorch can give incorrect “subderivatives” at non-differentiable ReLU points.
— AD cannot (directly) do things like “take the derivative of a function of a sample from the distribution”.

47

Summary

Implicit regularization and double objective function.
descent curves. — Some disadvantages compared to manual.
Deep learning: * Convolutions are flexible class of
— Can allow learning with smaller models and signal/image transformations.
less data than “wide” networks. — Can approximate derivatives and integrals
Vanishing gradient in deep networks at dlffe.rent scales/orientations.
(gradient may be close to 0). * Convolutional neural networks:
— Can reduce with rectified linear units (ReLU) — Include Iz_:\yers that apply several (learned)
and skip connections. convolutions.
— Significantly decreases number of
Overview of neural network training parameters.
heuristics. — Achieves a degree of translation invariance.

— Often combined with pooling operations

Automatic differentiation: like max pooling.

— Decomposing code using the chain rule, to
make derivative code.

. * Next time: non-binary likelihoods! ‘&
— Can compute gradient for same cost as

bonus,‘
Forward-Mode Automatic Differentiation

We discussed “reverse-mode” automatic differentiation.

— Given a function, writes code to compute its gradient.
— Has same cost as original function.
— But has high memory requirements.
e Since you need to store all the intermediate calculations.
There is also “forward-mode” automatic differentiation.

— Given a function, writes code to compute a directional derivative.
 Scalar value measuring how much the function changes in one direction.

— Has same memory requirements as original function.

— But has high cost if you want the gradient.

* Need to use it once per partial derivative.

Forward-mode can be better if output dim > input dim
“Mixed mode” also possible

Failure of AD on RelLUs

In many settings, our underlying function f(x) is a nonsmooth function, and
we resort to subgradient methods. This work considers the question: is there
a Cheap Subgradient Principle? Specifically, given a program that computes a
(locally Lipschitz) function f and given a point z, can we automatically compute
an element of the (Clarke) subdifferential 0 f (z) [Clarke, 1975], and can we do this
at a cost which is comparable to computing the function f(x) itself? Informally,
the set 0f(z) is the convex hull of limits of gradients at nearby differentiable
points. It can be thought of as generalizing the gradient (for smooth functions)
and the subgradient (for convex functions).

Let us briefly consider how current approaches handle nonsmooth functions,
which are available to the user as functions in some library. Consider the following
three equivalent ways to write the identity function, where x € R,

fi(z) =z, fo(x) =ReLU (z) —ReLU (—z), f3(x) =10f(x) —9fs(x),

where ReLU (z) = max{z, 0}, and so fi(z) = fa(x) = f3(x). As these functions
are differentiable at 0, the unique derivative is f{(0) = f;(0) = fi(0) = 1.
However, both TensorFlow [Abadi et al., 2015] and PyTorch [Paszke et al., 2017],
claim that f(0) = 1, f5(0) = 0, f5(0) = 10. This particular answer is due to using
a subgradient of 0 at x = 0. One may ask if a more judicious choice fixes such
issues; unfortunately, it is not difficult to see that no such universal choice exists'.

!By defining ReLU’(0) = 1/2, the reader may note we obtain the correct derivative on fo, fs;
however, consider f4(z) = ReLU (ReLU (z)) — ReLU (—xz), which also equals f;(x). Here, we
would need ReLU’(0) = 3% to obtain the correct answer.

Ioon U\S.‘

50

