Discriminative models
CPSC 440/550: Advanced Machine Learning

cs.ubc.ca/~dsuth/440/23w2
University of British Columbia, on unceded Musqueam land

2023-24 Winter Term 2 (Jan—-Apr 2024)

1/25

https://cs.ubc.ca/~dsuth/440/23w2

Admin admin

Online logistics:

o Recording will go in a different place (posted on Piazza)
@ Your voice will be recorded if you speak up, but not your video
e Would really appreciate if at least a few people have video on

If you need a form signed, post it (privately) on Piazza

Tutorials are going; one online right after class (and another Friday)

Office hours too (two Thursday, one Friday)

Assignment 1 due Friday 5pm!

Scheduling for quiz 1 announced later this week

2/25

Last time

@ Generative classifiers: model p(z,y) and predict with e.g.
argmax, p(y | #) = argmax, p(r,)
@ Multivariate models: product of Bernoullis, assumes X; are all independent

e Naive Bayes: assume the X; are independent given Y’

3/25

“Full” Bayes

e Naive Bayes models p(y) as Bernoulli, p(x | y) as product of Bernoullis
o Makes a strong assumption: all the X; are independent given Y’

@ What if we avoided that assumption entirely?
e Could model p(x | y) with a full tabular distribution:

PI'(Xl :O,XQ :0,...,Xd:0 | YZO) :900...0‘0
PI‘(Xl :O,XQ :0,...,Xd: 1 | YZO) :900...1‘0

PI‘(Xl = 1,X2 = 1,...,Xd: 1 | YZO) :911...1‘0

..and the same for probabilities given Y =1
o 2% possible binary vectors, so need 2¢ — 1 parameters for each condition

e MLE is counting, 6 Ng)y/My; Will discuss this + priors later (categorical dist.)

x|y —
o Different kind of “naivety” than naive Bayes: each bit-vector is totally separate

4/25

Outline

@ Discriminative classifiers

5/25

Discriminative classifiers

@ Generative classifiers model p(x,y), then use that to get p(y | x)

“When solving a problem of interest, do not solve a
more general problem as an intermediate step.”

— Vladimir Vapnik

@ An alternative philosophy: just directly model p(y | x)
o Or even further: just directly learn a classification function
@ Modeling p(z) can be hard

o Discriminative: “which pixels show me this picture is a dog?”
o Generative: “what do pictures of dogs look like?”

6/25

Hierarchy of predictor types

@ Different types of models can answer different types of questions:

type eample | p(z,y) plylz) flx)=y
Generative naive Bayes v v v
Discriminative (prob.) logistic regression X v v
Discriminative (non-prob.) SVM X X v

@ Problem usually gets “easier” as you model less
@ But you can't do as much with it

e Discriminative models can’t sample, do outlier detection, .
e "Pure classifiers” can't easily combine into broader mference (e.g. decision theory)

7/25

Discriminative models, binary data

@ Discriminative model with a full tabular parameterization:

Pr(spam | aardvark =0, ...,lotto =0,...,zyzzyva = 0) = 6y...0...0

Pr(spam | aardvark = 1,...,lotto = 1,...,zyzzyva=1) = 01..1..1

Can represent any conditional distribution on binary data
Needs 27 parameters (versus 2(2¢ — 1) for “tabular Bayes")
o (Why not 2¢ — 17)

Fitting: y | = is a separate Bernoulli for each x; can just MLE/MAP for each one
But probably don't see very many emails per = (and many have n, = 0)

o Will probably overfit for almost every x
o Want to share information across similar xs!

8/25

Linear parameterization of conditionals

@ Generally: would like to use a “parsimonious” parameterization

o Full tabular distribution: can model anything, very many parameters
e Making stronger assumptions: can't model everything, much less complex model

@ Standard basic choice: assume a linear model, i.e. one of the form
p(y =1 ‘ xla"'axdaw> = f(wlxl + - +wdxd) = f(wa)

where w is our vector of d parameters and f is some function from R to [0, 1]
@ Standard basic choice for f: sigmoid function, giving logistic regression
0.8

,_.

o(z)
ococo
CNNECN

6 —4 -2 0 2 4 6

9/25

Logistic regression inference

@ For a given w and z, logistic regression gives us a Bernoulli distribution over y:

1
1+ exp(—wTz)

PriY =1 | X =z,w) =

@ Usually just take the mode to predict most likely y
@ But can also:

e Set a different confidence threshold, e.g. based on “decision theory”
Sample conditional ys given this z

Compute probability of seeing 5 positives out of 10 examples with this x
Compute the expected number of samples with this x to see a single positive
Ask how likely both an x and an independent z’ are to be positive

10/25

Maximum conditional likelihood

@ MLE for generative models: argmax,, p(X,y | w)
e Can't do that for discriminative models!

@ When we say MLE for discriminative models, we mean arg max,, p(y | X, w)
o Treat X as fixed, maximize conditional likelihood

@ Logistic regression also makes sense for continuous x
e Even though it's only using binary probabilities!
o Different than naive Bayes:
e Models X | Y, so continuous X needs to use a continuous distribution

11/25

Logistic (negative log-)likelihood

o Logistic regression uses

n n

p(y | X,w) = Tp (9 1 X,0) = T]p (47 2, w)

i=1 =1

so —logp(y | X, w) = Y1, —logp(y"¥ | z(i),w)

e Each —logp(y® | z(i), w) term is log (1+exp (—gj(i)wT:L'(i))), forye {-1,1}:

—log ———— L if) =1))
08 T+exp(—wTaz(®) Y B {log (1+exp (—wTz®)) ify® =1
~log (1 - 1+xp(—1wz<>)> if y =0 log (I +exp(wia®)) ify® =0

e Usually convenient to use y € {—1,1} instead of {0,1} for binary linear classifiers

12/25

MLE for logistic regression Ceview

o MLE is equivalent to minimizing f(w) = Y7, log(1 + exp(—yPDwTz®))

o Using y € {—1,1} here

e Equivalent to “binary cross-entropy"”

o Computational cost: need to compute the wTz®, aka Xw, in time O(nd)

o Vf(w)= —XTW, with elementwise operations for the y; also O(nd)
@ Convex function: no bad local minima
@ No closed-form solution in general from setting V f(w) =0
@ But can solve with gradient descent or other iterative optimization algorithms

e Best choice depends on n, d, desired accuracy, computational setup, ...

13/25

MAP for logistic regression = regularization w

o MAP with a Gaussian prior, w; ~ A (0, 1), adds $A|lw|? to the objective
o Now “strongly convex": optimization is usually faster

e Typically gives better test error when A is appropriate

@ MAP here is arg max,, p(w | X,y) = argmax,, p(y | X, w)p(w)
o As opposed to generative MAP, argmax,, p(w | X,y) = arg max,, p(X,y | w)p(w)

14 /25

Binary naive Bayes is a linear model bonus!

plz|ly=Dpy=1)
(ly=1ply=1)+plx|y=0)py=0)
1 1

- p(e[y=0p(y=0) (@|ly=1)p(y=1)
L+ Gh=ope=) 1+exp (_ log %

Pr(Y =1|X=2) =
(|) =3

)+ ng(y 1)
=) p(y
d 017 1 0 1—z; _
— ZIOg i\]l(3\1)1_1. +10gp(y 1)
= O5j0(1—6j10) 77 p(y = 0)
d
—Oin ply=1)
=7 z;log L + (1 — ;) log J‘}-{-log
(5 e~ -smon =g] e o=y
g O 1= b0 , — 9 ply=1)
=@ z; log 2L]O—i— 1 31+1 .
<]1 J 0 |0 1_03“ Zl 1_61\0 (()
=

Not generally the parameters that logistic regression would pick (so, lower likelihoods in logreg model) -

Adding intercepts to linear models Ceview

Often we only talk about homogeneous linear models, f(w'x)

More generally inhomogeneous models, f(w'xz -+ b), are very useful in practice

@ Two usual ways to do this:

e Treat b as another parameter to fit and put it in all the equations
o Add a “dummy feature” Xy = 1; then corresponding weight wq acts like b

Both of these ways make sense in probabilistic framing, too!
@ Just be careful about if you want to use the same prior on b/wg or not
o Often makes sense to “not care about y location,” i.e. use improper prior p(wg) o< 1

Another generally—reasonable scheme:
e First centre the ys so = Z y(l = 0, then put some prior on wy not being too big

16 /25

Recap: tabular versus logistic regression

@ Tabular parameterization:

o 2¢ parameters
e Can model any binary conditional parameter
o Tends to overfit unless 2¢ < n

@ Logistic regression:

o d parameters (or d + 1 with offset);
e Can only model linear conditionals
e Tends to underfit unless d is big or truth is linear

@ Simple versus complex model: subject of learning theory

17/25

‘" ” E,VL/
Fundamental trade-off Ceview

@ Tabular and logistic models on different sides of the “fundamental trade-off":

generalization error = train error+-generalization error - train error > irreducible error

generalization gap (overfitting)

o If irreducible error > 0, small train error implies some overfitting / vice versa
@ Simple models, like logistic regression with few features:

e Tend to have small generalization gaps: don’t overfit much
o Tend to have larger training error (can't fit data very well)

o Complex models, like tabular conditionals with many features:

o Tend to have small training error (fit data very well)
o Tend to overfit more

18/25

: : eview
Nonlinear feature transformations W/V

Can go between linear and tabular with non-linear feature transforms:

o Transform each z(® into some new z(%)
o Train a logistic regression model on z(*)
o At test time, do the same transformation for the test features

Examples: polynomial features, radial basis functions, periodic basis functions, ...

Can also frame kernel methods in this way

More complex features tend to decrease training error, increase overfitting
o Performance is better if the features match the “true” conditionals better!

Gaussian RBF features/Gaussian kernels, with appropriate regularization (A and
lengthscale o chosen on a validation set), is often an excellent baseline

19/25

Learning nonlinear feature transformations with deep networks w

@ Not always clear which feature transformations are “right”

@ Generally, deep learning tries to learn good features
o Use “parameterized” features, optimize those parameters too
o Use a flexible-enough class of features

@ Assuming you've seen fully-connected networks: one-layer version is
fooN T
g(x) =v h(Wx)

where W is an m x d matrix (the “first layer” of feature transformation)
h is an element-wise activation function, e.g. ReLU(z) = max{0, z} or sigmoid,
v is a linear function of “activations”

o Without h (e.g. h(z) = 2), becomes a linear model: v" (Wz) = @x

Ixm
o Need to fit parameters W and v

20/25

Fitting neural networks Ceview

o §(z) = v Th(Wz): with fixed W, this is a linear model in the transformed features
e For binary classification, often use logistic likelihood
p(y |z, W,v) =0 (y §(z))
@ Can then compute logistic negative log-likelihood
@ Minimize it with some variant of gradient descent

@ Deep networks do the same thing; a fully-connected L-layer network looks like
J(@) = v hp y(Wp_1hp—o(Wp—g - hy(Wiz) - -+))
or more often, add bias terms
g(x) =B+ v hp—1(bp—1+ Wi_1hp—2(br—2 + Wr_o---hi (b1 + Wiz)--))

where each b is a vector with the same dimension as the activations at that layer
o If Wjis d; x dj_1, jth layer activations are length d;, b; is also length d;
o Can still apply same logistic likelihood, optimize in same way
21/25

Universal approximation

@ For most activation functions, wide networks are universal approximators
e Even if they only have one hidden layer

@ Any continuous function on bounded domain can be approximated arbitrarily well

@ But this is in a non-parametric regime:

e The width of the hidden layer needs to grow with n

e Any fixed-size network is not a universal approximator
@ Other universal approximators:
k-nearest neighbours (if k& grows with n)
Logistic regression with polynomial features — if degree grows with n
Linear models with Gaussian RBF features (with one basis per (%))
Linear models with a Gaussian kernel
Fixed-width but growing-depth networks

22/25

Is training neural nets scary?

@ The objective function is highly non-convex, even for one hidden layer
@ Finding the global optimum is generally NP-hard

@ Nearly always trained with variants of stochastic gradient descent (SGD)

W) — k) o, vy, [_ log ply® | 2@, W(k)’vw)] p® D) = o0 o, v, [log plyl

e Lots of variants: minibatches, different versions of momentum, Adam, ...
e SGD not guaranteed to reach a global optimum for non-convex problems

23/25

Can ensure neural networks > logistic regression

* Consider a neural network with one hidden layer and connections from input to output layer.
— The extra connections are called “skip” connections.

* You could first set v=0, then optimize w using logistic regression.
— This is a convex optimization problem that gives you the logistic regression model.
* You could then set W and v to small random values, and start SGD from the logistic regression model.
— Even though this is non-convex, the neural network can only improve on logistic regression (improves “residual” error).
* And if you are worried about overfitting, you could stop SGD by checking performance on validation set.
— This is called regularization by “early stopping”.
* In practice, we typically optimize everything at once (which usually works better than the above).

24 /25

Summary

e Discriminative classifiers model p(y |) instead of p(x,y)
e Most of modern ML uses discriminative classifiers

Tabular parameterization models all possible conditionals
Linear models, especially logistic regression, simplify things

“Fundamental trade-off” between fitting and overfitting

Fully connected neural networks

@ Next time: everything is regularization

25 /25

	Discriminative classifiers

