Discriminative models CPSC 440/550: Advanced Machine Learning

cs.ubc.ca/~dsuth/440/23w2

University of British Columbia, on unceded Musqueam land

2023-24 Winter Term 2 (Jan-Apr 2024)

Admin

- Online logistics:
 - Recording will go in a different place (posted on Piazza)
 - Your voice will be recorded if you speak up, but not your video
 - Would really appreciate if at least a few people have video on
- If you need a form signed, post it (privately) on Piazza
- Tutorials are going; one online right after class (and another Friday)
- Office hours too (two Thursday, one Friday)
- Assignment 1 due Friday 5pm!
- Scheduling for quiz 1 announced later this week

Last time

- Generative classifiers: model p(x, y) and predict with e.g. $\arg \max_{y} p(y \mid x) = \arg \max_{y} p(x, y)$
- Multivariate models: product of Bernoullis, assumes X_j are all independent
- Naïve Bayes: assume the X_j are independent given Y

"Full" Bayes

- $\bullet\,$ Naïve Bayes models p(y) as Bernoulli, $p(x\mid y)$ as product of Bernoullis
 - Makes a strong assumption: all the X_j are independent given Y
- What if we avoided that assumption entirely?
- Could model $p(x \mid y)$ with a full tabular distribution:

$$Pr(X_1 = 0, X_2 = 0, \dots, X_d = 0 \mid Y = 0) = \theta_{00\dots0|0}$$
$$Pr(X_1 = 0, X_2 = 0, \dots, X_d = 1 \mid Y = 0) = \theta_{00\dots1|0}$$
$$\vdots$$

$$\Pr(X_1 = 1, X_2 = 1, \dots, X_d = 1 \mid Y = 0) = \theta_{11\dots1|0}$$

 \ldots and the same for probabilities given Y=1

- 2^d possible binary vectors, so need $2^d 1$ parameters for each condition
- MLE is counting, $\theta_{x|y} = n_{x|y}/n_y$; will discuss this + priors later (categorical dist.)
- Different kind of "naïvety" than naïve Bayes: each bit-vector is totally separate

Outline

Discriminative classifiers

• Generative classifiers model p(x, y), then use that to get $p(y \mid x)$

"When solving a problem of interest, do not solve a more general problem as an intermediate step."

— Vladimir Vapnik

- An alternative philosophy: just directly model $p(y \mid x)$
 - Or even further: just directly learn a classification function
- Modeling p(x) can be hard
 - Discriminative: "which pixels show me this picture is a dog?"
 - Generative: "what do pictures of dogs look like?"

Hierarchy of predictor types

• Different types of models can answer different types of questions:

type	example	p(x,y)	$p(y \mid x)$	$f(x) \approx y$
Generative	naïve Bayes	1	\checkmark	✓
Discriminative (prob.)	logistic regression	×	\checkmark	1
Discriminative (non-prob.)	SVM	×	×	1

- Problem usually gets "easier" as you model less
- But you can't do as much with it
 - Discriminative models can't sample, do outlier detection, ...
 - "Pure classifiers" can't easily combine into broader inference (e.g. decision theory)

Discriminative models, binary data

• Discriminative model with a full tabular parameterization:

 $\Pr(\texttt{spam} \mid \texttt{aardvark} = 0, \dots, \texttt{lotto} = 0, \dots, \texttt{zyzzyva} = 0) = \theta_{0 \cdots 0 \cdots 0}$

 $\Pr(\texttt{spam} \mid \texttt{aardvark} = 1, \dots, \texttt{lotto} = 1, \dots, \texttt{zyzzyva} = 1) = \theta_{1 \cdots 1 \cdots 1}$

- Can represent any conditional distribution on binary data
- Needs 2^d parameters (versus $2(2^d 1)$ for "tabular Bayes")
 - (Why not $2^d 1$?)
- Fitting: $y \mid x$ is a separate Bernoulli for each x; can just MLE/MAP for each one
- But probably don't see very many emails per x (and many have $n_x = 0$)
 - Will probably overfit for almost every \boldsymbol{x}
 - Want to share information across similar xs!

Linear parameterization of conditionals

- Generally: would like to use a "parsimonious" parameterization
 - Full tabular distribution: can model anything, very many parameters
 - Making stronger assumptions: can't model everything, much less complex model
- Standard basic choice: assume a linear model, i.e. one of the form

$$p(y = 1 | x_1, \dots, x_d, w) = f(w_1 x_1 + \dots + w_d x_d) = f(w^{\mathsf{T}} x)$$

where w is our vector of d parameters and f is some function from \mathbb{R} to [0,1]• Standard basic choice for f: sigmoid function, giving logistic regression

$$f(z) = \frac{1}{1 + \exp(-z)}$$

$$(i) = \frac{1}{1 + \exp(-z)}$$

$$(i) = \frac{0.8}{6}$$

Logistic regression inference

• For a given w and x, logistic regression gives us a Bernoulli distribution over y:

$$\Pr(Y = 1 \mid X = x, w) = \frac{1}{1 + \exp(-w^{\mathsf{T}}x)}$$

- \bullet Usually just take the mode to predict most likely y
- But can also:
 - Set a different confidence threshold, e.g. based on "decision theory"
 - Sample conditional $y{\rm s}$ given this x
 - $\bullet\,$ Compute probability of seeing 5 positives out of 10 examples with this x
 - $\bullet\,$ Compute the expected number of samples with this x to see a single positive
 - Ask how likely both an x and an independent x' are to be positive
 - . . .

Maximum conditional likelihood

- MLE for generative models: $\arg\max_w p(\mathbf{X},\mathbf{y}\mid w)$
 - Can't do that for discriminative models!
- ullet When we say MLE for discriminative models, we mean $\arg\max_w p(\mathbf{y}\mid\mathbf{X},w)$
 - $\bullet~\mbox{Treat}~{\bf X}$ as fixed, maximize conditional likelihood
- \bullet Logistic regression also makes sense for continuous x
 - Even though it's only using binary probabilities!
- Different than naïve Bayes:
 - $\bullet\,$ Models $X\mid Y,$ so continuous X needs to use a continuous distribution

Logistic (negative log-)likelihood

• Logistic regression uses

$$p(\mathbf{y} \mid \mathbf{X}, w) = \prod_{i=1}^{n} p\left(y^{(i)} \mid \mathbf{X}, w\right) = \prod_{i=1}^{n} p\left(y^{(i)} \mid x^{(i)}, w\right)$$

so
$$-\log p(\mathbf{y} \mid \mathbf{X}, w) = \sum_{i=1}^{n} -\log p(y^{(i)} \mid x(i), w)$$

• Each $-\log p(y^{(i)} \mid x(i), w)$ term is $\log (1 + \exp (-\tilde{y}^{(i)} w^{\mathsf{T}} x^{(i)}))$, for $\tilde{y} \in \{-1, 1\}$:

$$\begin{cases} -\log\frac{1}{1+\exp\left(-w^{\mathsf{T}}x^{(i)}\right)} & \text{if } y^{(i)} = 1\\ -\log\left(1-\frac{1}{1+\exp\left(-w^{\mathsf{T}}x^{(i)}\right)}\right) & \text{if } y^{(i)} = 0 \end{cases} = \begin{cases} \log\left(1+\exp\left(-w^{\mathsf{T}}x^{(i)}\right)\right) & \text{if } y^{(i)} = 1\\ \log\left(1+\exp\left(w^{\mathsf{T}}x^{(i)}\right)\right) & \text{if } y^{(i)} = 0 \end{cases}$$

 \bullet Usually convenient to use $y \in \{-1,1\}$ instead of $\{0,1\}$ for binary linear classifiers

MLE for logistic regression

- MLE is equivalent to minimizing $f(w) = \sum_{i=1}^{n} \log(1 + \exp(-y^{(i)}w^{\mathsf{T}}x^{(i)}))$
 - Using $y^{(i)} \in \{-1, 1\}$ here
 - Equivalent to "binary cross-entropy"
 - Computational cost: need to compute the $w^{\mathsf{T}}x^{(i)}$, aka $\mathbf{X}w$, in time $\mathcal{O}(nd)$

• $\nabla f(w) = -\mathbf{X}^{\mathsf{T}} \frac{\mathbf{y}}{1 + \exp(\mathbf{y} \odot \mathbf{X} w)}$, with elementwise operations for the y; also $\mathcal{O}(nd)$

- Convex function: no bad local minima
- No closed-form solution in general from setting $\nabla f(w)=0$
- But can solve with gradient descent or other iterative optimization algorithms
 - Best choice depends on n, d, desired accuracy, computational setup, ...

MAP for logistic regression \approx regularization

- MAP with a Gaussian prior, $w_j \sim \mathcal{N}\left(0, \frac{1}{\lambda}\right)$, adds $\frac{1}{2}\lambda \|w\|^2$ to the objective
 - Now "strongly convex": optimization is usually faster
- Typically gives better test error when λ is appropriate
- MAP here is $\arg \max_w p(w \mid \mathbf{X}, \mathbf{y}) = \arg \max_w p(\mathbf{y} \mid \mathbf{X}, w) p(w)$
 - As opposed to generative MAP, $\arg \max_w p(w \mid \mathbf{X}, \mathbf{y}) = \arg \max_w p(\mathbf{X}, \mathbf{y} \mid w) p(w)$

Binary naïve Bayes is a linear model

Ρ

$$\begin{aligned} \operatorname{r}(Y=1 \mid X=x) &= \frac{p(x \mid y=1)p(y=1)}{p(x \mid y=1)p(y=1) + p(x \mid y=0)p(y=0)} \\ &= \frac{1}{1 + \frac{p(x \mid y=0)p(y=0)}{p(x \mid y=1)p(y=1)}} = \frac{1}{1 + \exp\left(-\log\frac{p(x \mid y=1)p(y=1)}{p(x \mid y=0)p(y=0)}\right)} \\ &= \sigma\left(\sum_{j=1}^{d}\log\frac{p(x_{j} \mid y=1)}{p(x_{j} \mid y=0)} + \log\frac{p(y=1)}{p(y=0)}\right) \\ &= \sigma\left(\sum_{j=1}^{d}\log\frac{\theta_{j|1}^{x_{j}}(1-\theta_{j|1})^{1-x_{j}}}{\theta_{j|0}^{x_{j}}(1-\theta_{j|0})^{1-x_{j}}} + \log\frac{p(y=1)}{p(y=0)}\right) \\ &= \sigma\left(\sum_{j=1}^{d}\left[x_{j}\log\frac{\theta_{j|1}}{\theta_{j|0}} + (1-x_{j})\log\frac{1-\theta_{j|1}}{1-\theta_{j|0}}\right] + \log\frac{p(y=1)}{p(y=0)}\right) \\ &= \sigma\left(\sum_{j=1}^{d}x_{j}\underbrace{\log\frac{\theta_{j|1}}{\theta_{j|0}}\frac{1-\theta_{j|0}}{1-\theta_{j|1}}}_{w_{j}} + \underbrace{\sum_{j=1}^{d}\log\frac{1-\theta_{j|1}}{1-\theta_{j|0}}}_{p(y=0)} + \log\frac{p(y=1)}{p(y=0)}\right) = \sigma(w^{\mathsf{T}}x+b) \end{aligned}$$

Not generally the parameters that logistic regression would pick (so, lower likelihoods in logreg model)

15 / 25

bonusl

Adding intercepts to linear models

- Often we only talk about homogeneous linear models, $f(w^{\mathsf{T}}x)$
- More generally inhomogeneous models, $f(w^{T}x + b)$, are very useful in practice
- Two usual ways to do this:
 - Treat b as another parameter to fit and put it in all the equations
 - Add a "dummy feature" $X_0 = 1$; then corresponding weight w_0 acts like b
- Both of these ways make sense in probabilistic framing, too!
- ullet Just be careful about if you want to use the same prior on b/w_0 or not
 - Often makes sense to "not care about y location," i.e. use improper prior $p(w_0) \propto 1$
- Another generally-reasonable scheme:
 - First centre the ys so $\frac{1}{n}\sum_{i=1}^n y^{(i)}=0$, then put some prior on w_0 not being too big

Recap: tabular versus logistic regression

- Tabular parameterization:
 - 2^d parameters
 - Can model any binary conditional parameter
 - \bullet Tends to overfit unless $2^d \ll n$
- Logistic regression:
 - d parameters (or d + 1 with offset);
 - Can only model linear conditionals
 - Tends to underfit unless d is big or truth is linear
- Simple versus complex model: subject of learning theory

"Fundamental trade-off"

• Tabular and logistic models on different sides of the "fundamental trade-off":

 $\begin{array}{l} \text{generalization error} = \text{train error} + \underbrace{\text{generalization error}}_{\text{generalization gap (overfitting)}} \geq \text{irreducible error} \\ \end{array}$

- If irreducible error > 0, small train error implies some overfitting / vice versa
- Simple models, like logistic regression with few features:
 - Tend to have small generalization gaps: don't overfit much
 - Tend to have larger training error (can't fit data very well)
- Complex models, like tabular conditionals with many features:
 - Tend to have small training error (fit data very well)
 - Tend to overfit more

Nonlinear feature transformations

- Can go between linear and tabular with non-linear feature transforms:
 - $\bullet\,$ Transform each $x^{(i)}$ into some new $z^{(i)}$
 - Train a logistic regression model on $\boldsymbol{z}^{(i)}$
 - At test time, do the same transformation for the test features
- Examples: polynomial features, radial basis functions, periodic basis functions, ...
- Can also frame kernel methods in this way
- More complex features tend to decrease training error, increase overfitting
 - Performance is better if the features match the "true" conditionals better!
- Gaussian RBF features/Gaussian kernels, with appropriate regularization (λ and lengthscale σ chosen on a validation set), is often an excellent baseline

Learning nonlinear feature transformations with deep networks

- Not always clear which feature transformations are "right"
- Generally, deep learning tries to learn good features
 - Use "parameterized" features, optimize those parameters too
 - Use a flexible-enough class of features
- Assuming you've seen fully-connected networks: one-layer version is

$$\hat{y}(x) = v^{\mathsf{T}} h(Wx)$$

where W is an $m \times d$ matrix (the "first layer" of feature transformation) h is an element-wise activation function, e.g. $\operatorname{ReLU}(z) = \max\{0, z\}$ or sigmoid, v is a linear function of "activations"

- Without h (e.g. h(z) = z), becomes a linear model: $v^{\mathsf{T}}(Wx) = \underbrace{v^{\mathsf{T}}W}_{} x$
- $\bullet~$ Need to fit parameters $W~{\rm and}~v$

Fitting neural networks

- $\hat{y}(x) = v^{\mathsf{T}}h(Wx)$: with fixed W, this is a linear model in the transformed features
- For binary classification, often use logistic likelihood

 $p(y \mid x, W, v) = \sigma \left(y \ \hat{y}(x) \right)$

- Can then compute logistic negative log-likelihood
- Minimize it with some variant of gradient descent
- Deep networks do the same thing; a fully-connected L-layer network looks like

$$\hat{y}(x) = v^{\mathsf{T}} h_{L-1}(W_{L-1}h_{L-2}(W_{L-2}\cdots h_1(W_1x)\cdots))$$

or more often, add bias terms

$$\hat{y}(x) = \beta + v^{\mathsf{T}} h_{L-1} (b_{L-1} + W_{L-1} h_{L-2} (b_{L-2} + W_{L-2} \cdots h_1 (b_1 + W_1 x) \cdots))$$

where each \boldsymbol{b} is a vector with the same dimension as the activations at that layer

- If W_j is $d_j \times d_{j-1}$, *j*th layer activations are length d_j , b_j is also length d_j
- Can still apply same logistic likelihood, optimize in same way

Universal approximation

- For most activation functions, wide networks are universal approximators
 - Even if they only have one hidden layer
- Any continuous function on bounded domain can be approximated arbitrarily well
- But this is in a non-parametric regime:
 - The width of the hidden layer needs to grow with n
 - Any fixed-size network is not a universal approximator
- Other universal approximators:
 - k-nearest neighbours (if k grows with n)
 - $\bullet\,$ Logistic regression with polynomial features if degree grows with n
 - Linear models with Gaussian RBF features (with one basis per $x^{(i)}$)
 - Linear models with a Gaussian kernel
 - Fixed-width but growing-depth networks

Is training neural nets scary?

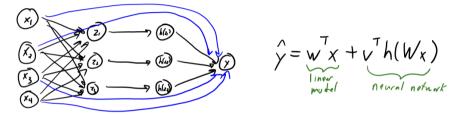
- The objective function is highly non-convex, even for one hidden layer
- Finding the global optimum is generally NP-hard
- Nearly always trained with variants of stochastic gradient descent (SGD)

$$W^{(k+1)} = W^{(k)} - \alpha_k \nabla_W \left[-\log p^{(y^{(i)} \mid x^{(i)}, W^{(k)}, v^{(k)}} \right] v^{(k+1)} = v^{(k)} - \alpha_k \nabla_v \left[-\log p^{(y^{(i)} \mid x^{(k)}, v^{(k)})} \right] v^{(k+1)} = v^{(k)} - \alpha_k \nabla_v \left[-\log p^{(y^{(k)} \mid x^{(k)}, v^{(k)})} \right] v^{(k+1)} = v^{(k)} - \alpha_k \nabla_v \left[-\log p^{(y^{(k)} \mid x^{(k)}, v^{(k)})} \right] v^{(k+1)} = v^{(k)} - \alpha_k \nabla_v \left[-\log p^{(y^{(k)} \mid x^{(k)}, v^{(k)})} \right] v^{(k+1)} = v^{(k)} - \alpha_k \nabla_v \left[-\log p^{(y^{(k)} \mid x^{(k)}, v^{(k)})} \right] v^{(k+1)} = v^{(k)} - \alpha_k \nabla_v \left[-\log p^{(y^{(k)} \mid x^{(k)}, v^{(k)})} \right] v^{(k+1)} = v^{(k)} - \alpha_k \nabla_v \left[-\log p^{(y^{(k)} \mid x^{(k)}, v^{(k)})} \right] v^{(k+1)} = v^{(k)} - \alpha_k \nabla_v \left[-\log p^{(y^{(k)} \mid x^{(k)}, v^{(k)})} \right] v^{(k+1)} = v^{(k)} - \alpha_k \nabla_v \left[-\log p^{(y^{(k)} \mid x^{(k)}, v^{(k)})} \right] v^{(k+1)} = v^{(k)} - \alpha_k \nabla_v \left[-\log p^{(y^{(k)} \mid x^{(k)}, v^{(k)})} \right] v^{(k+1)} = v^{(k)} - \alpha_k \nabla_v \left[-\log p^{(y^{(k)} \mid x^{(k)}, v^{(k)})} \right] v^{(k)} = v^{(k)} - \alpha_k \nabla_v \left[-\log p^{(y^{(k)} \mid x^{(k)}, v^{(k)})} \right] v^{(k)} = v^{(k)} - \alpha_k \nabla_v \left[-\log p^{(y^{(k)} \mid x^{(k)}, v^{(k)})} \right] v^{(k)} = v^{(k)} - \alpha_k \nabla_v \left[-\log p^{(y^{(k)} \mid x^{(k)}, v^{(k)})} \right] v^{(k)} = v^{(k)} - \alpha_k \nabla_v \left[-\log p^{(y^{(k)} \mid x^{(k)}, v^{(k)})} \right] v^{(k)} = v^{(k)} - \alpha_k \nabla_v \left[-\log p^{(y^{(k)} \mid x^{(k)}, v^{(k)})} \right] v^{(k)} = v^{(k)} - \alpha_k \nabla_v \left[-\log p^{(y^{(k)} \mid x^{(k)}, v^{(k)})} \right] v^{(k)} = v^{(k)} - \alpha_k \nabla_v \left[-\log p^{(y^{(k)} \mid x^{(k)}, v^{(k)})} \right] v^{(k)} = v^{(k)} - \alpha_k \nabla_v \left[-\log p^{(y^{(k)} \mid x^{(k)}, v^{(k)})} \right] v^{(k)} = v^{(k)} - \alpha_k \nabla_v \left[-\log p^{(y^{(k)} \mid x^{(k)}, v^{(k)})} \right] v^{(k)} = v^{(k)} - \alpha_k \nabla_v \left[-\log p^{(y^{(k)} \mid x^{(k)}, v^{(k)})} \right] v^{(k)} = v^{(k)} - \alpha_k \nabla_v \left[-\log p^{(y^{(k)} \mid x^{(k)}, v^{(k)})} \right] v^{(k)} = v^{(k)} - \alpha_k \nabla_v \left[-\log p^{(y^{(k)} \mid x^{(k)}, v^{(k)})} \right] v^{(k)} = v^{(k)} - \alpha_k \nabla_v \left[-\log p^{(y^{(k)} \mid x^{(k)}, v^{(k)})} \right] v^{(k)} = v^{(k)} - \alpha_k \nabla_v \left[-\log p^{(y^{(k)} \mid x^{(k)}, v^{(k)})} \right] v^{(k)} = v^{(k)} - \alpha_k \nabla_v \left[-\log p^{(y^{(k)} \mid x^{(k)}, v^{(k)})} \right] v^{(k)} = v^{(k)} - \alpha_k \nabla_v \left[-\log p^{(y^{(k)} \mid x^{(k)}, v^{(k)})} \right] v^{(k)} = v^{(k)} - \alpha_k \nabla_v \left[-\log p^{(k)} \right] v^{(k)}$$

- Lots of variants: minibatches, different versions of momentum, Adam, ...
- SGD not guaranteed to reach a global optimum for non-convex problems

Can ensure neural networks \geq logistic regression

- Consider a neural network with one hidden layer and connections from input to output layer.
 - The extra connections are called "skip" connections.



- You could first set v=0, then optimize w using logistic regression.
 - This is a convex optimization problem that gives you the logistic regression model.
- You could then set W and v to small random values, and start SGD from the logistic regression model.
 - Even though this is non-convex, the neural network can only improve on logistic regression (improves "residual" error).
- And if you are worried about overfitting, you could stop SGD by checking performance on validation set.
 - This is called regularization by "early stopping".
- In practice, we typically optimize everything at once (which usually works better than the above).

Summary

- Discriminative classifiers model $p(y \mid x)$ instead of p(x, y)
 - Most of modern ML uses discriminative classifiers
- Tabular parameterization models all possible conditionals
- Linear models, especially logistic regression, simplify things
- "Fundamental trade-off" between fitting and overfitting
- Fully connected neural networks

• Next time: everything is regularization