
Discriminative models
CPSC 440/550: Advanced Machine Learning

cs.ubc.ca/~dsuth/440/23w2

University of British Columbia, on unceded Musqueam land

2023-24 Winter Term 2 (Jan–Apr 2024)

1 / 25

https://cs.ubc.ca/~dsuth/440/23w2

Admin

Online logistics:

Recording will go in a different place (posted on Piazza)
Your voice will be recorded if you speak up, but not your video
Would really appreciate if at least a few people have video on

If you need a form signed, post it (privately) on Piazza

Tutorials are going; one online right after class (and another Friday)

Office hours too (two Thursday, one Friday)

Assignment 1 due Friday 5pm!

Scheduling for quiz 1 announced later this week

2 / 25

Last time

Generative classifiers: model p(x, y) and predict with e.g.
argmaxy p(y | x) = argmaxy p(x, y)

Multivariate models: product of Bernoullis, assumes Xj are all independent

Näıve Bayes: assume the Xj are independent given Y

3 / 25

“Full” Bayes
Näıve Bayes models p(y) as Bernoulli, p(x | y) as product of Bernoullis

Makes a strong assumption: all the Xj are independent given Y

What if we avoided that assumption entirely?

Could model p(x | y) with a full tabular distribution:

Pr(X1 = 0, X2 = 0, . . . , Xd = 0 | Y = 0) = θ00···0|0

Pr(X1 = 0, X2 = 0, . . . , Xd = 1 | Y = 0) = θ00···1|0
...

Pr(X1 = 1, X2 = 1, . . . , Xd = 1 | Y = 0) = θ11···1|0

. . . and the same for probabilities given Y = 1

2d possible binary vectors, so need 2d − 1 parameters for each condition

MLE is counting, θx|y = nx|y/ny; will discuss this + priors later (categorical dist.)

Different kind of “näıvety” than näıve Bayes: each bit-vector is totally separate
4 / 25

Outline

1 Discriminative classifiers

5 / 25

Discriminative classifiers

Generative classifiers model p(x, y), then use that to get p(y | x)

“When solving a problem of interest, do not solve a
more general problem as an intermediate step.”

— Vladimir Vapnik

An alternative philosophy: just directly model p(y | x)
Or even further: just directly learn a classification function

Modeling p(x) can be hard

Discriminative: “which pixels show me this picture is a dog?”
Generative: “what do pictures of dogs look like?”

6 / 25

Hierarchy of predictor types

Different types of models can answer different types of questions:

type example p(x, y) p(y | x) f(x) ≈ y

Generative näıve Bayes ✓ ✓ ✓

Discriminative (prob.) logistic regression ✗ ✓ ✓

Discriminative (non-prob.) SVM ✗ ✗ ✓

Problem usually gets “easier” as you model less

But you can’t do as much with it

Discriminative models can’t sample, do outlier detection, . . .
“Pure classifiers” can’t easily combine into broader inference (e.g. decision theory)

7 / 25

Discriminative models, binary data
Discriminative model with a full tabular parameterization:

Pr(spam | aardvark = 0, . . . , lotto = 0, . . . , zyzzyva = 0) = θ0···0···0
...

Pr(spam | aardvark = 1, . . . , lotto = 1, . . . , zyzzyva = 1) = θ1···1···1

Can represent any conditional distribution on binary data

Needs 2d parameters (versus 2(2d − 1) for “tabular Bayes”)
(Why not 2d − 1?)

Fitting: y | x is a separate Bernoulli for each x; can just MLE/MAP for each one

But probably don’t see very many emails per x (and many have nx = 0)
Will probably overfit for almost every x
Want to share information across similar xs!

8 / 25

Linear parameterization of conditionals
Generally: would like to use a “parsimonious” parameterization

Full tabular distribution: can model anything, very many parameters
Making stronger assumptions: can’t model everything, much less complex model

Standard basic choice: assume a linear model, i.e. one of the form

p(y = 1 | x1, . . . , xd, w) = f(w1x1 + · · ·+ wdxd) = f(wTx)

where w is our vector of d parameters and f is some function from R to [0, 1]

Standard basic choice for f : sigmoid function, giving logistic regression

f(z) =
1

1 + exp(−z)
−6 −4 −2 0 2 4 6

0.2
0.4
0.6
0.8

z

σ
(z
)

9 / 25

Logistic regression inference

For a given w and x, logistic regression gives us a Bernoulli distribution over y:

Pr(Y = 1 | X = x,w) =
1

1 + exp(−wTx)

Usually just take the mode to predict most likely y

But can also:

Set a different confidence threshold, e.g. based on “decision theory”
Sample conditional ys given this x
Compute probability of seeing 5 positives out of 10 examples with this x
Compute the expected number of samples with this x to see a single positive
Ask how likely both an x and an independent x′ are to be positive
. . .

10 / 25

Maximum conditional likelihood

MLE for generative models: argmaxw p(X,y | w)
Can’t do that for discriminative models!

When we say MLE for discriminative models, we mean argmaxw p(y | X, w)

Treat X as fixed, maximize conditional likelihood

Logistic regression also makes sense for continuous x

Even though it’s only using binary probabilities!

Different than näıve Bayes:

Models X | Y , so continuous X needs to use a continuous distribution

11 / 25

Logistic (negative log-)likelihood

Logistic regression uses

p(y | X, w) =

n∏
i=1

p
(
y(i) | X, w

)
=

n∏
i=1

p
(
y(i) | x(i), w

)
so − log p(y | X, w) =

∑n
i=1− log p(y(i) | x(i), w)

Each − log p(y(i) | x(i), w) term is log
(
1 + exp

(
−ỹ(i)wTx(i)

))
, for ỹ ∈ {−1, 1}:

− log 1

1+exp(−wTx(i))
if y(i) = 1

− log

(
1− 1

1+exp(−wTx(i))

)
if y(i) = 0

=

{
log

(
1 + exp

(
−wTx(i)

))
if y(i) = 1

log
(
1 + exp

(
wTx(i)

))
if y(i) = 0

Usually convenient to use y ∈ {−1, 1} instead of {0, 1} for binary linear classifiers

12 / 25

MLE for logistic regression

MLE is equivalent to minimizing f(w) =
∑n

i=1 log(1 + exp(−y(i)wTx(i)))

Using y(i) ∈ {−1, 1} here
Equivalent to “binary cross-entropy”
Computational cost: need to compute the wTx(i), aka Xw, in time O(nd)
∇f(w) = −XT y

1+exp(y⊙Xw) , with elementwise operations for the y; also O(nd)

Convex function: no bad local minima

No closed-form solution in general from setting ∇f(w) = 0

But can solve with gradient descent or other iterative optimization algorithms

Best choice depends on n, d, desired accuracy, computational setup, . . .

13 / 25

MAP for logistic regression ≈ regularization

MAP with a Gaussian prior, wj ∼ N
(
0, 1

λ

)
, adds 1

2λ∥w∥
2 to the objective

Now “strongly convex”: optimization is usually faster

Typically gives better test error when λ is appropriate

MAP here is argmaxw p(w | X,y) = argmaxw p(y | X, w)p(w)

As opposed to generative MAP, argmaxw p(w | X,y) = argmaxw p(X,y | w)p(w)

14 / 25

Binary näıve Bayes is a linear model

Pr(Y = 1 | X = x) =
p(x | y = 1)p(y = 1)

p(x | y = 1)p(y = 1) + p(x | y = 0)p(y = 0)

=
1

1 + p(x|y=0)p(y=0)
p(x|y=1)p(y=1)

=
1

1 + exp
(
− log p(x|y=1)p(y=1)

p(x|y=0)p(y=0)

)
= σ

(
d∑

j=1

log
p(xj | y = 1)

p(xj | y = 0)
+ log

p(y = 1)

p(y = 0)

)

= σ

(
d∑

j=1

log
θ
xj

j|1(1− θj|1)
1−xj

θ
xj

j|0(1− θj|0)
1−xj

+ log
p(y = 1)

p(y = 0)

)

= σ

(
d∑

j=1

[
xj log

θj|1
θj|0

+ (1− xj) log
1− θj|1
1− θj|0

]
+ log

p(y = 1)

p(y = 0)

)

= σ

(
d∑

j=1

xj log
θj|1
θj|0

1− θj|0
1− θj|1︸ ︷︷ ︸

wj

+

d∑
j=1

log
1− θj|1
1− θj|0

+ log
p(y = 1)

p(y = 0)︸ ︷︷ ︸
b

)
= σ(wTx+ b)

Not generally the parameters that logistic regression would pick (so, lower likelihoods in logreg model)
15 / 25

Adding intercepts to linear models

Often we only talk about homogeneous linear models, f(wTx)

More generally inhomogeneous models, f(wTx+ b), are very useful in practice

Two usual ways to do this:

Treat b as another parameter to fit and put it in all the equations
Add a “dummy feature” X0 = 1; then corresponding weight w0 acts like b

Both of these ways make sense in probabilistic framing, too!

Just be careful about if you want to use the same prior on b/w0 or not

Often makes sense to “not care about y location,” i.e. use improper prior p(w0) ∝ 1

Another generally-reasonable scheme:

First centre the ys so 1
n

∑n
i=1 y

(i) = 0, then put some prior on w0 not being too big

16 / 25

Recap: tabular versus logistic regression

Tabular parameterization:

2d parameters
Can model any binary conditional parameter
Tends to overfit unless 2d ≪ n

Logistic regression:

d parameters (or d+ 1 with offset);
Can only model linear conditionals
Tends to underfit unless d is big or truth is linear

Simple versus complex model: subject of learning theory

17 / 25

“Fundamental trade-off”

Tabular and logistic models on different sides of the “fundamental trade-off”:

generalization error = train error+generalization error - train error︸ ︷︷ ︸
generalization gap (overfitting)

≥ irreducible error

If irreducible error > 0, small train error implies some overfitting / vice versa

Simple models, like logistic regression with few features:

Tend to have small generalization gaps: don’t overfit much
Tend to have larger training error (can’t fit data very well)

Complex models, like tabular conditionals with many features:

Tend to have small training error (fit data very well)
Tend to overfit more

18 / 25

Nonlinear feature transformations

Can go between linear and tabular with non-linear feature transforms:

Transform each x(i) into some new z(i)

Train a logistic regression model on z(i)

At test time, do the same transformation for the test features

Examples: polynomial features, radial basis functions, periodic basis functions, . . .

Can also frame kernel methods in this way

More complex features tend to decrease training error, increase overfitting

Performance is better if the features match the “true” conditionals better!

Gaussian RBF features/Gaussian kernels, with appropriate regularization (λ and
lengthscale σ chosen on a validation set), is often an excellent baseline

19 / 25

Learning nonlinear feature transformations with deep networks

Not always clear which feature transformations are “right”

Generally, deep learning tries to learn good features

Use “parameterized” features, optimize those parameters too
Use a flexible-enough class of features

Assuming you’ve seen fully-connected networks: one-layer version is

ŷ(x) = vTh(Wx)

where W is an m× d matrix (the “first layer” of feature transformation)
h is an element-wise activation function, e.g. ReLU(z) = max{0, z} or sigmoid,
v is a linear function of “activations”

Without h (e.g. h(z) = z), becomes a linear model: vT(Wx) = vTW︸ ︷︷ ︸
1×m

x

Need to fit parameters W and v

20 / 25

Fitting neural networks

ŷ(x) = vTh(Wx): with fixed W , this is a linear model in the transformed features
For binary classification, often use logistic likelihood

p(y | x,W, v) = σ (y ŷ(x))

Can then compute logistic negative log-likelihood
Minimize it with some variant of gradient descent

Deep networks do the same thing; a fully-connected L-layer network looks like

ŷ(x) = vThL−1(WL−1hL−2(WL−2 · · ·h1(W1x) · · ·))
or more often, add bias terms

ŷ(x) = β + vThL−1(bL−1 +WL−1hL−2(bL−2 +WL−2 · · ·h1(b1 +W1x) · · ·))
where each b is a vector with the same dimension as the activations at that layer

If Wj is dj × dj−1, jth layer activations are length dj , bj is also length dj
Can still apply same logistic likelihood, optimize in same way

21 / 25

Universal approximation

For most activation functions, wide networks are universal approximators

Even if they only have one hidden layer

Any continuous function on bounded domain can be approximated arbitrarily well

But this is in a non-parametric regime:

The width of the hidden layer needs to grow with n
Any fixed-size network is not a universal approximator

Other universal approximators:

k-nearest neighbours (if k grows with n)
Logistic regression with polynomial features – if degree grows with n
Linear models with Gaussian RBF features (with one basis per x(i))
Linear models with a Gaussian kernel
Fixed-width but growing-depth networks

22 / 25

Is training neural nets scary?

The objective function is highly non-convex, even for one hidden layer

Finding the global optimum is generally NP-hard

Nearly always trained with variants of stochastic gradient descent (SGD)

W (k+1) = W (k)−αk∇W

[
− log p(y(i) | x(i),W (k), v(k)

]
v(k+1) = v(k)−αk∇v

[
− log p(y(i) | x(i),W (k), v(k)

]
Lots of variants: minibatches, different versions of momentum, Adam, . . .
SGD not guaranteed to reach a global optimum for non-convex problems

23 / 25

Can ensure neural networks ≥ logistic regression

24 / 25

Summary

Discriminative classifiers model p(y | x) instead of p(x, y)

Most of modern ML uses discriminative classifiers

Tabular parameterization models all possible conditionals

Linear models, especially logistic regression, simplify things

“Fundamental trade-off” between fitting and overfitting

Fully connected neural networks

Next time: everything is regularization

25 / 25

	Discriminative classifiers

