Multivariate models; Generative classifiers CPSC 440/550: Advanced Machine Learning

cs.ubc.ca/~dsuth/440/23w2

University of British Columbia, on unceded Musqueam land

2023-24 Winter Term 2 (Jan-Apr 2024)

Admin

- Tutorials start this week
- Totally optional; you can go to any section
 - In the unlikely event that it's full, prioritize seats for those registered for that section
- Basically everyone should be off the waitlist now; will get stragglers in too
 - This is just all a very manual process
- Will now sign audit forms, etc
- Quizzes: tentative dates up on course site
- Tuesday-Thursday, every other week, starting next week
 - Scheduling instructions soon
- Don't leave assignment 1 to the last minute! Due Friday night

Last time: MLE and MAP for Bernoulli model

- Bernoulli distribution: simple parameterized probability model for binary data
- If $X \sim \operatorname{Bern}(\theta)$, then for $x \in \{0, 1\}$ we have

$$\Pr(X = x \mid \theta) = \begin{cases} \theta & \text{if } x = 1\\ 1 - \theta & \text{if } x = 0 \end{cases} = \theta^{\mathbb{1}(x=1)} (1 - \theta)^{\mathbb{1}(x=0)} = \theta^x (1 - \theta)^{1-x}$$

- Also write this as $p(x \mid \theta)$ or even p(x), if context is clear
- Maximum likelihood estimate (MLE): $\arg \max_{\theta} p(\mathbf{X} \mid \theta)$, just $\hat{\theta} = n_1/n$
- Maximum a posteriori (MAP) estimate: adds a prior $p(\theta)$ to choose $\arg \max_{\theta} p(\theta \mid \mathbf{X}) = \arg \max_{\theta} p(\mathbf{X} \mid \theta) p(\theta)$
 - $\operatorname{Beta}(\alpha,\beta)$ prior acts like $\alpha-1$ "fake" one observations, $\beta-1$ "fake" zeros

Outline

1 Product of Bernoullis

2 Generative classifiers

Motivation: modeling traffic congestion

- We want to model traffic congestion in a big city
- Simple version: measure which intersections are busy on different days: loc 1 loc 2 loc 3 loc 4 loc 5 loc 6 loc 7 loc 8 loc 9

100 1	100 2	100 0	100 1	100 0	100 0	100 1	100 0	100 5	
0	1	0	1	1	1	0	0	1	
0	0	1	1	0	0	0	0	0	
0	1	0	1	1	1	0	0	1	
0	1	0	1	1	1	0	0	0	
1	1	1	1	1	1	1	1	1	
0	0	0	1	1	0	0	0	1	
0	1	0	1	1	1	1	1	0	

• We'd like a model of this data, to identify problems or to route buses efficiently

- "Location 4 is always busy," "location 1 is rarely busy"
- "locations 7 and 8 are always the same," "location 2 is busy when location 7 is busy"
- "There's a 25% chance you hit a busy spot if you take intersections 1 and 8"

Multivariate binary density estimation

- We can view this as multivariate binary density estimation:
 - Input: n iid samples of binary vectors $x^{(1)}, \ldots, x^{(n)}$ in $\{0,1\}^d$
 - Output: a model that can assign a probability to any binary vector $x \in \{0,1\}^d$

loc 1	loc 2	loc 3	loc 4	loc 5	loc 6	loc 7	loc 8	loc 9	
0	1	0	1	1	1	0	0	1	$p((0, \dots, 0)) = 0.0001$
0	0	1	1	0	0	0	0	0	estimator
0	1	0	1	1	1	0	0	1	
0	1	0	1	1	1	0	0	0	$: (2^9 \text{ total values}) : $
1	1	1	1	1	1	1	1	1	-((1 1)) 0.000
0	0	0	1	1	0	0	0	1	$p((1, \dots, 1)) = 0.002$
0	1	0	1	1	1	1	1	0	

- Another example: "are there >10% covid cases in area j?"
- Notation (memorize):
 - We have n examples, each with d number of features
 - $x^{(4)}$ is a vector of length d, with elements $x_1^{(4)}$ to $x_d^{(4)}$
 - X_3 is the third dimension of a random vector X; x_3 is a value X_3 might take

Product of Bernoullis model

- There are many possible models for binary density estimation
 - Each one makes different assumptions; we'll see lots of options
- We'll start with a very simple "product of Bernoullis" model
 - Here we assume that all the dimensions are independent
 - If d = 4, this means $p(x_1, x_2, x_3, x_4) = p(x_1)p(x_2)p(x_3)p(x_4)$
- \bullet We treat our d dimensional problem as d separate univariate problems

Product of Bernoullis: inference and learning

- Advantage of doing this: it makes inference and learning really easy
- For most tasks: just do it on each variable, then combine results
- Joint probability: $Pr(X_1=1,X_2=0,...,X_d=1)=Pr(X_1=1)Pr(X_2=0)\cdots Pr(X_d=1)=\theta_1(1-\theta_2)\cdots\theta_d$
- Marginal probability: $Pr(X_2=1)=\theta_2$, $Pr(X_2=1,X_3=1)=Pr(X_2=1)Pr(X_3=1)=\theta_2\theta_3$
- Conditional probabilities: $p(x_2 \mid x_3) = p(x_2)$
- Mode: set x_1 from $\arg \max_{x_1} p(x_1), \ldots, x_d$ from $\arg \max_{x_d} p(x_d)$
- Sampling: sample x_1 from $p(x_1), \ldots, x_d$ from $p(x_d)$

• MLE:
$$\hat{\theta}_1 = \frac{n_{11}}{n} = \frac{\text{number of times } X_1 \text{ is } 1}{n}, \dots, \hat{\theta}_d = \frac{n_{d1}}{n}$$
; MAP is similar
• np.mean(X, axis=0); takes $\mathcal{O}(nd)$ time

• Or $\mathcal{O}(nnz(X))$ if X is a sparse matrix with $nnz(X) \leq nd$ nonzero entries

Running example: MNIST digits

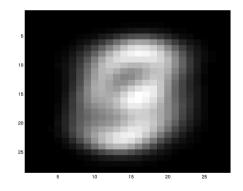
- We'll often use a basic dataset, MNIST digits, as an example
 - n = 60,000 images; each is a 28×28 grayscale image of a handwritten number
 - $\bullet\,$ For binary density estimation: d=784 for each pixel, rounded to $\{0,1\}$



- In CPSC 340, we wanted a function that takes in an image and says "this is a 7"
- In density estimation, we want a probability distribution over images
 - $\bullet\,$ What's the probability that some 28×28 grayscale image is a handwritten digit?
 - $\bullet\,$ Unsupervised density estimation (ignoring the class label) for now
 - Sampling from the density should produce a novel image of a digit

Product of Bernoullis on MNIST

- If we fit a product of Bernoullis to MNIST:
 - Have 784 parameters: each pixel location is $Bern(\theta_j)$
 - The MLE $\hat{\theta}_j$ is just the portion of the time pixel j "has ink"
- Viewing the $\hat{\theta}_j$ shaped into an image:



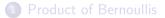
• More likely to have writing near the centre of the image

Product of Bernoullis on MNIST

- Is this a good fit to MNIST?
- One way to check: look at samples from the model

- This is a terrible model the sample don't look like the data at all
- In the data, the pixels are far from independent
 - For example, adjacent pixels are highly correlated with each other
- Even though the assumption is usually wrong, a product of Bernoullis is often "good enough to be useful"
 - Especially when we combine it with some other ideas, coming soon
- We'll see several ways to relax the independence assumption later in the course

Outline



Motivation: spam filtering

• Spam used to be a huge problem, until ML-based spam detectors

		Ū					
		e ms dangerous uus link that was used to steal people's . Avoid clicking links or replying with personal					
(図 楽天カード株式… to djs ▼	. Fri, Dec 22, 2023, 10:20 AM 🛧 🙂 🥎 🗄					
Iris		JUHE International transportation From China - [
Servicio	os Clientes .	Urgente: Suspension de Servicios por Falta de Pa					
Buzon T	Tributario	[IMPORTANTE] Servicio de Administracion Tribu					
Notifica	aciones Fisc.	Documentacion Tributaria: Factura TF-39868606					
Departa	amento Tribut.	Urgente: TF-11668545 en Buzon Tributario - Estim					
TF-4582	2001 lista en.	Equipo de Facturacion: TF-61706047 - Estimado/a					
楽天カー	- ド株式会社	【楽天カード】お支払い金額のご案内(お支払い金額					

- Can frame as supervised learning
 - Learn a function from e-mails to "is this spam"

Data collection and feature extraction

- Collect a lot of emails
- Get users to label them as spam $(y^{(i)}=1)$ or not $(y^{(i)}=0)$
- Extract features of each email, e.g. bag of words: $x_i^{(i)} = 1 \pmod{j}$ in email i)

winner	CPSC	440	vicodin	 spam?
1	0	0	0	 1
0	1	1	0	 0
0	0	0	1	 1
1	1	1	0	 0

- $y^{(i)}$ is label of ith example; collected in vector ${\bf y}$ (length n)
- $x_{j}^{(i)}$ is *j*th feature of *i*th example
- $x^{(i)}$ is the vector (length d) of features for ith example
- $\bullet~{\bf X}$ collects all the inputs, shape $n\times d$ in practice, use a sparse format!
- X_j is random variable for the *j*th feature of random sample; X is random vector

Generative classifiers

- Early '00s: best spam filtering methods used generative classifiers
- Treat supervised learning as density estimation
- Learning: fit a model for $p(x_1, \ldots, x_d, y)$
 - "Data-generating process" for the features and labels together
- Inference: compute conditionals $p(y \mid x_1, \ldots, x_d)$

• Is
$$p(y = 1 \mid x_1, \dots, x_d) > p(y = 0 \mid x_1, \dots, x_d)$$
?

- Should we plug in our new fancy product of Bernoullis as our density estimator?
- Probably not it assumes Y is independent of $X_1, \ldots, X_d!$
- So predictions wouldn't depend on the features at all!

Naïve Bayes

- Product of Bernoullis assumes X_1, \ldots, X_d, Y are all mutually independent
- Naïve Bayes assumes x_j are mutually independent given y
- X_1, \ldots, X_d are (mutually) independent if

 $p(x_1,\ldots,x_d)=p(x_1)\cdots p(x_d)$ for all possible values x_1,\ldots,x_d

• X_1, \ldots, X_d are (mutually) conditionally independent given y if

 $p(x_1, \ldots, x_d \mid y) = p(x_1 \mid y) \cdots p(x_d \mid y)$ for all possible values x_1, \ldots, x_d, y

- Features independent per class: use a different product of Bernoullis for each class
- To fit, need conditional univariate density estimates

$$p(x_1, \dots, x_d, y) = p(x_1, \dots, x_d \mid y)p(y) = p(x_1 \mid y) \cdots p(x_d \mid y)p(y)$$

Naïve Bayes inference

- Given model, can compute $p(x_1, \ldots, x_d, y) = p(x_1 \mid y) \cdots p(x_d \mid y) p(y)$
- \bullet To classify: have $p(y \mid x) \propto p(x,y)$ probabilistic predictions
 - \bullet We maximize probability of correct answer if we take $\arg\max_y p(y \mid x)$
- But probabilities make it easy to do more variations!
- $\bullet\,$ Probably cost of missing a spam email < cost of flagging a non-spam email

Prediction \Truth	y = 0: Good email	y = 1: Spam
$\hat{y} = 0$: Good email	0	1
$\hat{y}=1$: Spam	50	0

 \bullet Can minimize expected cost: letting $\rho(x) = p(y=1 \mid x)$ be the prediction,

$$\begin{split} \mathbb{E}[C(\hat{y}, y)] &= \rho(x) \, C(\hat{y}, 1) + (1 - \rho(x)) \, C(\hat{y}, 0) \\ &= \begin{cases} (1 - \rho(x)) \cdot 0 + \rho(x) \cdot 1 & \text{if } \hat{y} = 0 \\ (1 - \rho(x)) \cdot 50 + \rho(x) \cdot 0 & \text{if } \hat{y} = 1 \end{cases} = \begin{cases} \rho(x) & \text{if } \hat{y} = 0 \\ 50(1 - \rho(x)) & \text{if } \hat{y} = 1 \end{cases} \end{split}$$

so we predict $\hat{y}=1$ only if $50(1-\rho(x))\leq\rho(x),$ i.e. $\rho(x)\geq\frac{50}{51}\approx98\%$

- Can also do other inference tasks:
- What's $p(x_1, \ldots, x_d)$?
- What are the "most spammy" features? $\arg \max_{x_1,\dots,x_d} p(x_1,\dots,x_d \mid y=1)$
- How can I minimally change my spam email to make it look not like spam?
- Generate data with ancestral sampling (more details later in course):
 - Sample \tilde{y} from p(y), then \tilde{x} from $p(x \mid \tilde{y})$

Training naïve Bayes: conditional binary density estimation

• Recall that under naïve Bayes assumption,

$$p(x_1, \dots, x_d, y) = p(x_1, \dots, x_d \mid y)p(y) = p(x_1 \mid y) \cdots p(x_d \mid y)p(y)$$

- For binary X_j and Y: p(y) is just binary density estimation
- Can parameterize $p(x_j \mid y) = \Pr(X_j = x_j \mid Y = y)$ as conditionally Bernoulli:

$$\Pr(X_j = 1 \mid Y = 1) = \theta_{j|1} \Pr(X_j = 1 \mid Y = 0) = \theta_{j|0}$$

- $\bullet\,$ Two parameters per feature: $\theta_{j|y}$ is probability of X_j being 1 given Y=y
- $X_j \mid Y = 0$ is $\operatorname{Bern}(\theta_{j|0})$, and $X_j \mid Y = 1$ is $\operatorname{Bern}(\theta_{j|1})$
- MLE is given by "counting conditionally":

$$\hat{\theta}_{j|1} = \frac{\sum_{i=1}^{n} \mathbb{1}(x_j^{(i)} = 1) \mathbb{1}(y^{(i)} = 1)}{n_1} = \frac{n_{x_j=1,y=1}}{n_{y=1}} \qquad \hat{\theta}_{j|0} = \frac{n_{x_j=1,y=0}}{n_{y=0}}$$

• Should be intuitive, but worth writing out for yourself to check the steps make sense!

Generative classifiers

- \bullet Training phase: density estimation: fit a model for $p(\boldsymbol{x},\boldsymbol{y})$
- Usually: first fit a model for p(y)
 - For binary y, just use a Bernoulli and do MLE/MAP

 $\mathcal{O}(n)$ time

- Next, for each class c, fit $p(x \mid y = c)$ using examples from class c
 - For naı̈ve Bayes, fit $p(x_1 \mid y = c)$, ..., $p(x_d \mid y = c)$ separately
 - For binary data, fits a product of Bernoullis for class c

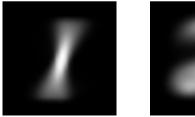
 $\mathcal{O}(n_{y=c}\,d)$ time

- Total: $\mathcal{O}(n + n_{y=1}d + \dots + n_{y=k}d) = \mathcal{O}(n + nd) = \mathcal{O}(nd)$ time
 - $\bullet\,$ Can reduce to $\mathcal{O}(number \; of \; nonzero \; entries)$ with sparse format
- \bullet Testing phase: use $p(y \mid x) \propto p(x,y)$ to get probability of each class for x
- Usually: predict $\arg \max_{y} p(y \mid x) = \arg \max_{y} p(x, y)$
 - "What's the most likely y, after seeing x?" (Like MAP!)

Naïve Bayes on MNIST

• Let's make a binary supervised learning problem: distinguish 1 from 2

- There are 6,742 1s, and 5,958 2s
 - With MLE, get $p(y=1) = 6\,742/(6\,742 + 5\,958) \approx 0.53$
- MLE parameters for Naïve Bayes, $p(x_j | y)$ for each class (arranged as an image):



Naïve Bayes on MNIST

• Sample class \tilde{y} from p(y), then features from $p(x \mid \tilde{y})$:

- Clearly different from the dataset, but at least there's some structure
- We don't need a perfect model for naïve Bayes to classify well
 - Might be enough to see 2 is more likely than 1, even if it's a bad model of each class
 - Naïve Bayes is a terrible estimator of email distribution, but "good enough" classifier

Summary

• Product of Bernoullis:

- Extremely simple way to handle multivariate data
- Assumes all variables are independent
- Very strong assumption gives really easy inference/learning but bad models
- Generative classifiers: model p(x, y), then use $p(y \mid x)$ to classify
- Naïve Bayes: assume that dimensions of x are independent given y

• Next time: discriminating (but in a good way)