
Multivariate models; Generative classifiers
CPSC 440/550: Advanced Machine Learning

cs.ubc.ca/~dsuth/440/23w2

University of British Columbia, on unceded Musqueam land

2023-24 Winter Term 2 (Jan–Apr 2024)

1 / 23

https://cs.ubc.ca/~dsuth/440/23w2

Admin

Tutorials start this week

Totally optional; you can go to any section

In the unlikely event that it’s full, prioritize seats for those registered for that section

Basically everyone should be off the waitlist now; will get stragglers in too

This is just all a very manual process

Will now sign audit forms, etc

Quizzes: tentative dates up on course site

Tuesday-Thursday, every other week, starting next week

Scheduling instructions soon

Don’t leave assignment 1 to the last minute! Due Friday night

2 / 23

Last time: MLE and MAP for Bernoulli model

Bernoulli distribution: simple parameterized probability model for binary data

If X ∼ Bern(θ), then for x ∈ {0, 1} we have

Pr(X = x | θ) =

{
θ if x = 1

1− θ if x = 0
= θ1(x=1)(1− θ)1(x=0) = θx(1− θ)1−x

Also write this as p(x | θ) or even p(x), if context is clear

Maximum likelihood estimate (MLE): argmaxθ p(X | θ), just θ̂ = n1/n

Maximum a posteriori (MAP) estimate: adds a prior p(θ) to choose
argmaxθ p(θ | X) = argmaxθ p(X | θ)p(θ)

Beta(α, β) prior acts like α− 1 “fake” one observations, β − 1 “fake” zeros

3 / 23

Outline

1 Product of Bernoullis

2 Generative classifiers

4 / 23

Motivation: modeling traffic congestion

We want to model traffic congestion in a big city

Simple version: measure which intersections are busy on different days:
loc 1 loc 2 loc 3 loc 4 loc 5 loc 6 loc 7 loc 8 loc 9

0 1 0 1 1 1 0 0 1
0 0 1 1 0 0 0 0 0
0 1 0 1 1 1 0 0 1
0 1 0 1 1 1 0 0 0
1 1 1 1 1 1 1 1 1
0 0 0 1 1 0 0 0 1
0 1 0 1 1 1 1 1 0

We’d like a model of this data, to identify problems or to route buses efficiently

“Location 4 is always busy,” “location 1 is rarely busy”
“locations 7 and 8 are always the same,” “location 2 is busy when location 7 is busy”
“There’s a 25% chance you hit a busy spot if you take intersections 1 and 8”

5 / 23

Multivariate binary density estimation

We can view this as multivariate binary density estimation:

Input: n iid samples of binary vectors x(1), . . . , x(n) in {0, 1}d
Output: a model that can assign a probability to any binary vector x ∈ {0, 1}d

loc 1 loc 2 loc 3 loc 4 loc 5 loc 6 loc 7 loc 8 loc 9
0 1 0 1 1 1 0 0 1
0 0 1 1 0 0 0 0 0
0 1 0 1 1 1 0 0 1
0 1 0 1 1 1 0 0 0
1 1 1 1 1 1 1 1 1
0 0 0 1 1 0 0 0 1
0 1 0 1 1 1 1 1 0

estimator−−−−−−→
p((0, . . . , 0)) = 0.0001

... (29 total values)

...
p((1, . . . , 1)) = 0.002

Another example: “are there >10% covid cases in area j?”

Notation (memorize):

We have n examples, each with d number of features

x(4) is a vector of length d, with elements x
(4)
1 to x

(4)
d

X3 is the third dimension of a random vector X; x3 is a value X3 might take

6 / 23

Product of Bernoullis model
There are many possible models for binary density estimation

Each one makes different assumptions; we’ll see lots of options

We’ll start with a very simple “product of Bernoullis” model
Here we assume that all the dimensions are independent

If d = 4, this means p(x1, x2, x3, x4) = p(x1)p(x2)p(x3)p(x4)

We treat our d dimensional problem as d separate univariate problems

X =

loc 1 loc 2 loc 3

0 1 0
0 0 1
0 1 0
0 1 0
1 1 1
0 0 0
0 1 0

reframe−−−−→ X1 =

loc 1

0
0
0
0
1
0
0

X2 =

loc 2

1
0
1
1
1
0
1

X3 =

loc 3

0
1
0
0
1
0
0

7 / 23

Product of Bernoullis: inference and learning

Advantage of doing this: it makes inference and learning really easy

For most tasks: just do it on each variable, then combine results

Joint probability: Pr(X1=1,X2=0,...,Xd=1)=Pr(X1=1)Pr(X2=0)···Pr(Xd=1)=θ1(1−θ2)···θd

Marginal probability: Pr(X2=1)=θ2, Pr(X2=1,X3=1)=Pr(X2=1)Pr(X3=1)=θ2θ3

Conditional probabilities: p(x2 | x3) = p(x2)

Mode: set x1 from argmaxx1
p(x1), . . . , xd from argmaxxd

p(xd)

Sampling: sample x1 from p(x1), . . . , xd from p(xd)

MLE: θ̂1 =
n11
n = number of times X1 is 1

n , . . . , θ̂d = nd1
n ; MAP is similar

np.mean(X, axis=0); takes O(nd) time

Or O(nnz(X)) if X is a sparse matrix with nnz(X) ≤ nd nonzero entries

8 / 23

Running example: MNIST digits
We’ll often use a basic dataset, MNIST digits, as an example

n = 60, 000 images; each is a 28× 28 grayscale image of a handwritten number
For binary density estimation: d = 784 for each pixel, rounded to {0, 1}

In CPSC 340, we wanted a function that takes in an image and says “this is a 7”
In density estimation, we want a probability distribution over images

What’s the probability that some 28× 28 grayscale image is a handwritten digit?
Unsupervised density estimation (ignoring the class label) for now
Sampling from the density should produce a novel image of a digit

9 / 23

Product of Bernoullis on MNIST
If we fit a product of Bernoullis to MNIST:

Have 784 parameters: each pixel location is Bern(θj)

The MLE θ̂j is just the portion of the time pixel j “has ink”

Viewing the θ̂j shaped into an image:

More likely to have writing near the centre of the image
10 / 23

Product of Bernoullis on MNIST
Is this a good fit to MNIST?

One way to check: look at samples from the model

This is a terrible model – the sample don’t look like the data at all
In the data, the pixels are far from independent

For example, adjacent pixels are highly correlated with each other
Even though the assumption is usually wrong, a product of Bernoullis is often
“good enough to be useful”

Especially when we combine it with some other ideas, coming soon

We’ll see several ways to relax the independence assumption later in the course
11 / 23

Outline

1 Product of Bernoullis

2 Generative classifiers

12 / 23

Motivation: spam filtering
Spam used to be a huge problem, until ML-based spam detectors

Can frame as supervised learning
Learn a function from e-mails to “is this spam”

13 / 23

Data collection and feature extraction

Collect a lot of emails

Get users to label them as spam (y(i) = 1) or not (y(i) = 0)

Extract features of each email, e.g. bag of words: x
(i)
j = 1(word j in email i)

winner CPSC 440 vicodin . . . spam?
1 0 0 0 . . . 1
0 1 1 0 . . . 0
0 0 0 1 . . . 1
1 1 1 0 . . . 0

y(i) is label of ith example; collected in vector y (length n)

x
(i)
j is jth feature of ith example

x(i) is the vector (length d) of features for ith example

X collects all the inputs, shape n× d – in practice, use a sparse format!

Xj is random variable for the jth feature of random sample; X is random vector

14 / 23

Generative classifiers

Early ’00s: best spam filtering methods used generative classifiers

Treat supervised learning as density estimation

Learning: fit a model for p(x1, . . . , xd, y)

“Data-generating process” for the features and labels together

Inference: compute conditionals p(y | x1, . . . , xd)
Is p(y = 1 | x1, . . . , xd) > p(y = 0 | x1, . . . , xd)?

Should we plug in our new fancy product of Bernoullis as our density estimator?

Probably not – it assumes Y is independent of X1, . . . , Xd!

So predictions wouldn’t depend on the features at all!

15 / 23

Näıve Bayes
Product of Bernoullis assumes X1, . . . , Xd, Y are all mutually independent

Näıve Bayes assumes xj are mutually independent given y

X1, . . . , Xd are (mutually) independent if

p(x1, . . . , xd) = p(x1) · · · p(xd) for all possible values x1, . . . , xd

X1, . . . , Xd are (mutually) conditionally independent given y if

p(x1, . . . , xd | y) = p(x1 | y) · · · p(xd | y) for all possible values x1, . . . , xd, y

Features independent per class: use a different product of Bernoullis for each class

To fit, need conditional univariate density estimates

p(x1, . . . , xd, y) = p(x1, . . . , xd | y)p(y) = p(x1 | y) · · · p(xd | y)p(y)

16 / 23

Näıve Bayes inference
Given model, can compute p(x1, . . . , xd, y) = p(x1 | y) · · · p(xd | y)p(y)
To classify: have p(y | x) ∝ p(x, y) – probabilistic predictions

We maximize probability of correct answer if we take argmaxy p(y | x)
But probabilities make it easy to do more variations!

Probably cost of missing a spam email < cost of flagging a non-spam email

Prediction \Truth y = 0: Good email y = 1: Spam

ŷ = 0: Good email 0 1
ŷ = 1: Spam 50 0

Can minimize expected cost: letting ρ(x) = p(y = 1 | x) be the prediction,

E[C(ŷ, y)] = ρ(x)C(ŷ, 1) + (1− ρ(x))C(ŷ, 0)

=

{
(1− ρ(x)) · 0 + ρ(x) · 1 if ŷ = 0

(1− ρ(x)) · 50 + ρ(x) · 0 if ŷ = 1
=

{
ρ(x) if ŷ = 0

50(1− ρ(x)) if ŷ = 1

so we predict ŷ = 1 only if 50(1− ρ(x)) ≤ ρ(x), i.e. ρ(x) ≥ 50
51 ≈ 98%

17 / 23

Näıve Bayes inference

Can also do other inference tasks:

What’s p(x1, . . . , xd)?

What are the “most spammy” features? argmaxx1,...,xd
p(x1, . . . , xd | y = 1)

How can I minimally change my spam email to make it look not like spam?

Generate data with ancestral sampling (more details later in course):

Sample ỹ from p(y), then x̃ from p(x | ỹ)

18 / 23

Training näıve Bayes: conditional binary density estimation
Recall that under näıve Bayes assumption,

p(x1, . . . , xd, y) = p(x1, . . . , xd | y)p(y) = p(x1 | y) · · · p(xd | y)p(y)

For binary Xj and Y : p(y) is just binary density estimation

Can parameterize p(xj | y) = Pr(Xj = xj | Y = y) as conditionally Bernoulli:

Pr(Xj = 1 | Y = 1) = θj|1 Pr(Xj = 1 | Y = 0) = θj|0

Two parameters per feature: θj|y is probability of Xj being 1 given Y = y

Xj | Y = 0 is Bern(θj|0), and Xj | Y = 1 is Bern(θj|1)

MLE is given by “counting conditionally”:

θ̂j|1 =

∑n
i=1 1(x

(i)
j = 1)1(y(i) = 1)

n1
=

nxj=1,y=1

ny=1
θ̂j|0 =

nxj=1,y=0

ny=0

Should be intuitive, but worth writing out for yourself to check the steps make sense!

19 / 23

Generative classifiers

Training phase: density estimation: fit a model for p(x, y)

Usually: first fit a model for p(y)

For binary y, just use a Bernoulli and do MLE/MAP O(n) time

Next, for each class c, fit p(x | y = c) using examples from class c

For näıve Bayes, fit p(x1 | y = c), . . . , p(xd | y = c) separately
For binary data, fits a product of Bernoullis for class c O(ny=c d) time

Total: O(n+ ny=1d+ · · ·+ ny=kd) = O(n+ nd) = O(nd) time

Can reduce to O(number of nonzero entries) with sparse format

Testing phase: use p(y | x) ∝ p(x, y) to get probability of each class for x

Usually: predict argmaxy p(y | x) = argmaxy p(x, y)

“What’s the most likely y, after seeing x?” (Like MAP!)

20 / 23

Näıve Bayes on MNIST
Let’s make a binary supervised learning problem: distinguish 1 from 2

There are 6,742 1s, and 5,958 2s
With MLE, get p(y = 1) = 6 742/(6 742 + 5 958) ≈ 0.53

MLE parameters for Näıve Bayes, p(xj | y) for each class (arranged as an image):

21 / 23

Näıve Bayes on MNIST

Sample class ỹ from p(y), then features from p(x | ỹ):

Clearly different from the dataset, but at least there’s some structure

We don’t need a perfect model for näıve Bayes to classify well

Might be enough to see 2 is more likely than 1, even if it’s a bad model of each class
Näıve Bayes is a terrible estimator of email distribution, but “good enough” classifier

22 / 23

Summary

Product of Bernoullis:

Extremely simple way to handle multivariate data
Assumes all variables are independent
Very strong assumption gives really easy inference/learning but bad models

Generative classifiers: model p(x, y), then use p(y | x) to classify

Näıve Bayes: assume that dimensions of x are independent given y

Next time: discriminating (but in a good way)

23 / 23

	Product of Bernoullis
	Generative classifiers

