Variational inference and image generation
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Need for Approximate Inference

@ We've seen a bunch of models where inference can be intractable:
Bayesian logistic regression

Markov chains with non-Gaussian continuous states

Non-forest graphical models

The models today :)

@ Monte Carlo methods can solve these problems, but it's so slow and fiddly

@ Most common alternative is variational methods
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Monte Carlo vs. Variational Inference

Two main strategies for approximate inference:
@ Monte Carlo methods:
o Approximate p with the empirical distribution of samples

e Turns inference into sampling
@ Variational methods:
e Approximate p with “closest” distribution g from a tractable family

o Gaussian, independent Bernoulli, tree-structed UGM, ...
(or mixtures of these simple distributions)

e Turns inference into optimization
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Variational Inference lllustration

@ Approximate non-Gaussian p by a Gaussian ¢:

“—_’-—\\__/———
@ Approximate loopy UGM by independent distribution or tree-structed UGM:
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@ Variational methods try to find simple distribution ¢ that is closest to target p

e This isn't consistent like MCMC is, but it can be very fast
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Kullback-Leibler (KL) Divergence

@ How do we define “closeness” between a distribution p and ¢?

@ A common measure is Kullback-Leibler (KL) divergence between p and ¢:

KL(p | q) = /p(w) log z(m)

()

e As usual, integral becomes a sum for discrete distributions

dx

Also called information gain: “information lost when p is approximated by ¢"
If p=gq, we have KL(p || ¢) = 0 (no information lost)

Otherwise, KL(p || ¢) grows as it becomes hard to predict p from ¢

KL is not symmetric: in general, KL(p || ¢) # KL(q || p)

Maximumizing likelihood = minimizing KL(ptrue || po) (bonus slide)

Unfortunately, this requires summing/integrating over p, or sampling from it
e ...exactly the problem we're trying to avoid 5/62



Minimizing Reverse KL Divergence

@ Most variational methods minimize “reverse KL":

KL(q |19) = [ ato)tog %o = [ gfa)log <§8 z) da

e Not intuitive: "how much information is lost when we approximate ¢ by p”

@ "Reverse” KL only needs unnormalized distribution p and expectations over ¢

KL(g || p) = / 4(z) log q(x)da — / 4(z) log (z)dz + / 4(z) log(Z)dz
= E [logq(z)] — E [logp(z)] + log(Z)
xT~g ~——

a~q
const. in g
o —[E,qlogq(z) =H][q] is the (differential) entropy of ¢
e Value is known for many common choices of ¢
argmin KL(q || p) = argmax E logp(z) + H[q]
q qg 4
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Example: Best Multivariate Gaussian

We want to find max, E,~q[log p(x)] + H[q]

For multivariate Gaussians, we have H[q] = 3 log || + %log(27re)

So to find the best multivariate Gaussian approximation, we need to find

1 - -
arg max 5 log | 2| + E logp(z) = argmaxlog|L|+ E logp(u + Lz
g max 5 gl¥l+ 5 losp(®) g gltl+ E plsplp+Lz)

How to optimize this? Can't autodiff through expectation. ..

Reparamaterization trick: take variable we're optimizing out of the expectation

End up with ¢ = N'(u, LLT)

If L is lower-triangular with L;; > 0 (Cholesky factor), then [L| =[], L;; is easy
o A3 code for MultivariateT.mle() used this trick

Can take samples for z and run SGD to optimize (but note it's non-convex)
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Mean Field / Variational Bayes approximation bonus!

@ Another common scheme is coordinate optimization with an appropriate ¢

@ Consider choosing g as a product of independent g;

d
q(z) = [ ] as(zy)
j=1
o If we fix g—; and optimize ¢; among all distributions, we get (see PML2 10.2)

q;(;) o< exp (E [10g15(w)]>

q-j

o lterative algorithm: pick j, choose (discrete or conjugate) ¢; to match above
o Each iteration improves the (non-convex) reverse KL
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Structured Mean Field bonus!

—

@ Common variant is structured mean field: ¢ function includes some of the edges

Coupled HMM Structured MF approximation
(with tractable chains)

http://courses.cms.caltech.edu/cs155/slides/cs165-14-variational.pdf
original G (Naive) MF H, structured MF H;
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http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational . pdf
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Variational vs. Monte Carlo

@ Compared to MCMC, variational methods are typically:

more complicated

not consistent (g doesn’t converge to p if we run the algorithm forever)
harder to parallelize

better approximations for a given amount of computation

@ Variational methods typically have similar cost to MAP

@ Combinations of variational inference and stochastic methods:

e Stochastic variational inference (SVI): use SGD to speed up variational methods
e Can initialize MCMC parameters based on a variational estimate
e Variational MCMC: use Metropolis-Hastings with proposals from a variational ¢
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Outline

© Variational Auto-Encoders
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Autoencoders
@ Way back in lecture 6, we talked about auto-encoders:

Autoencoders @

@ Nh‘fk " layer
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® ® \@
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* Autoencoders try to make their output the same as the input
— Usually have a bottleneck layer with dimension k < input d
— First layers “encode” the input into bottleneck
— Last layers “decode” the bottleneck into a (hopefully valid) input
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Autoencoders
@ Way back in lecture 6, we talked about auto-encoders:
Decoder as Generative Model

* Consider the decoder part of the network: ""’”"" foyer /

— Takes low-dimensional z(? and makes features £/ /

* Can be used for outlier detection:

— Check distance to original features to detect outliers @
Atruhr
* Can be used to generate “new data”:

— If the decoder is good, new values of z that “look like real z” should decode
into X that “look like real x”

— To do this “properly,” need to estimate the distribution p(z)
* This is what “Stable Diffusion” does

@ There's another option for sampling: make p(z) into something simple
o If p(z) is N(0,I), then we can easily sample from it
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Variational Auto-encoders
@ VAEs choose to make everything probabilistic:

V4

p(2)
https://danijar.com/building-variational-auto-encoders-in-tensorflow/
o Encoder network g4(z | =) gives a distribution over latent codes for z

o Decoder network pg(z | z) gives an x for a given z
o Prior distribution pg(z) is usually (0, 1)

@ Another view: fitting a deep latent variable model pg(z) = [ pg(z | 2)pe(z)d=
@ We can sample from pg ancestrally: z ~ py(z), = ~ pp(x | 2)

@ But if z is high-dimensional, that integral is way too hard; how can we fit 67
_ po(x]2)po(2)
po ()
o "Amortized inference” — we amortize the work of conducting (intractable) inference

o We use a “recognition” network g4(z | ) =~ pg(z | x)

14/62


https://danijar.com/building-variational-auto-encoders-in-tensorflow/

ELBO

o We'd like to maximize pg(z) = [ po(z | 2)pg(z)dz

log pp(z) = ZNqE‘E(m)UOgPe(x)]
_ E p@(xv Z) :|
agg(zle) [ po(z | @)

-t o po(z, 2) qp(z | ) ]
amgplzla) | g2 | 2) po(z | )
= g pe(m)]+ - {qo(z!x)]
avgp(zlz) | qe(2 | )| 2~goleln) [ po(2 | @)
= ELBOy 4(x) + KL(gg(2 | z) || po(z | z))

@ Since KL > 0, ELBOy 4(x) = logpg(z) — KL(g(2 | z) || po(z | )) < logpe(x)
e ELBO is the Evidence Lower BOund
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Maximizing the ELBO

@ Once we know how to evaluate it, we can use as our loss

ZELBOM (@) Zlogpe — KL(gp (" | @) || po(z1 | 21))
=1
@ Because KL > 0, this is a lower bound on the log-likelihood

e Maximizing over the encoder/recognition parameters ¢ is

arg;naxZELBOev(ﬁ(x(i)) = arg;rlinZKL(q¢(z(i) | 2O) || po(2 | z))
=1 i=1

o Finds a network that gives you a low reverse KL, for any training input z(*)
e Making the inference network better makes the likelihood bound tighter

o If g4(z | ) = po(2 | x) (on the training set),
maximizing over the probability parameters 6 (approximately) maximizes likelihood
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Evaluating the ELBO
o We'll actually be able to evaluate the ELBO:

[ pe(z,2) }
ELBO T) = E log ———=
0.6(7) zrgy(2lz) | & qs(2 | )

N ZNqE:(z\:v) L pe(2)ge(2 | x)}

_ [1og P0(@:2) op  Po(2)
B z~q}f:£z\m> _1 ) ] +z~q£Ekz\a:> [l 5 qe(2 | fv)}
= E )[logpe(mIZ)]—KL(%(ZIw) | po(2))

z~qe (2]

@ First term: g4(z | ) should give a latent distribution where decoding to x is likely

@ Second term: gy(z | x) should be “near” py(z) (regularization)
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Computing the ELBO and its gradient: the reparameterization trick

@ We want to maximize the average of

ELBOy(r) = E_llogpo(z | 2)] - KL(g(z | ) | p(2)

zrqgy (2|

o KL term for a given x is available in closed form if p(z), ¢4(2 | x) are Gaussian
(if p(2) is N'(0,1), go(z | ) is N (e (x), g (x)); regularizes ||ps(x)||? and Z4(z) to be near I — bonus)

For the other term, we need Monte Carlo
Usually pg(z | 2) is N(fo(2),0%I), so logpg(z | 2) = — ||z — fo(2)]|? + const
We need E. g, (z|x) log po(z | 2)

o Usually estimate with Monte Carlo, with just a single sample for simplicity

@ But how do we take V of this expectation? Use reparameterization trick again:
1
E lo z|z))= E lo T|z= x)+ Xp(x)2
Zw%(zm[ gpo(z | 2)] oD gpo(z | 2 = po(x) + By (2)2€)

Take a Monte Carlo sample for ¢; now hﬂe\something we can autodiff
Now just do SGD to maximize 1 3>  ELBOg 4(z™)

n
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A VAE
X — f&)

[ KLIN (1(X), £(X)[|N(0,1)]] | Decoder
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https://arxiv.org/pdf/1606.05908.pdf
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A VAE on MNIST
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https://danijar.com/building-variational-auto-encoders-in-tensorflow/
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Conditional VAE bonus!
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https://arxiv.org/pdf/1606.05908.pdf
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.nips.cc/paper_files/paper/2015/file/8d55a249e6baabc06772297520da2051~Paper . pdf

https://papers
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Posterior collapse bonus!

o What if we use a really powerful decoder py(x | 2)?

@ For example, an autoregressive model based on

po(z | 2) = po(z1 | 2)pe(x2 | 21, 2) -+ - po(xa | 71, .-, T4-1, 2)

o If you try this, get great samples. . . that tend to ignore z entirely
o Remember ELBOg () = E.q,(2/2) log po(z | 2)] — KL(g4(2 | =) || p(2))
o If po(z | 2) ignores z, q4(z | ) can be just pg(z) and KL becomes 0
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VQ-VAE bonus!

@ One way to avoid this: vector quantized VAE uses a discrete latent space
@ Encoder maps to a single discrete value of the latent; learn a prior on them
@ Autoregressive decoder is encouraged to “commit” to a latent

@ VQ-VAE-2 uses two-layer hierarchical latents
o Autoregressive prior on the latents, but a fast feed-forward decoder
‘ ]

Figure 1: Class-conditional 256x256 image samples from a two-level model trained on ImageNet.

https://arxiv.org/pdf/1906.00446. pdf
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Representation Learning with Latent Variable Models b/"“_“j"-‘

e We'd often like a “useful” py(z | x)
e Maximum likelihood minimizes KL between target and pg(z) = [ pg(z, z)dz
@ Objective wants a good fit for pg(x); doesn't care about usefulness at all

e True for any objective that only cares about py(x), not just MLE
Maximum likelihood over all LVMs

usefulness of py.d.(2|x)

negative log likelihood K L{pp()||pmede ()]

https://www.inference.vc/maximum-1likelihood-for-representation-learning-2/
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Representation Learning with Latent Variable Models bonus!

e We'd often like a “useful” py(z | x)
e Maximum likelihood minimizes KL between target and pg(z) = [ pg(z, z)dz
@ Objective wants a good fit for pg(x); doesn't care about usefulness at all

e True for any objective that only cares about py(x), not just MLE

@ But we don't actually maximize over all latent variable models
Maximum likelihood within model class @

usefulness of py(z|z)

negative log likelihood K L{pp(z)||ps(=)]

https://www.inference.vc/maximum-1likelihood-for-representation-learning-2/
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Representation Learning with Latent Variable Models bonus!

We'd often like a “useful” py(z | x)
Maximum likelihood minimizes KL between target and py(z) = [ po(x, z)dz
Objective wants a good fit for pg(x); doesn't care about usefulness at all

e True for any objective that only cares about py(x), not just MLE

But we don't actually maximize over all latent variable models
This relies on our model class (or really, learning process. ..) aligning well
Maximum likelihood in model class Q-

usefulness of py(z|x)

negative log likelihood K L{pp(z)|ps(z)]

https://wuw.inference.vc/maximum-1likelihood-for-representation-learning-2/ 25 /62
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Representation Learning with Latent Variable Models bonus!

We'd often like a “useful” py(z | x)

Maximum likelihood minimizes KL between target and py(z) = [ po(x, z)dz
Objective wants a good fit for pg(x); doesn't care about usefulness at all
e True for any objective that only cares about py(x), not just MLE

But we don't actually maximize over all latent variable models
This relies on our model class (or really, learning process. ..) aligning well

Real(ish) case: if pg(z | z) is too powerful, can ignore z, i.e. useless representation
Max. likelihood with overly flexible py(xz|z)

usefulness of py(z|z)

negative log likelihood KL[pp(x)||ps(z)]
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Representation Learning with VAEs bonus!

@ Maximizing the ELBO isn't just MLE. ..

mngELBOa,¢(g;(i)) = log pp(X) — m(gnZKL(%(Z(i) | m(i)) I pe(z(i) | :c(i)))
‘ i

o If ¢ is perfect, it's just the MLE
o Otherwise, we prefer the kinds of distributions that ¢, can successfully reconstruct

@ And, to emphasize again, training a VAE isn't just minimizing the ELBO

e Implicit bias of SGD training procedure likely plays a very important role
o Likely even more true for complex models, e.g. transformer-based

26 /62



Outline

© Variational Auto-Encoders
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Pause admin

@ That's it for “course content” today
@ There's a bunch of fun bonus stuff I'd like to go through

@ But...the Student Experience of Instruction response rate is
o Currently 9% for 440, “supposed to be” at least 25%
o Currently 18% for 550, “supposed to be" at least 65%
These get used:
o For me (and administrators) to see anonymously to improve in the future
o Really is anonymous: | don’t see your name, only numeric summaries + each text

response to each question (separately, not linked to each other)
o | only see this well after final grades are submitted

(]

e For my tenure case

seoi.ubc.ca/surveys or from Canvas
Teaching evaluations: the good, the bad, and the ugly by Mike Gelbart on r/UBC
e “Think about your biases”; “be specific”; “be kind"
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Outline

@ A quick tour of image generative models
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Normalizing Flows bonus!

@ Based on change-of-variables formula: if x = f(z) for bijective, differentiable f,

p(a) = p(z) |det(Vof ' (2))]
@ Limit layers to be invertible (and square) with easy det; get exact likelihoods
@ Some variants: original, Real NVP, MAF, GLOW, FFJORD, Residual Flows

Real Data Residual Flow

Figure 14: Random samples from 5bit CelebA-HQ 256 x256. Most visually appealing batch out of
five was chosen.

https://arxiv.org/abs/1906.02735 30/62
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Autoregressive Models bonus!

o Use p(x) = p(z1)p(w2 | z1)p(z3 | 21,%2) - - - p(@a | T1:0-1)
e Just a fully-connected DAG model

@ Model each p(z; | z1.j—1) using some kind of neural net

@ Some variants: RNADE, PixelRNN, PixelCNN, WaveNet, MADE

@ First models with really good likelihoods and samples for complex datasets
@ Very slow: go through an image pixel-by-pixel

Figure 5: Linear interpolations in the embedding space decoded by the PixelCNN. Embeddings from
leftmost and rightmost images are used for endpoints of the interpolation.
https://arxiv.org/abs/1606.05328

@ Note: can have interesting behaviour with zero-probability prompts
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Energy-Based Models bonus!

@ General term for models like py(z) = Zieexp(—é'g(@); Ep is “energy”

o Important example: product of experts p;(x)p2(z) has energy & (z) + E2(x)

@ Super-broad category (. ..essentially any distribution)

@ Maximum likelihood: like exponential families, Vy log Z%; =E;p, Vo&o(x)

o Can estimate with MCMC sample, e.g. contrastive divergence / Younes algorithm

e Can also fit without estimating Zy using score matching, noise-contrastive
estimation, Stein discrepancy, adversarial training, ...
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Score Matching bonus!

A way to fit unnormalized generative models
Hyvarinen score is sg(x) = Vy logpg(x) = V, log pg(x) — V, log Zy
N——

0
e Or we can just learn a function sy directly

@ Score matching tries to match sy to target's Hyvarinen score:

arg;nin E |so(z) — Vy10g Prarget(2)||?

Z~Ptarget

Under some conditions (using integration by parts), this is equivalent to

arg;nin E  1llse(2)||® + Tr(Vase(z))

I~Ptarget

Denoising score matching, sliced score matching to help with second derivative
@ Close connection to contrastive divergence (see PML2 24.3.4)
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Score matching a Swiss roll

PML2's score matching _swiss_roll.ipynb

PORRT < L L R S SRR IPRRET

R Py iy R A T O R R

s
Fr Ay

bonus,(

34/62



Generative Adversarial Networks (GANs) bonus!

o Generator network Gp(z) produces samples based on py(2)
o Train Gy to trick a discriminator Dg(x) that tries to classify real vs. fake
o Adversarial game, ming maxy; tricky to optimize
e Sort of minimizes Jensen-Shannon, %KL(pg I %) + %KL(ptarget I %)
e Variants sort of minimize Wasserstein-1 or other distributional losses

e Not probabilistic — no attempt at computing [ Gg(z)pe(z)dz, only sampling

' A

Golden Retriever Boathouse

https://arxiv.org/abs/2202.00273
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What's the best way to train? bonus!

@ It's not necessarily clear that MLE = arg ming KL (ptarget || po) is best
o MLE has some nice asymptotic properties, given some (strong!) assumptions

o Classical results assume there is some 0" where prarger = po~

Data KLD MMD JSD

Figure 1: An isotropic Gaussian distribution was fit to data drawn from a mixture of Gaussians
by either minimizing Kullback-Leibler divergence (KLD), maximum mean discrepancy (MMD), or
Jensen-Shannon divergence (JSD). The different fits demonstrate different tradeoffs made by the
three measures of distance between distributions.
https://arxiv.org/abs/1511.01844

@ Which one you want depends a lot on what you're using it for
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Outline

@ A quick tour of image generative models
@ Evaluation
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How do we tell if a generative model is any good anyway? bonus!

o

@ Held-out log-likelihood would be the usual thing to do for generative models
o GANs can't do; VAEs under-estimate; energy-based models typically over-estimate
e (Happens by Jensen's inequality; see this paper, section 3.2, to estimate by how much)
o Images are usually in {0, 1,...,255}%: continuous models can get infinite likelihoods
o Usually de-quantize by adding uniform noise from [0, 1)%
@ Under-estimates log-likelihood of discrete model with paiscrete (z) = f[O,l)d po(z + w)du
(Jensen’s again; see this paper, section 3.1)
@ Connection to sample quality is tenuous in high dimensions
o Break samples, barely change log-likelihood: p(z) = 0.001pg(z) + 0.999 & (x)
e logp(x) > log(0.001py) > logpe(z) — 7
—_— =~

scales with d doesn’t

@ On 64 x 64 ImageNet, PixelCNN beats PixelRNN by 511 nats/img, Conv Draw by 4,514
o Break log-likelihood, barely change samples: p = 4 vazl N (3,e2I) for 3t i pe
o If N is big and ¢ tiny, unlikely to see duplicates, but it's a way-overfit KDE
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How do we tell if a generative model is any good anyway? bonus!




How do we tell if a generative model is any good anyway? bonus!

@ Most common sample evaluation method: Fréchet Inception Distance (FID)
o Estimate mean, covariance of featurizer pretrained on ImageNet
e Squared FID: ||,[14mode| - ﬂtarget”2 + Tr(zmodel) + Tr(Etarget) —2Tr <(Emode|2target)%)

o Motivated as Wasserstein-2 (Fréchet) distance between Gaussians
e Estimator has low variance but high bias (this paper, section 4 / appendix D)

@ Precision/Recall, Density/Coverage metrics
e Try to disambiguate “all samples look reasonable” versus “covering all the data”

o Classification Accuracy Score
o Train a classifier on (class-conditional) model samples; see how it does on real data

@ All of these have issues with “overfitting” by just reproducing training set
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Outline

@ A quick tour of image generative models

@ Diffusion Models
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Diffusion Processes bonus!

Reverse

Original

Degraded

Noise

Snow Pixelate Mask Animorph Blur

I\
LHtEARY
https://arxiv.org/abs/2208.09392

@ Non-random ("“cold diffusion”): maybe ~ conditional flow matching
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Diffusion Models as Hierarchical VAEs bonus!

@ Start with data point xg, add noise to get x1, add noise to get zo, ...
@ Forward process is (=)fixed; should choose so q(x7 | zo) =~ p(x7)

@ Reverse process py(x¢—1 | x¢) to remove the noise

@ Normal ELBO would give us (see (34) to (45) in this note)

reconstruction prior matching; doesn’t depend on 6

logpo(w) = E )1ogp9<xo\xﬁ— E  KL((er |2r-1) || plar))
x1|To

q(zr—1lzo0

T—
Z KL(q(xt | @1-1) || po(@s | 2e41))

q(xt 1,xt+1\xo)

consistency
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Diffusion Models as Hierarchical VAEs bonus!

Start with data point z(, add noise to get x1, add noise to get xa, ...
Forward process is (=)fixed; should choose so q(z7 | zo) =~ p(z71)
Reverse process pg(z;—1 | ;) to remove the noise

Nicer ELBO (see (46) to (58) in this note) cancels tons of stuff:

e 6 6 o

reconstruction prior matching; no 6

log pg(z0) > o EI )logpa(mo | 21) — KL(g(z7 | z0) || p(a1))
x1|xo

T—1

- Z E KL(Q(ﬂUt—l !l‘t,ﬂfo) H Po(Ti—1 |9€t))
=1 Q(xt\xo)

pg should match true denoising process

e Recovers standard VAE ELBO if T =1
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Diffusion Models as Hierarchical VAEs bonus!

o

T—1
argmax K logpg(zo | 21)—KL(g(zr | 2o) | P(xT))—Z E  KL(g(zt-1 | z¢,20) || po(ze-1 | 24))
6 q(z1 o) i a(@e]zo)

@ Usual case is fixed normal noise: q(z¢ | x1—1) = N (x4; /1 — Brwe—1, Bel)

o Implies g(z; | zo) = N (z4; v/&xo, (1 — @)I) for a; = [[-_,(1 — 5,)

o Choose T, 3; such that ar ~ 0, so q(zr | zo) =~ N(0,1)

o Get that (w1 | ¢, m0) =N (xt,l;%mt + 5tx07at2I); V¢, ¢, 0 depend only on B;s
o We can just choose pg(zi—1 | 2¢) = N(24—1;Vews + 829 (24, 1), 021)!

e KL, reconstruction terms simplify a lot: get

arg min E 07 Jllze(z1,1) — @ —man|® ift=1
P gl o (atraoaon) |27 datend) ~ ol otherwis

e Empirically can choose to ignore weighting 07 /07 and the t = 1 special case:

arg min E [[|& (¢, 1) —930”2}1

]E [
L0~ Ptarget ~ = =
0 ¢ Unif {1, T} Tt N(\/ataco,(l ozt)I)
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Other views of Diffusion Models bonus!

@ Can view essentially same objective as denoising score matching

@ Or as stacked denoising auto-encoders

@ Helpful descriptions by: Yang Song, Lilian Weng, Calvin Luo, and PML2 25

45 /62


https://yang-song.net/blog/2021/score/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://arxiv.org/pdf/2208.11970.pdf

“Plain” Diffusion Samples bonus!

Samples from the NCSNv2 ['8] model. From left to right: FFHQ 256x256, LSUN bedroom 128x128, LSUN tower 128x128,
LSUN church_outdoor 96x96, and CelebA 64x64.

https://yang-song.net/blog/2021/score/
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https://yang-song.net/blog/2021/score/

Infinitely many noise levels

o Can take the T' = oo limit based on stochastic differential equations

e See Yang Song's blog post
o Gives exact log-likelihoods and better ability to condition

[ 1]
i via i -, 7 i e ,a 3
Image inpainting with a time-dependent score-based model trained on LSUN bedroom. The leftmost column is ground-truth.

The second column shows masked images (y in our framework). The rest columns show different inpainted images,
generated by solving the conditional reverse-time SDE.

bomAS,(

https://yang-song.net/blog/2021/score/
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https://yang-song.net/blog/2021/score/

Stable Diffusion

@ Train a fancy, high-quali

@ Run diffusion model on

ty auto-encoder

the code distribution

o Condition the decoder on text embeddings

Pixel Space

Latent Space

Denoising U-Net €p

6onditionlna

emanti
Maj

Text

Repres
entations

denoising step crossattention  switch  skip connection concat

ﬂ
—

bonus,‘

https://arxiv.org/abs/2112.10752
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ControlNet bonus!

e

@ Allows “post-processing” to add new kinds of conditioning to pretrained model

https://www.reddit.com/r/StableDiffusion/comments/1281iva/new_controlnet_face_model/ 49 /62



https://www.reddit.com/r/StableDiffusion/comments/1281iva/new_controlnet_face_model/

bomAS,‘

ARTIFICIAL INTELLIGENCE / TECH / LAW

Getty Images is suing the creators of Al
art tool Stable Diffusion for scraping its
content

/ Getty Images claims Stability Al
‘unlawfully’ scraped millions of
images from its site. It’'s a
significant escalation in the
developing legal battles between
generative Al firms and content
creators.

By JAMES VINCENT
Jan 17, 2023, 2:30 AM PST | [J18 Comments / 18 New

’ [ \
~ 4 \WE PN
An image created by Stable Diffusion showing a recreation of Getty Images’
watermark. Image: The Vexge / Stable Diffusion

vy § &
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https://www.theverge.com/2023/1/17/23558516/ai-art-copyright-stable-diffusion-getty-images-lawsuit

b onus [
Training Set Generated Image

Caption: Living in the light Prompt:
with Ann Graham Lotz Ann Graham Lotz
Figure 1: Diffusion models memorize individual train-
ing examples and generate them at test time. Left: an
image from Stable Diffusion’s training set (licensed CC
BY-SA 3.0, see [49]). Right: a Stable Diffusion gen-
eration when prompted with “Ann Graham Lotz”. The
reconstruction is nearly identical (¢, distance = 0.031).

https://arxiv.org/abs/2301.13188
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https://arxiv.org/abs/2301.13188

Outline

© Some things we didn't cover
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Privacy b/w_u\‘s.‘

@ How can we prevent models from memorizing individual data points?

o Leading framework is differential privacy

5 1 —+ RANDOMIZED —— PN
— ALGORITHM = (@

ANSWER n
)

ANSWER 1
RANDOMIZED ANSWER 2

ALGORITHM AGER ADVERSARY

=
(0 (o

https://2021.ai/machine-learning-differential-privacy-overview/

@ CPSC grad courses: 532P by Mijung Park,
sometimes 538L by Mathias Lecuyer
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https://2021.ai/machine-learning-differential-privacy-overview/
https://sites.google.com/view/cpsc532p2022w1/home
https://m-lecuyer.github.io/538L/

Fairness, Accountability, Transparency bonus!

Tons of issues around ML models / applications
Some have technical (partial) solutions

Some can only be handled socially
“Sociotechnical systems” (STS)

FAccT and AIES conferences

DSCI 430, focuses mostly on fairness

54 /62


https://facctconference.org
https://www.aies-conference.com/

Causality bonus!

532Y: Causal ML by Mathias Lecuyer
Math 605D by Elina Robeva (sometimes)

Closely related to fairness

More related things to be aware of:

e Disentanglement
e Independent components analysis
e Out-of-distribution generalization, domain adaptation
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https://m-lecuyer.github.io/532Y-538L-CausalInference/
https://sites.google.com/view/ubc-math-605d-causality/

More Deep Learning: NLP bonus!

Big, super-fast thing is large language models
o We May be Surprised Again: Why | take LLMs seriously

CPSC 436N: NLP
CPSC 532V: Commonsense Reasoning in NLP by Vered Shwartz
532G (dialogue models) by Giuseppe Carenini

courses by Muhammad Abdul-Mageed

532S: Multimodal Learning with Vision, Language and Sound
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https://www.inference.vc/we-may-be-surprised-again/
https://www.cs.ubc.ca/~vshwartz/courses/CPSC436N-22/index.html
https://www.cs.ubc.ca/~vshwartz/courses/CPSC532V-23/index.html
https://mageed.arts.ubc.ca/teaching/
https://www.cs.ubc.ca/~lsigal/teaching22_Term1.html

More Deep Learning: Vision/Graphics bonus!

Lots of vision to do beyond what was in this course!

CPSC 425: Computer Vision
533Y: Visual Geometry with Deep Learning by Kwang Moo Yi
533V: Learning to Move by Michiel van de Panne

e 6 o6 o

Probably a course by Evan Shelhamer
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https://www.cs.ubc.ca/~lsigal/teaching22_Term2.html
https://www.cs.ubc.ca/~van/cpsc533V/

Theory

e Why/when do ML models / optimizers work, mathematically?

SGD

VSN @

A\

o2

oof s

0z c\

y
s

: \\

(a) Small learning rate regime

@ 532D: Statistical Learning Theory by me

(b) Moderate learning rate regime

bomAS_(

https://arxiv.org/abs/2011.02538

@ Optimization: 406 and 536M by Michael Friedlander
e Optimization in ML: 5XX by Mark Schmidt (not this year)
e EECE 571Z Convex Optimization by Christos Thrampoulidis

@ Various stat courses
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https://arxiv.org/abs/2011.02538
https://www.cs.ubc.ca/~dsuth/532D/
https://friedlander.io/ubc-cpsc-406/
https://friedlander.io/teaching/20t1-cpsc536m/
https://www.cs.ubc.ca/~schmidtm/Courses/5XX-S22/

Probabilistic/Bayesian/. .. ML bonus!

@ Probabilistic programming: 532W by Frank Wood

@ Stat 520A: Bayesian analysis by Alexandre Bouchard-Coté
@ Stat 520B: Variational Bayes by Trevor Campbell

@ Stat 547S: Topics on Symmetry by Benjamin Bloem-Reddy
@ Stat 520P: Bayesian Optimization by Geoff Pleiss

e ECE 571F: Deep Learning with Structures by Renjie Liao

@ Various more stat courses

@ Some more things to be aware of:

Mutual information/dependence estimation

Graph neural networks, deep sets, other structured data
Particle filters

Bayesian neural networks
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https://www.cs.ubc.ca/~fwood/CS532W-539W/
https://www.stat.ubc.ca/~bouchard/courses/stat520-sp2021-22/index.html
https://www.stat.ubc.ca/~benbr/assets/notes/stat547s-notes.pdf
https://geoffpleiss.com/teaching/stat520p/
https://lrjconan.github.io/UBC-EECE571F-DL-Structures/

Reinforcement learning bonus!

322, 422 — logic, more graphical models, search, planning, some RL
522 by David Poole (PGMs, some RL)

532J: Never Ending Reinforcement Learning by Jeff Clune
533V: Learning to Move by Michiel van de Panne (planned W2)

@ Some more things to be aware of:
Meta-learning

Online learning

Active learning

Multi-armed bandits

Auto-ML
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https://www.cs.ubc.ca/~poole/cs522/2023/
https://www.cs.ubc.ca/~van/cpsc533V/

Other stuff bonus!

® 6 6 6 o o

532C: Human-Centred Al by Cristina Conati (planned W2)
Somewhat relevant: 539L: Automated Testing by Caroline Lemieux
532L: Modes of Strategic Behaviour by Kevin Leyton-Brown

545: Algorithms for Bioinformatics by Jiarui Ding

Math 605D: Tensor decompositions by Elina Robeva (sometimes)
Math 555: Compressed Sensing by Yaniv Plan

Possible courses by

o Kelsey Allen (new in CS+Psych; cognitive science / robotics / ML)
o Xiaxio Li (ECE; federated learning)
o Lele Wang (ECE; coding theory)

@ Reading groups: https://ml.ubc.ca/reading-groups/
@ Talks: CAIDA (Al broadly), MILD (“mathematical” ML)
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https://www.carolemieux.com/teaching/CPSC539L_2022w1.html
https://www.cs.ubc.ca/~kevinlb/teaching/cs532l/
https://www.cs.ubc.ca/~jiaruid/cpsc545.html
https://sites.google.com/view/math-605d-tensors-2022/
https://www.yanivplan.com/__trashed
https://k-r-allen.github.io/
https://xxlya.github.io/xiaoxiao/
https://sites.google.com/site/wanglele1986/
https://ml.ubc.ca/reading-groups/
https://caida.ubc.ca/events
https://mild.ubc.ca/events

Summary

@ Variational methods approximate p with a simpler distribution ¢
e Usually minimize reverse KL divergence

@ Because it's (often) easy to evaluate for simple ¢, not for any fundamental reason
° Variational auto-encoders (VAEs) do this for a “deep latent variable model”

fp p(z | 2)dz
° Learn a recognltlon network” ¢(z | x) to reconstruct z for any given x
e Minimize the ELBO: lower bound on the likelihood

@ Bunch of stuff on other image generative models, but all bonus content

@ Next lecture: nothing! there is no next lecture! Bye :)

62/62



Maximum likelihood minimizes KL bonus!

arg min KL(ptrue ” pe) = arg min /ptrue(x) lOg Dtrue (CC) deZ’
o 0 po(x)

= aJrgolnin/ptrue(:‘c) lngtrue($)dm_ /ptrue(l') 1nge(l‘)d$

doesn’t depend on 6
= argemin - /ptme(x) log pg(x)dx

=argmax E logpy(x)

0 T~ Ptrue

1 — :
~ — 1 (@)
arg énax - ; og pp(z\¥)
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Three Coordinate-Wise Algorithms bonus!

@ Gibbs sampling is a coordinate-wise method for approximate sampling:

o Choose a coordinate j to update
o Sample z; keeping other variables fixed

@ ICM is a coordinate-wise method for approximate decoding:

o lIterated Conditional Mode; it's in last lecture’s bonus slides
e Choose a coordinate j to update
o Maximize x; keeping other variables fixed

@ Mean field is a coordinate-wise method for approximate marginalization:

o Choose a coordinate j to update
o Update marginal ¢;(z;) keeping other variables fixed (g;(z;) approximates p;(z,))

for all z;
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Three Coordinate-Wise Algorithms bonus!

@ Consider a pairwise discrete UGM:

d
p(a1,@a, ..., xq) < | [ b)) I i@z |,
J=1 (i,9)€EE
@ ICM for updating a node j with 2 neighbours (i and k)
© Compute M;(z;) = ¢;(x;)pi;j(xi, xj)Pjk(z;, xx) for all z;
@ Set z; to the largest value of M;(x;)

@ Gibbs for updating a node j with 2 neighbours (i and k)
@ Compute Mj(xj) = ¢j(mj)¢ij(xi7xj)¢jk(xj,:ck) for all Zj
@ Sample x; proportional to M;(z;)

@ Mean field for updating a node j with 2 neighbours (i and k)
Q Compute M;(z;) = ¢;(x;) exp (ZM a5 (@) log ¢ij (xs,25) + 3, ar(wk) log d’jk(zj’zk))
@ Set g;(x;) proportional to M;(x;)
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Previously: Belief Propagation bonus!

e

@ Generalization of forward-backward to forests is belief propagation.

(undirected graphs with no loops, which must be pairwise)

Ox

myy(x,) l T my;(x))

https://www.quora.com/
Probabilistic-graphical-models-what-are-the-relationships-between-sum-product-algorithm-belief-propagation-and-junction-tree-
- “ "
@ Defines “messages’ that can be sent along each edge.
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https://www.quora.com/Probabilistic-graphical-models-what-are-the-relationships-between-sum-product-algorithm-belief-propagation-and-junction-tree-algorithm
https://www.quora.com/Probabilistic-graphical-models-what-are-the-relationships-between-sum-product-algorithm-belief-propagation-and-junction-tree-algorithm

Loopy Belief Propagation bonus!

e

@ In pairwise UGM, belief propagation “message” from parent p to child ¢ is gven by

Mpe(we) o Z Gi(2p) bpe(p, xe) Mijp(2p) Mip (),

D

assuming that parent p has parents j and k.
o We get marginals by multiplying all incoming messages with local potentials.

@ Loopy belief propagation: a “hacker” approach to approximate marginals:

e Choose an edge ic to update.
o Update messages M;.(x.) keeping all other messages fixed.
e Repeat until “convergence”.

o We approximate marginals by multiplying all incoming messages with local potentials.

@ Empirically much better than mean field; we've spent 20+ years figuring out why.
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Discussion of Loopy Belief Propagation bonus!

e

@ Loopy BP decoding is used for “error correction” in 3G/4G, NASA missions. . ..
o Called “turbo codes” in information theory.

Loopy BP is not optimizing an objective function.
o Convergence of loopy BP is hard to characterize: does not converge in general.

If it converges, loopy BP finds fixed point of “Bethe free energy"”:
o Instead of “Gibbs mean-field free-energy” for mean field, which lower bounds Z.
o Bethe typically gives better approximation than mean field, but not a bound.

There are convex variants that upper bound Z.
o Tree-reweighted belief propagation.
e Variations that are guaranteed to converge.
e Convex variants are more consistent but often give worse approximations.

Messages only have closed-form update for conjugate models.

e Can approximate non-conjugate models using expectation propagation. 6862



Convex Relaxations bonus!

e

@ We've overviewed a view of variational methods as minimizing non-convex reverse
KL.

@ Alternate view: write exact inference as constrained convex optimization.
e Writing inference as maximizing entropy with constraints on marginals.
@ See bonus slides from the exponential family lecture.
o Different methods correspond to different entropy/constraint approximations.

@ Mean field and loopy belief propagation relax entropy and marginals in different ways.
o Weirdly, these approximations are non-convex even though original problem is convex.

o There are also convex relaxations that approximate with linear programs (or SDPs).

@ For an overview of these ideas, see:
https://people.eecs.berkeley.edu/~wainwrig/Papers/WaiJor08_FTML.pdf
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Difficulty of Variational Formulation bonus!

@ In exponential family bonus slides, we write inference as a convex optimization:

log(Z) = sup {w” p + H(pu)},
HneEM
@ Did this make anything easier?

o Computing entropy H(p,) seems as hard as inference.
e Characterizing marginal polytope M becomes hard with loops.

@ Practical variational methods:

e Work with approximation/bound on entropy H.
e Work with approximation to marginal polytope M.
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Mean Field Approximation bonus!

@ Mean field approximation assumes
Hij,st = Hi,sHjts
for all edges, which means
p(x; = s,z =t) = p(z; = s)p(z; = 1),

and that variables are independent.
@ Entropy is simple under mean field approximation:

> p(X)logp(X) = > " p(w) log pl:).
X T T

o Marginal polytope is also simple:

Mp ={p| pis>0, Z/M,s =1L e = Wnaan

s
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Entropy of Mean Field Approximation bonus!

@ Entropy form is from distributive law and probabilities sum to 1:
;p(X) log p(X) = ;p(X) log(] T o(:))
= ZP(X) Zlog(p(zi))
= ZZp ) log p(;)
= ZZH;) x;) log p(z;)
= ZZp ;) log p(x:) [ [ pl=;)

J#i

72217“% log p(w;) Z Hp z;)

@j|jF#i J 70

= p(ws) logp(w:).

i x4
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Mean Field as Non-Convex Lower Bound bonus!

@ Since Mp C M, yields a lower bound on log(Z):

sup {w”pu+ H(py)} < sup {w"p+ H(p,)} = log(Z).
HEMFE HEM

@ Since Mp C M, it is an inner approximation:

o Constraints fi;5st = i s/tj,+ Make it non-convex.
o Mean field algorithm is coordinate descent on w’ i+ H(p,) over Mp.
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Discussion of Mean Field and Structured MF

bon MS,‘
gt
@ Mean field is weird:
e Non-convex approximation to a convex problem.
o For learning, we want upper bounds on log(Z)
@ Structured mean field:

e Cost of computing entropy is similar to cost of inference
o Use a subgraph where we can perform exact inference

Coupled HMM Structured MF approximation
[ AN Y with tractable chains
I—J—“ OO )
LHE )

http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf
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Structured Mean Field with Tree bonus!

® More edges means better approximation of M and H(p,,):

original G (Naive) MF H, structured MF H;

o o o o o o o o—0o—0O

(e} ]

o o

o

C b

o

o o
} O o}

. I
0 E

[} [o]
o 0o o]
o o o [o]
o 0 o]
o o 0 [e]
Q Q o
o] o]
o—0o—0—C—0—
o—O0—C—C—0—0—=0

1\
|

http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf

@ Fixed points of loopy correspond to using “Bethe” approximation of entropy and
“local polytope” approximation of “marginal polytope”.

@ You can design better variational methods by constructing better approximations.
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Computing the ELBO and its gradient: KL term bonus!

@ We want to maximize the average of

ELBOgg(z) = E [logpg(z | 2)] — KL(gs(z | 2) || p(2))

zr~qgy (2|

KL term for a given z is often available in closed form

Typically we choose py(z) to be N(0,I), g4(z | z) to be N (py(z), Xp(z))
@ Then the KL is just (see PML2 eq 5.80)

L (|l ()2 + Tr By () — log | S ()] — d)

Most of the time we also choose X;(z) to be diagonal; determinant is easy

This is just an expression in terms of ¢; we can use autodiff
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3-VAE bonus!

@ Put a weight 8 > 1 in front of the KL term in the ELBO
B=1 B =150

[elefelsFPFTTT IS Il!-IIIII
SOOOUOEEE.  SEEEEEEEE
oo fefefefolo],| Do """ ["]"]"]

Figure 2: Ei led versus di of positional factors of variation
learnt by a standard VAE (/3 = 1) and /3 VAE 8= 150) respectlvely The dataset consists
of Gaussian blobs presented in various locations on a black canvas. Top row: original images.
Second row: the corresponding reconstructions. Remaining rows: latent traversals ordered by their
average KL divergence with the prior (high to low). To generate the traversals, we initialise the
latent representation by inferring it from a seed image (left data sample), then traverse a single latent
dimension (in [—3, 3]), whilst holding the remaining latent dimensions fixed, and plot the resulting
reconstruction. Heatmaps show the 2D position tuning of each latent unit, corresponding to the
inferred mean values for each latent for given each possible 2D location of the blob (with peak blue,
-3; white, 0; peak red, 3).

https://arxiv.org/pdf/1804.03599.pdf

@ Refined version: see TC-VAE 77/62
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https://arxiv.org/abs/1802.04942

Wasserstein Auto-Encoder bonus!

i
e Different framing for an auto-encoder-based generative model
@ Avoids “motivation” for posterior collapse
@ Simple version with deterministic encoder/decoder:
min E i”x’ — decg(encg(z))||> + AD | prior(z) 1 i 1 (z = ency(z"))
b6 T i=1 ’ n i=1 ’

where D is some distance between probability distributions (kernel MMD, GAN)

Only makes marginal distribution of zs match the prior, not each one like VAEs

Can show approximately minimizes Wasserstein distance between model and data
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