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Need for Approximate Inference

We’ve seen a bunch of models where inference can be intractable:

Bayesian logistic regression
Markov chains with non-Gaussian continuous states
Non-forest graphical models
The models today :)

Monte Carlo methods can solve these problems, but it’s so slow and fiddly

Most common alternative is variational methods
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Monte Carlo vs. Variational Inference
Two main strategies for approximate inference:

1 Monte Carlo methods:

Approximate p with the empirical distribution of samples

p(x) ≈ 1

n

n∑
i=1

1(x(i) = x)

Turns inference into sampling

2 Variational methods:

Approximate p with “closest” distribution q from a tractable family

p(x) ≈ q(x)

Gaussian, independent Bernoulli, tree-structed UGM, . . .
(or mixtures of these simple distributions)

Turns inference into optimization
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Variational Inference Illustration

Approximate non-Gaussian p by a Gaussian q:

Approximate loopy UGM by independent distribution or tree-structed UGM:

Variational methods try to find simple distribution q that is closest to target p

This isn’t consistent like MCMC is, but it can be very fast
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Kullback-Leibler (KL) Divergence
How do we define “closeness” between a distribution p and q?

A common measure is Kullback-Leibler (KL) divergence between p and q:

KL(p ∥ q) =

∫
p(x) log

p(x)

q(x)
dx

As usual, integral becomes a sum for discrete distributions

Also called information gain: “information lost when p is approximated by q”
If p = q, we have KL(p ∥ q) = 0 (no information lost)
Otherwise, KL(p ∥ q) grows as it becomes hard to predict p from q
KL is not symmetric: in general, KL(p ∥ q) ̸= KL(q ∥ p)

Maximumizing likelihood = minimizing KL(ptrue ∥ pθ) (bonus slide)

Unfortunately, this requires summing/integrating over p, or sampling from it
. . . exactly the problem we’re trying to avoid 5 / 62



Minimizing Reverse KL Divergence
Most variational methods minimize “reverse KL”:

KL(q ∥ p) =

∫
q(x) log

q(x)

p(x)
dx =

∫
q(x) log

(
q(x)

p̃(x)
Z

)
dx

Not intuitive: “how much information is lost when we approximate q by p”

“Reverse” KL only needs unnormalized distribution p̃ and expectations over q

KL(q ∥ p) =

∫
q(x) log q(x)dx−

∫
q(x) log p̃(x)dx+

∫
q(x) log(Z)dx

= E
x∼q

[log q(x)]− E
x∼q

[log p̃(x)] + log(Z)︸ ︷︷ ︸
const. in q

−Ex∼q log q(x) = H[q] is the (differential) entropy of q
Value is known for many common choices of q

argmin
q

KL(q ∥ p) = argmax
q

E
x∼q

log p̃(x) + H[q]
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Example: Best Multivariate Gaussian

We want to find maxq Ex∼q[log p̃(x)] + H[q]

For multivariate Gaussians, we have H[q] = 1
2 log |Σ|+ d

2 log(2πe)

So to find the best multivariate Gaussian approximation, we need to find

argmax
µ,Σ

1
2 log |Σ|+ E

x∼N (µ,Σ)
log p̃(x) = argmax

µ,L
log |L|+ E

z∼N (0,I)
log p̃(µ+ Lz)

How to optimize this? Can’t autodiff through expectation. . .

Reparamaterization trick: take variable we’re optimizing out of the expectation

End up with q = N (µ,LLT)

If L is lower-triangular with Ljj > 0 (Cholesky factor), then |L| =
∏

j Ljj is easy

A3 code for MultivariateT.mle() used this trick

Can take samples for z and run SGD to optimize (but note it’s non-convex)
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Mean Field / Variational Bayes approximation

Another common scheme is coordinate optimization with an appropriate q

Consider choosing q as a product of independent qj

q(x) =

d∏
j=1

qj(xj)

If we fix q¬j and optimize qj among all distributions, we get (see PML2 10.2)

qj(xj) ∝ exp

(
E
q¬j

[log p̃(x)]

)
Iterative algorithm: pick j, choose (discrete or conjugate) qj to match above

Each iteration improves the (non-convex) reverse KL
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Structured Mean Field

Common variant is structured mean field: q function includes some of the edges

http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf

http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf
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Variational vs. Monte Carlo

Compared to MCMC, variational methods are typically:

more complicated
not consistent (q doesn’t converge to p if we run the algorithm forever)
harder to parallelize
better approximations for a given amount of computation

Variational methods typically have similar cost to MAP

Combinations of variational inference and stochastic methods:

Stochastic variational inference (SVI): use SGD to speed up variational methods
Can initialize MCMC parameters based on a variational estimate
Variational MCMC: use Metropolis-Hastings with proposals from a variational q
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Autoencoders
Way back in lecture 6, we talked about auto-encoders:

Autoencoders

• Autoencoders try to make their output the same as the input
– Usually have a bottleneck layer with dimension k < input d
– First layers “encode” the input into bottleneck
– Last layers “decode” the bottleneck into a (hopefully valid) input
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Autoencoders
Way back in lecture 6, we talked about auto-encoders:

Decoder as Generative Model
• Consider the decoder part of the network:
– Takes low-dimensional z(i) and makes features !"(i)

• Can be used for outlier detection:
– Check distance to original features to detect outliers

• Can be used to generate “new data”:
– If the decoder is good, new values of z that “look like real z” should decode 

into !" that “look like real x”
– To do this “properly,” need to estimate the distribution p(z)

• This is what “Stable Diffusion” does

There’s another option for sampling: make p(z) into something simple
If p(z) is N (0, I), then we can easily sample from it
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Variational Auto-encoders
VAEs choose to make everything probabilistic:

https://danijar.com/building-variational-auto-encoders-in-tensorflow/

Encoder network qϕ(z | x) gives a distribution over latent codes for x
Decoder network pθ(x | z) gives an x for a given z
Prior distribution pθ(z) is usually N (0, I)

Another view: fitting a deep latent variable model pθ(x) =
∫
pθ(x | z)pθ(z)dz

We can sample from pθ ancestrally: z ∼ pθ(z), x ∼ pθ(x | z)
But if z is high-dimensional, that integral is way too hard; how can we fit θ?

We use a “recognition” network qϕ(z | x) ≈ pθ(z | x) = pθ(x|z)pθ(z)
pθ(x)

“Amortized inference” – we amortize the work of conducting (intractable) inference
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ELBO

We’d like to maximize pθ(x) =
∫
pθ(x | z)pθ(z)dz

log pθ(x) = E
z∼qϕ(z|x)

[log pθ(x)]

= E
z∼qϕ(z|x)

[
log

pθ(x, z)

pθ(z | x)

]
= E

z∼qϕ(z|x)

[
log

pθ(x, z) qϕ(z | x)
qϕ(z | x) pθ(z | x)

]
= E

z∼qϕ(z|x)

[
log

pθ(x, z)

qϕ(z | x)

]
+ E

z∼qϕ(z|x)

[
qϕ(z | x)
pθ(z | x)

]
= ELBOθ,ϕ(x) + KL(qϕ(z | x) ∥ pθ(z | x))

Since KL ≥ 0, ELBOθ,ϕ(x) = log pθ(x)−KL(qϕ(z | x) ∥ pθ(z | x)) ≤ log pθ(x)

ELBO is the Evidence Lower BOund
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Maximizing the ELBO

Once we know how to evaluate it, we can use as our loss

n∑
i=1

ELBOθ,ϕ(x
(i)) =

n∑
i=1

log pθ(x
(i))−KL(qϕ(z

(i) | x(i)) ∥ pθ(z
(i) | x(i)))

Because KL ≥ 0, this is a lower bound on the log-likelihood

Maximizing over the encoder/recognition parameters ϕ is

argmax
ϕ

n∑
i=1

ELBOθ,ϕ(x
(i)) = argmin

ϕ

n∑
i=1

KL(qϕ(z
(i) | x(i)) ∥ pθ(z

(i) | x(i)))

Finds a network that gives you a low reverse KL, for any training input x(i)

Making the inference network better makes the likelihood bound tighter

If qϕ(z | x) ≈ pθ(z | x) (on the training set),
maximizing over the probability parameters θ (approximately) maximizes likelihood
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Evaluating the ELBO

We’ll actually be able to evaluate the ELBO:

ELBOθ,ϕ(x) = E
z∼qϕ(z|x)

[
log

pθ(x, z)

qϕ(z | x)

]
= E

z∼qϕ(z|x)

[
log

pθ(x, z)pθ(z)

pθ(z)qϕ(z | x)

]
= E

z∼qϕ(z|x)

[
log

pθ(x, z)

pθ(z)

]
+ E

z∼qϕ(z|x)

[
log

pθ(z)

qϕ(z | x)

]
= E

z∼qϕ(z|x)
[log pθ(x | z)]−KL(qϕ(z | x) ∥ pθ(z))

First term: qϕ(z | x) should give a latent distribution where decoding to x is likely

Second term: qϕ(z | x) should be “near” pθ(z) (regularization)
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Computing the ELBO and its gradient: the reparameterization trick
We want to maximize the average of

ELBOθ,ϕ(x) = E
z∼qϕ(z|x)

[log pθ(x | z)]−KL(qϕ(z | x) ∥ p(z))

KL term for a given x is available in closed form if p(z), qϕ(z | x) are Gaussian
(if p(z) is N (0, I), qϕ(z | x) is N (µϕ(x),Σϕ(x)); regularizes ∥µϕ(x)∥2 and Σϕ(x) to be near I – bonus)

For the other term, we need Monte Carlo

Usually pθ(x | z) is N (fθ(z), σ
2I), so log pθ(x | z) = − 1

σ2 ∥x− fθ(z)∥2 + const
We need Ez∼qϕ(z|x) log pθ(x | z)

Usually estimate with Monte Carlo, with just a single sample for simplicity

But how do we take ∇ϕ of this expectation? Use reparameterization trick again:

E
z∼qϕ(z|x)

[log pθ(x | z)] = E
ϵ∼N (0,I)

log pθ(x | z = µϕ(x) +Σϕ(x)
1
2 ϵ)

Take a Monte Carlo sample for ϵ; now have something we can autodiff

Now just do SGD to maximize 1
n

∑n
i=1 ÊLBOθ,ϕ(x

(i))
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A VAE

https://arxiv.org/pdf/1606.05908.pdf
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A VAE on MNIST

https://danijar.com/building-variational-auto-encoders-in-tensorflow/
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Conditional VAE

https://arxiv.org/pdf/1606.05908.pdf
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Conditional VAE to “in-paint” on MNIST

https://papers.nips.cc/paper_files/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf
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Posterior collapse

What if we use a really powerful decoder pθ(x | z)?
For example, an autoregressive model based on

pθ(x | z) = pθ(x1 | z)pθ(x2 | x1, z) · · · pθ(xd | x1, . . . , xd−1, z)

If you try this, get great samples. . . that tend to ignore z entirely

Remember ELBOθ,ϕ(x) = Ez∼qϕ(z|x) [log pθ(x | z)]−KL(qϕ(z | x) ∥ p(z))

If pθ(x | z) ignores z, qϕ(z | x) can be just pθ(z) and KL becomes 0
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VQ-VAE

One way to avoid this: vector quantized VAE uses a discrete latent space

Encoder maps to a single discrete value of the latent; learn a prior on them

Autoregressive decoder is encouraged to “commit” to a latent

VQ-VAE-2 uses two-layer hierarchical latents
Autoregressive prior on the latents, but a fast feed-forward decoder

https://arxiv.org/pdf/1906.00446.pdf
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Representation Learning with Latent Variable Models

We’d often like a “useful” pθ(z | x)
Maximum likelihood minimizes KL between target and pθ(x) =

∫
pθ(x, z)dz

Objective wants a good fit for pθ(x); doesn’t care about usefulness at all
True for any objective that only cares about pθ(x), not just MLE

https://www.inference.vc/maximum-likelihood-for-representation-learning-2/

But we don’t actually maximize over all latent variable models
This relies on our model class (or really, learning process. . . ) aligning well
Real(ish) case: if pθ(x | z) is too powerful, can ignore z, i.e. useless representation
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Representation Learning with VAEs

Maximizing the ELBO isn’t just MLE. . .

max
ϕ

∑
i

ELBOθ,ϕ(x
(i)) = log pθ(X)−min

ϕ

∑
i

KL(qϕ(z
(i) | x(i)) ∥ pθ(z

(i) | x(i)))

If ϕ is perfect, it’s just the MLE
Otherwise, we prefer the kinds of distributions that qϕ can successfully reconstruct

And, to emphasize again, training a VAE isn’t just minimizing the ELBO

Implicit bias of SGD training procedure likely plays a very important role
Likely even more true for complex models, e.g. transformer-based
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Pause

That’s it for “course content” today

There’s a bunch of fun bonus stuff I’d like to go through

But. . . the Student Experience of Instruction response rate is
Currently 9% for 440, “supposed to be” at least 25%
Currently 18% for 550, “supposed to be” at least 65%

These get used:
For me (and administrators) to see anonymously to improve in the future

Really is anonymous: I don’t see your name, only numeric summaries + each text
response to each question (separately, not linked to each other)
I only see this well after final grades are submitted

For my tenure case

seoi.ubc.ca/surveys or from Canvas

Teaching evaluations: the good, the bad, and the ugly by Mike Gelbart on r/UBC

“Think about your biases”; “be specific”; “be kind”
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Normalizing Flows

Based on change-of-variables formula: if x = f(z) for bijective, differentiable f ,

p(x) = p(z) |det(∇zf
−1(z))|

Limit layers to be invertible (and square) with easy det; get exact likelihoods
Some variants: original, Real NVP, MAF, GLOW, FFJORD, Residual Flows

https://arxiv.org/abs/1906.02735
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Autoregressive Models

Use p(x) = p(x1)p(x2 | x1)p(x3 | x1, x2) · · · p(xd | x1:d−1)
Just a fully-connected DAG model

Model each p(xj | x1:j−1) using some kind of neural net
Some variants: RNADE, PixelRNN, PixelCNN, WaveNet, MADE
First models with really good likelihoods and samples for complex datasets
Very slow: go through an image pixel-by-pixel

https://arxiv.org/abs/1606.05328

Note: can have interesting behaviour with zero-probability prompts
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Energy-Based Models

General term for models like pθ(x) =
1
Zθ

exp(−Eθ(x)); Eθ is “energy”

Important example: product of experts p1(x)p2(x) has energy E1(x) + E2(x)
Super-broad category (. . . essentially any distribution)

Maximum likelihood: like exponential families, ∇θ log
1
Zθ

= Ex∼pθ ∇θEθ(x)
Can estimate with MCMC sample, e.g. contrastive divergence / Younes algorithm

Can also fit without estimating Zθ using score matching, noise-contrastive
estimation, Stein discrepancy, adversarial training, . . .
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Score Matching

A way to fit unnormalized generative models

Hyvärinen score is sθ(x) = ∇x log pθ(x) = ∇x log p̃θ(x)−∇x logZθ︸ ︷︷ ︸
0

Or we can just learn a function sθ directly

Score matching tries to match sθ to target’s Hyvärinen score:

argmin
θ

E
x∼ptarget

∥sθ(x)−∇x log ptarget(x)∥2

Under some conditions (using integration by parts), this is equivalent to

argmin
θ

E
x∼ptarget

1
2∥sθ(x)∥

2 +Tr(∇xsθ(x))

Denoising score matching, sliced score matching to help with second derivative

Close connection to contrastive divergence (see PML2 24.3.4)
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Score matching a Swiss roll

PML2’s score matching swiss roll.ipynb
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Generative Adversarial Networks (GANs)

Generator network Gθ(z) produces samples based on pθ(z)
Train Gθ to trick a discriminator Dϕ(x) that tries to classify real vs. fake
Adversarial game, minθ maxϕ; tricky to optimize

Sort of minimizes Jensen-Shannon, 1
2 KL(pθ ∥ pθ+ptarget

2 ) + 1
2 KL(ptarget ∥ pθ+ptarget

2 )
Variants sort of minimize Wasserstein-1 or other distributional losses

Not probabilistic – no attempt at computing
∫
Gθ(z)pθ(z)dz, only sampling

https://arxiv.org/abs/2202.00273
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What’s the best way to train?

It’s not necessarily clear that MLE = argminθ KL(ptarget ∥ pθ) is best
MLE has some nice asymptotic properties, given some (strong!) assumptions

Classical results assume there is some θ∗ where ptarget = pθ∗

https://arxiv.org/abs/1511.01844

Which one you want depends a lot on what you’re using it for
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How do we tell if a generative model is any good anyway?

Held-out log-likelihood would be the usual thing to do for generative models
GANs can’t do; VAEs under-estimate; energy-based models typically over-estimate

(Happens by Jensen’s inequality; see this paper, section 3.2, to estimate by how much)

Images are usually in {0, 1, . . . , 255}d: continuous models can get infinite likelihoods

Usually de-quantize by adding uniform noise from [0, 1)d

Under-estimates log-likelihood of discrete model with pdiscrete(x) =
∫
[0,1)d

pθ(x+ u)du

(Jensen’s again; see this paper, section 3.1)

Connection to sample quality is tenuous in high dimensions
Break samples, barely change log-likelihood: p(x) = 0.001pθ(x) + 0.999 (x)

log p(x) ≥ log(0.001pθ) > log pθ(x)︸ ︷︷ ︸
scales with d

− 7︸︷︷︸
doesn’t

On 64× 64 ImageNet, PixelCNN beats PixelRNN by 511 nats/img, Conv Draw by 4,514

Break log-likelihood, barely change samples: p = 1
N

∑N
i=1 N (x̃i, ε2I) for x̃i iid∼ pθ

If N is big and ε tiny, unlikely to see duplicates, but it’s a way-overfit KDE
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How do we tell if a generative model is any good anyway?
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How do we tell if a generative model is any good anyway?

Most common sample evaluation method: Fréchet Inception Distance (FID)

Estimate mean, covariance of featurizer pretrained on ImageNet

Squared FID: ∥µ̂model − µ̂target∥2 +Tr(Σ̂model) +Tr(Σ̂target)− 2Tr
(
(Σ̂modelΣ̂target)

1
2

)
Motivated as Wasserstein-2 (Fréchet) distance between Gaussians
Estimator has low variance but high bias (this paper, section 4 / appendix D)

Precision/Recall, Density/Coverage metrics

Try to disambiguate “all samples look reasonable” versus “covering all the data”

Classification Accuracy Score

Train a classifier on (class-conditional) model samples; see how it does on real data

All of these have issues with “overfitting” by just reproducing training set
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Diffusion Processes

https://arxiv.org/abs/2208.09392

Non-random (“cold diffusion”): maybe ≈ conditional flow matching
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Diffusion Models as Hierarchical VAEs

Start with data point x0, add noise to get x1, add noise to get x2, . . .
Forward process is (≈)fixed; should choose so q(xT | x0) ≈ p(xT )
Reverse process pθ(xt−1 | xt) to remove the noise
Normal ELBO would give us (see (34) to (45) in this note)

log pθ(x0) ≥
reconstruction︷ ︸︸ ︷

E
q(x1|x0)

log pθ(x0 | x1)−
prior matching; doesn’t depend on θ︷ ︸︸ ︷
E

q(xT−1|x0)
KL(q(xT | xT−1) ∥ p(xT ))

−
T−1∑
t=1

E
q(xt−1,xt+1|x0)

KL(q(xt | xt−1) ∥ pθ(xt | xt+1))︸ ︷︷ ︸
consistency

Nicer ELBO (see (46) to (58) in this note) cancels tons of stuff:

log pθ(x0) ≥
reconstruction︷ ︸︸ ︷

E
q(x1|x0)

log pθ(x0 | x1)−
prior matching; no θ︷ ︸︸ ︷

KL(q(xT | x0) ∥ p(xT ))

−
T−1∑
t=1

E
q(xt|x0)

KL(q(xt−1 | xt, x0) ∥ pθ(xt−1 | xt))︸ ︷︷ ︸
pθ should match true denoising process

Recovers standard VAE ELBO if T = 1
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Diffusion Models as Hierarchical VAEs

Start with data point x0, add noise to get x1, add noise to get x2, . . .

Forward process is (≈)fixed; should choose so q(xT | x0) ≈ p(xT )

Reverse process pθ(xt−1 | xt) to remove the noise

Nicer ELBO (see (46) to (58) in this note) cancels tons of stuff:

log pθ(x0) ≥
reconstruction︷ ︸︸ ︷

E
q(x1|x0)

log pθ(x0 | x1)−
prior matching; no θ︷ ︸︸ ︷

KL(q(xT | x0) ∥ p(xT ))

−
T−1∑
t=1

E
q(xt|x0)

KL(q(xt−1 | xt, x0) ∥ pθ(xt−1 | xt))︸ ︷︷ ︸
pθ should match true denoising process

Recovers standard VAE ELBO if T = 1
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Diffusion Models as Hierarchical VAEs

argmax
θ

E
q(x1|x0)

log pθ(x0 | x1)−KL(q(xT | x0) ∥ p(xT ))−
T−1∑
t=1

E
q(xt|x0)

KL(q(xt−1 | xt, x0) ∥ pθ(xt−1 | xt))

Usual case is fixed normal noise: q(xt | xt−1) = N (xt;
√
1− βtxt−1, βtI)

Implies q(xt | x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) for ᾱt =

∏t
τ=1(1− βτ )

Choose T , βt such that ᾱT ≈ 0, so q(xT | x0) ≈ N (0, I)
Get that q(xt−1 | xt, x0) = N

(
xt−1; γtxt + δtx0, σ

2
t I
)
; γt, δt, σt depend only on βts

We can just choose pθ(xt−1 | xt) = N (xt−1; γtxt + δtx̂θ(xt, t), σ
2
t I)!

KL, reconstruction terms simplify a lot: get

argmin
θ

E
x0∼ptarget

t∼Unif{1,...,T}

[
E

xt∼N(
√
ᾱtx0,(1−ᾱt)I)

[
δ2t
2σ2

t

{
∥x̂θ(x1, 1)− x0 − γ1x1∥2 if t = 1

∥x̂θ(xt, t)− x0∥2 otherwise

]]

Empirically can choose to ignore weighting δ2t /σ
2
t and the t = 1 special case:

argmin
θ

E
x0∼ptarget

t∼Unif{1,...,T}

[
E

xt∼N(
√
ᾱtx0,(1−ᾱt)I)

[
∥x̂θ(xt, t)− x0∥2

]]
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Other views of Diffusion Models

Can view essentially same objective as denoising score matching

Or as stacked denoising auto-encoders

Helpful descriptions by: Yang Song, Lilian Weng, Calvin Luo, and PML2 25
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https://yang-song.net/blog/2021/score/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://arxiv.org/pdf/2208.11970.pdf


“Plain” Diffusion Samples

https://yang-song.net/blog/2021/score/
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https://yang-song.net/blog/2021/score/


Infinitely many noise levels

Can take the T = ∞ limit based on stochastic differential equations

See Yang Song’s blog post

Gives exact log-likelihoods and better ability to condition

https://yang-song.net/blog/2021/score/
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https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/


Stable Diffusion

Train a fancy, high-quality auto-encoder

Run diffusion model on the code distribution

Condition the decoder on text embeddings

https://arxiv.org/abs/2112.10752
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https://arxiv.org/abs/2112.10752


ControlNet

Allows “post-processing” to add new kinds of conditioning to pretrained model

https://www.reddit.com/r/StableDiffusion/comments/1281iva/new_controlnet_face_model/ 49 / 62

https://www.reddit.com/r/StableDiffusion/comments/1281iva/new_controlnet_face_model/


https://www.theverge.com/2023/1/17/23558516/ai-art-copyright-stable-diffusion-getty-images-lawsuit
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https://www.theverge.com/2023/1/17/23558516/ai-art-copyright-stable-diffusion-getty-images-lawsuit


https://arxiv.org/abs/2301.13188
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https://arxiv.org/abs/2301.13188


Outline

1 Variational inference

2 Variational Auto-Encoders

3 Brief pause

4 A quick tour of image generative models

5 Some things we didn’t cover
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Privacy

How can we prevent models from memorizing individual data points?

Leading framework is differential privacy

https://2021.ai/machine-learning-differential-privacy-overview/

CPSC grad courses: 532P by Mijung Park,
sometimes 538L by Mathias Lecuyer
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https://2021.ai/machine-learning-differential-privacy-overview/
https://sites.google.com/view/cpsc532p2022w1/home
https://m-lecuyer.github.io/538L/


Fairness, Accountability, Transparency

Tons of issues around ML models / applications

Some have technical (partial) solutions

Some can only be handled socially

“Sociotechnical systems” (STS)

FAccT and AIES conferences

DSCI 430, focuses mostly on fairness
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https://facctconference.org
https://www.aies-conference.com/


Causality

532Y: Causal ML by Mathias Lecuyer

Math 605D by Elina Robeva (sometimes)

Closely related to fairness

More related things to be aware of:

Disentanglement
Independent components analysis
Out-of-distribution generalization, domain adaptation
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https://m-lecuyer.github.io/532Y-538L-CausalInference/
https://sites.google.com/view/ubc-math-605d-causality/


More Deep Learning: NLP

Big, super-fast thing is large language models

We May be Surprised Again: Why I take LLMs seriously

CPSC 436N: NLP

CPSC 532V: Commonsense Reasoning in NLP by Vered Shwartz

532G (dialogue models) by Giuseppe Carenini

courses by Muhammad Abdul-Mageed

532S: Multimodal Learning with Vision, Language and Sound
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https://www.inference.vc/we-may-be-surprised-again/
https://www.cs.ubc.ca/~vshwartz/courses/CPSC436N-22/index.html
https://www.cs.ubc.ca/~vshwartz/courses/CPSC532V-23/index.html
https://mageed.arts.ubc.ca/teaching/
https://www.cs.ubc.ca/~lsigal/teaching22_Term1.html


More Deep Learning: Vision/Graphics

Lots of vision to do beyond what was in this course!

CPSC 425: Computer Vision

533Y: Visual Geometry with Deep Learning by Kwang Moo Yi

533V: Learning to Move by Michiel van de Panne

Probably a course by Evan Shelhamer
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https://www.cs.ubc.ca/~lsigal/teaching22_Term2.html
https://www.cs.ubc.ca/~van/cpsc533V/


Theory

Why/when do ML models / optimizers work, mathematically?

https://arxiv.org/abs/2011.02538

532D: Statistical Learning Theory by me

Optimization: 406 and 536M by Michael Friedlander

Optimization in ML: 5XX by Mark Schmidt (not this year)

EECE 571Z Convex Optimization by Christos Thrampoulidis

Various stat courses
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https://arxiv.org/abs/2011.02538
https://www.cs.ubc.ca/~dsuth/532D/
https://friedlander.io/ubc-cpsc-406/
https://friedlander.io/teaching/20t1-cpsc536m/
https://www.cs.ubc.ca/~schmidtm/Courses/5XX-S22/


Probabilistic/Bayesian/. . .ML

Probabilistic programming: 532W by Frank Wood

Stat 520A: Bayesian analysis by Alexandre Bouchard-Côté

Stat 520B: Variational Bayes by Trevor Campbell

Stat 547S: Topics on Symmetry by Benjamin Bloem-Reddy

Stat 520P: Bayesian Optimization by Geoff Pleiss

ECE 571F: Deep Learning with Structures by Renjie Liao

Various more stat courses

Some more things to be aware of:

Mutual information/dependence estimation
Graph neural networks, deep sets, other structured data
Particle filters
Bayesian neural networks
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https://www.cs.ubc.ca/~fwood/CS532W-539W/
https://www.stat.ubc.ca/~bouchard/courses/stat520-sp2021-22/index.html
https://www.stat.ubc.ca/~benbr/assets/notes/stat547s-notes.pdf
https://geoffpleiss.com/teaching/stat520p/
https://lrjconan.github.io/UBC-EECE571F-DL-Structures/


Reinforcement learning

322, 422 – logic, more graphical models, search, planning, some RL

522 by David Poole (PGMs, some RL)

532J: Never Ending Reinforcement Learning by Jeff Clune

533V: Learning to Move by Michiel van de Panne (planned W2)

Some more things to be aware of:

Meta-learning
Online learning
Active learning
Multi-armed bandits
Auto-ML
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https://www.cs.ubc.ca/~poole/cs522/2023/
https://www.cs.ubc.ca/~van/cpsc533V/


Other stuff

532C: Human-Centred AI by Cristina Conati (planned W2)

Somewhat relevant: 539L: Automated Testing by Caroline Lemieux

532L: Modes of Strategic Behaviour by Kevin Leyton-Brown

545: Algorithms for Bioinformatics by Jiarui Ding

Math 605D: Tensor decompositions by Elina Robeva (sometimes)

Math 555: Compressed Sensing by Yaniv Plan

Possible courses by
Kelsey Allen (new in CS+Psych; cognitive science / robotics / ML)
Xiaxio Li (ECE; federated learning)
Lele Wang (ECE; coding theory)

Reading groups: https://ml.ubc.ca/reading-groups/

Talks: CAIDA (AI broadly), MILD (“mathematical” ML)
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https://www.carolemieux.com/teaching/CPSC539L_2022w1.html
https://www.cs.ubc.ca/~kevinlb/teaching/cs532l/
https://www.cs.ubc.ca/~jiaruid/cpsc545.html
https://sites.google.com/view/math-605d-tensors-2022/
https://www.yanivplan.com/__trashed
https://k-r-allen.github.io/
https://xxlya.github.io/xiaoxiao/
https://sites.google.com/site/wanglele1986/
https://ml.ubc.ca/reading-groups/
https://caida.ubc.ca/events
https://mild.ubc.ca/events


Summary

Variational methods approximate p with a simpler distribution q
Usually minimize reverse KL divergence

Because it’s (often) easy to evaluate for simple q, not for any fundamental reason

Variational auto-encoders (VAEs) do this for a “deep latent variable model”

p(x) =
∫
p(z)p(x | z)dz

Learn a “recognition network” q(z | x) to reconstruct z for any given x
Minimize the ELBO: lower bound on the likelihood

Bunch of stuff on other image generative models, but all bonus content

Next lecture: nothing! there is no next lecture! Bye :)
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Maximum likelihood minimizes KL

argmin
θ

KL(ptrue ∥ pθ) = argmin
θ

∫
ptrue(x) log

ptrue(x)

pθ(x)
dx

= argmin
θ

∫
ptrue(x) log ptrue(x)dx︸ ︷︷ ︸
doesn’t depend on θ

−
∫

ptrue(x) log pθ(x)dx

= argmin
θ

−
∫

ptrue(x) log pθ(x)dx

= argmax
θ

E
x∼ptrue

log pθ(x)

≈ argmax
θ

1

n

n∑
i=1

log pθ(x
(i))
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Three Coordinate-Wise Algorithms

Gibbs sampling is a coordinate-wise method for approximate sampling:

Choose a coordinate j to update
Sample xj keeping other variables fixed

ICM is a coordinate-wise method for approximate decoding:

Iterated Conditional Mode; it’s in last lecture’s bonus slides
Choose a coordinate j to update
Maximize xj keeping other variables fixed

Mean field is a coordinate-wise method for approximate marginalization:

Choose a coordinate j to update
Update marginal qj(xj)︸ ︷︷ ︸

for all xj

keeping other variables fixed (qj(xj) approximates pj(xj))
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Three Coordinate-Wise Algorithms

Consider a pairwise discrete UGM:

p(x1, x2, . . . , xd) ∝

 d∏
j=1

ϕj(xj)

 ∏
(i,j)∈E

ϕij(xi, xj)

 ,

ICM for updating a node j with 2 neighbours (i and k)
1 Compute Mj(xj) = ϕj(xj)ϕij(xi, xj)ϕjk(xj , xk) for all xj

2 Set xj to the largest value of Mj(xj)

Gibbs for updating a node j with 2 neighbours (i and k)
1 Compute Mj(xj) = ϕj(xj)ϕij(xi, xj)ϕjk(xj , xk) for all xj

2 Sample xj proportional to Mj(xj)

Mean field for updating a node j with 2 neighbours (i and k)
1 Compute Mj(xj) = ϕj(xj) exp

(∑
xi

qj(xi) log ϕij(xi, xj) +
∑

xk
qk(xk) log ϕjk(xj , xk)

)
2 Set qj(xj) proportional to Mj(xj)
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Previously: Belief Propagation

Generalization of forward-backward to forests is belief propagation.
(undirected graphs with no loops, which must be pairwise)

https://www.quora.com/

Probabilistic-graphical-models-what-are-the-relationships-between-sum-product-algorithm-belief-propagation-and-junction-tree-algorithm

Defines “messages” that can be sent along each edge.
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https://www.quora.com/Probabilistic-graphical-models-what-are-the-relationships-between-sum-product-algorithm-belief-propagation-and-junction-tree-algorithm
https://www.quora.com/Probabilistic-graphical-models-what-are-the-relationships-between-sum-product-algorithm-belief-propagation-and-junction-tree-algorithm


Loopy Belief Propagation

In pairwise UGM, belief propagation “message” from parent p to child c is gven by

Mpc(xc) ∝
∑
xp

ϕi(xp)ϕpc(xp, xc)Mjp(xp)Mkp(xp),

assuming that parent p has parents j and k.
We get marginals by multiplying all incoming messages with local potentials.

Loopy belief propagation: a “hacker” approach to approximate marginals:
Choose an edge ic to update.
Update messages Mic(xc) keeping all other messages fixed.
Repeat until “convergence”.

We approximate marginals by multiplying all incoming messages with local potentials.

Empirically much better than mean field; we’ve spent 20+ years figuring out why.
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Discussion of Loopy Belief Propagation

Loopy BP decoding is used for “error correction” in 3G/4G, NASA missions. . . .
Called “turbo codes” in information theory.

Loopy BP is not optimizing an objective function.
Convergence of loopy BP is hard to characterize: does not converge in general.

If it converges, loopy BP finds fixed point of “Bethe free energy”:
Instead of “Gibbs mean-field free-energy” for mean field, which lower bounds Z.
Bethe typically gives better approximation than mean field, but not a bound.

There are convex variants that upper bound Z.
Tree-reweighted belief propagation.
Variations that are guaranteed to converge.

Convex variants are more consistent but often give worse approximations.

Messages only have closed-form update for conjugate models.
Can approximate non-conjugate models using expectation propagation.
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Convex Relaxations

We’ve overviewed a view of variational methods as minimizing non-convex reverse
KL.

Alternate view: write exact inference as constrained convex optimization.
Writing inference as maximizing entropy with constraints on marginals.

See bonus slides from the exponential family lecture.

Different methods correspond to different entropy/constraint approximations.

Mean field and loopy belief propagation relax entropy and marginals in different ways.
Weirdly, these approximations are non-convex even though original problem is convex.

There are also convex relaxations that approximate with linear programs (or SDPs).

For an overview of these ideas, see:
https://people.eecs.berkeley.edu/~wainwrig/Papers/WaiJor08_FTML.pdf
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https://people.eecs.berkeley.edu/~wainwrig/Papers/WaiJor08_FTML.pdf


Difficulty of Variational Formulation

In exponential family bonus slides, we write inference as a convex optimization:

log(Z) = sup
µ∈M

{wTµ+H(pµ)},

Did this make anything easier?

Computing entropy H(pµ) seems as hard as inference.
Characterizing marginal polytope M becomes hard with loops.

Practical variational methods:

Work with approximation/bound on entropy H.
Work with approximation to marginal polytope M.
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Mean Field Approximation

Mean field approximation assumes

µij,st = µi,sµj,t,

for all edges, which means

p(xi = s, xj = t) = p(xi = s)p(xj = t),

and that variables are independent.

Entropy is simple under mean field approximation:∑
X

p(X) log p(X) =
∑
i

∑
xi

p(xi) log p(xi).

Marginal polytope is also simple:

MF = {µ | µi,s ≥ 0,
∑
s

µi,s = 1, µij,st = µi,sµj,t}.

71 / 62



Entropy of Mean Field Approximation

Entropy form is from distributive law and probabilities sum to 1:

∑
X

p(X) log p(X) =
∑
X

p(X) log(
∏
i

p(xi))

=
∑
X

p(X)
∑
i

log(p(xi))

=
∑
i

∑
X

p(X) log p(xi)

=
∑
i

∑
X

∏
j

p(xj) log p(xi)

=
∑
i

∑
X

p(xi) log p(xi)
∏
j ̸=i

p(xj)

=
∑
i

∑
xi

p(xi) log p(xi)
∑

xj |j ̸=i

∏
j ̸=i

p(xj)

=
∑
i

∑
xi

p(xi) log p(xi).
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Mean Field as Non-Convex Lower Bound

Since MF ⊆ M, yields a lower bound on log(Z):

sup
µ∈MF

{wTµ+H(pµ)} ≤ sup
µ∈M

{wTµ+H(pµ)} = log(Z).

Since MF ⊆ M, it is an inner approximation:

Constraints µij,st = µi,sµj,t make it non-convex.

Mean field algorithm is coordinate descent on wTµ+H(pµ) over MF .
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Discussion of Mean Field and Structured MF

Mean field is weird:

Non-convex approximation to a convex problem.
For learning, we want upper bounds on log(Z).

Structured mean field:

Cost of computing entropy is similar to cost of inference.
Use a subgraph where we can perform exact inference.

http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf
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Structured Mean Field with Tree

More edges means better approximation of M and H(pµ):

http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf

Fixed points of loopy correspond to using “Bethe” approximation of entropy and
“local polytope” approximation of “marginal polytope”.

You can design better variational methods by constructing better approximations.
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Computing the ELBO and its gradient: KL term

We want to maximize the average of

ELBOθ,ϕ(x) = E
z∼qϕ(z|x)

[log pθ(x | z)]−KL(qϕ(z | x) ∥ p(z))

KL term for a given x is often available in closed form

Typically we choose pθ(z) to be N (0, I), qϕ(z | x) to be N (µϕ(x),Σϕ(x))

Then the KL is just (see PML2 eq 5.80)

1
2

(
∥µϕ(x)∥2 +TrΣϕ(x)− log |Σϕ(x)| − d

)
Most of the time we also choose Σϕ(x) to be diagonal; determinant is easy

This is just an expression in terms of ϕ; we can use autodiff
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β-VAE

Put a weight β > 1 in front of the KL term in the ELBO

https://arxiv.org/pdf/1804.03599.pdf

Refined version: see TC-VAE 77 / 62

https://arxiv.org/pdf/1804.03599.pdf
https://arxiv.org/abs/1802.04942


Wasserstein Auto-Encoder

Different framing for an auto-encoder-based generative model

Avoids “motivation” for posterior collapse

Simple version with deterministic encoder/decoder:

min
θ,ϕ

1

n

n∑
i=1

∥xi − decθ(encϕ(x
i))∥2 + λD

(
prior(z),

1

n

n∑
i=1

1
(
z = encϕ(x

i)
))

where D is some distance between probability distributions (kernel MMD, GAN)

Only makes marginal distribution of zs match the prior, not each one like VAEs

Can show approximately minimizes Wasserstein distance between model and data
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