
Undirected Graphical Models
CPSC 440/550: Advanced Machine Learning

cs.ubc.ca/~dsuth/440/23w2

University of British Columbia, on unceded Musqueam land

2023-24 Winter Term 2 (Jan–Apr 2024)

1 / 159

https://cs.ubc.ca/~dsuth/440/23w2


Last Time

DAG models factorize joint distribution into product of conditionals

Usually we assume conditionals depend on small number of “parents”
Most models we’ve seen can be represented as DAGs
Plate notation helps us do this efficiently

D-separation allows us to test conditional independences based on a graph

Conditional independence follows if all undirected paths are “blocked”
Observed values in chain or parent block paths
Unobserved children (with no observed grandchildren) also blocks paths
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Multivariate Gaussians as DAGs

Remember the general multivariate Gaussian density:

p(x1, . . . , xd) ∝ exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)

= exp

−1

2

d∑
j=1

d∑
j′=1

(xj − µj)(Σ−1)jj′(xj′ − µj′)


=

d∏
j=1

e− 1
2
(Σ−1)jj(xj−µj)

2
∏
j′<j

e−(Σ−1)jj′ (xj−µj)(xj′−µj′ )


xj connects to every previous xj′ where (Σ−1)jj′ ̸= 0

If the precision Σ−1 is sparse, can imply conditional independence properties

But this ordering is kind of unnatural; easier to think about without it. . .
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Undirected Graphical Models (UGMs)
Undirected graphical models (UGMs) are another popular graphical model class

Also called Markov random fields

UGMs define joint distribution in terms of non-negative potential functions,

p(x1, x2, . . . , xd) ∝
∏
c∈C

ϕc(xc)

Define a potential ϕc for each set c where we want to model a direct relationship

The most common choice is a pairwise UGM,

p(x1, x2, . . . , xd) ∝

 d∏
j=1

ϕj(xj)

 ∏
(j,j′)∈E

ψjj′(xj , xj′)


This only has potentials on single variables (ϕ) and pairs of variables (ψ)
The “edge potentials” ψ are defined on edges of an undirected graph E
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Pairwise Undirected Graphical Models
Pairwise undirected graphical models factorize probability using

p(x1, x2, . . . , xd) ∝

 d∏
j=1

ϕj(xj)

 ∏
(j,j′)∈E

ψjj′(xj , xj′)


For example: multivariate Gaussians

ϕj(xj) = e−
1
2
(Σ−1)jj(xj−µj)

2
ψjj′(xj , xj′) = e−(Σ−1)jj′ (xj−µj)(xj′−µj′ )

Also Markov chains: edges only between adjacent nodes

Ising model for xj ∈ {−1, 1} uses

ϕj(xj) = exp(xjwj) ϕjj′(xj , xj′) = exp(xjxj′wjj′)

where wi is the node weight and wij is the edge weight
If wjj′ > 0 it encourages neighbours to have same value (“attractive”)
If wjj′ < 0 it encourages neighbours to have different values (“repulsive”)
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Conditional Independence in UGMs
A UGM’s independence properties are described by an undirected graph

For pairwise UGMs, the edges are given by the set of edges E

If you have 3-variable or higher-order potentials:

Add an edge (j, j′) if j and j′ are together in at least one c

So these two factorizations have the same graph:

p(x1.x2, x3) ∝ ϕ12(x1, x2)ϕ13(x1, x3)ϕ23(x2, x3), p(x1, x2, x3) ∝ ϕ123(x1, x3, x3)

UGM implies A ⊥⊥ B | C if C separates all nodes in A from all nodes in B
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Graphical LASSO

Conditional independence structure in Gaussians given by sparsity of Θ = Σ−1

Popular way to estimate covariances adds L1 penalty to the precision:

argmin
Θ

Tr(SΘ)− log |Θ|︸ ︷︷ ︸
MLE objective

+λ

d∑
j=1

d∑
j′=1

∣∣Θjj′
∣∣

With specialized optimization algorithms, gives sparse off-diagonals of Θ
“Assume conditional independence unless there’s good reason not to”
Learns a sparse graph for the UGM
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Graphical LASSO Example

Graphical LASSO applied to stocks data:

https://normaldeviate.wordpress.com/2012/09/17/high-dimensional-undirected-graphical-models
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Graphical LASSO Example

Graphical LASSO applied to US senate voting data (Bush junior era):

https://normaldeviate.wordpress.com/2012/09/17/high-dimensional-undirected-graphical-models
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Graphical LASSO Example

Graphical LASSO applied to protein data:

https://normaldeviate.wordpress.com/2012/09/17/high-dimensional-undirected-graphical-models
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Graphical LASSO on Digits

Precision matrix from graphical LASSO applied to MNIST digits (λ = 1/8):

To understand this picture, first the size of the precision matrix:
The images of digits, which are m×m matrices (m pixels by m pixels)

This gives d = m2 elements of x(i), which we’ll assume are in “column-major” order.
Frist m elements of x(i) are column 1, next m elements are columm 2, and so on.

The picture above, which is d× d so will thus be m2 ×m2
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Graphical LASSO on Digits

Precision matrix from graphical LASSO applied to MNIST digits (λ = 1/8):

So what are the non-zeroes in the precision matrix?
1 The diagonals Θj,j (positive-definite matrices must have positive diagonals)
2 The first off-diagonals Θj,j+1 and Θj+1,j

This represents the dependencies between adjacent pixels vertically

3 The (m+ 1) off-diagonals Θj,j+m and Θj+m,j

This represents the dependencies between adjacent pixels horizontally
Because in “column-major” order, you go “right” a pixel every m indices
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DAGs vs. UGMs
Neither DAGs or UGMs are “more powerful” than the other

Any distribution can be written as a DAG, and as a UGM
But you might need to use a highly connected graph

Set of independences in DAG cannot always be written as UGM (and vice versa)

UGMs cannot reflect independences in common child graph: (x)→ (y)← (z)
DAGs cannot reflect independences in 4-node loop: (x)− (y)− (z)− (x)
Independences representable as both DAGs and UGMs are called decomposable.

An example is Markov chains: independences are same in DAG and UGM graphs

DAGs are often used when it makes sense to work with conditionals,
or we have an idea of causal directions

UGMs are often used when there are no obvious directions (like MNIST),
and are more often used when we want to add features to do supervised learning
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Tractability of UGMs

Without using ∝, a UGM probability would be

p(x) =
1

Z

∏
c∈C

ϕc(xc),

where Z is the constant that makes the probabilites sum up to 1

Z =
∑
x1

∑
x2

· · ·
∑
xd

∏
c∈C

ϕc(xc) or Z =

∫
x1

∫
x2

· · ·
∫
xd

∏
c∈C

ϕc(xc)dxddxd−1 · · · dx1

Whether you can compute Z (and do inference) depends on the choice of the ϕc:

Gaussian case: O(d3) in general, but O(d) for forests (no loops)
Continuous non-Gaussian: usually requires approximate inference
Discrete case: #P-hard in general, but O(dk2) for forests (no loops)
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Discrete DAGs vs. Discrete UGMs

Common inference tasks in graphical models:
1 Compute p(x) for an assignment to the variables x
2 Generate a sample x from the distribution
3 Compute univariate marginals p(xj)
4 Compute decoding argmaxx p(x)
5 Compute univariate conditional p(xj | xj′)

With discrete xj , all of the above are easy in tree-structured graphs

For DAGs, a tree-structured graph has at most one parent
For UGMs, a tree-structured graph has no cycles

With discrete xj , the above may be harder for general graphs:

In DAGs the first two are easy, the others are NP-hard
In UGMs all of these are NP-hard
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Inference in UGMs

We’re not going to cover this, but there are lots of bonus slides

Gibbs sampling was invented to do approximate inference in UGMs

Efficient exact inference is possible in graphs with low “treewidth”

Versions of the forward-backward algorithm we covered for Markov chains
But cost is exponential in treewidth
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Outline

1 Undirected Graphical Models (UGMs)

2 Log-Linear Models

3 Conditional Random Fields

4 Hidden Markov Models
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Vancouver Rain Data: DAG vs. UGM

We previously considered the “Vancouver Rain” dataset:

We previously fit this with a Markov chain under the DAG factorization:

p(x1, x2, . . . , xd) = p(x1)

d∏
j=2

p(xj | xj−1)

using tabular potentials (so learning was counting)
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Vancouver Rain Data: DAG vs. UGM

Consider fitting a Markov chain under a UGM factorization:

p(x1, x2, . . . , xd) ∝

 d∏
j=1

ϕj(xj)

 d∏
j=2

ϕj,j−1(xj , xj−1)


We could use the following UGM parameterization (for xj ∈ {−1,+1}):

ϕj(xj) = exp(wjxj) ϕij(xi, xj) = exp(vijxixj)

where wj is a node weight, vij is an edge weight, and we’re using Ising edges
The exponential function makes the potentials non-negative

We call this a log-linear model: logarithms of potentials are linear

Ising potentials can reflect how strongly neighbours are attracted/repulsed
For the rain data, we would expect vij > 0 (adjacent days likely to have same value)
For the rain data, it makes sense to tie wj across j and vij across (i, j) values
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Vancouver Rain Data: DAG vs. UGM
Our log-linear model of the rain data under the Ising parameterization:

p(x1, x2, . . . , xd | w, v) ∝

 d∏
j=1

exp(wxj)

 d∏
j=2

exp(vxjxj−1)


= exp

 d∑
j=1

wxj +

d∑
j=2

vxjxj−1


= exp

w d∑
j=1

xj + v

d∑
j=2

xjxj−1


= exp

([
w
v

]T [ ∑d
j=1 xj∑d

j=2 xjxj−1

])
.

This is an exponential family in canonical form!
NLL will be convex in terms of w and v; derivative of NLL has simple form
If we didn’t tie parameters, we’d have a statistic for each time point
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Learning Log-Linear Model for Vancouver Rain Data

Canonical form: p(x | w, v) ∝ exp

([
w
v

]T [ ∑d
j=1 xj∑d

j=2 xjxj−1

])
Sufficient statistics s1(x) =

∑d
j=1 xj , s2(x) =

∑d
j=2 xjxj−1

We derived in general for canonical-form exponential families that

∇θ[− log p(X | θ)] = −
n∑

i=1

s(x(i)) + nE[s(X) | θ]

Can’t solve analytically here. . . but we can just run gradient descent!

We have E[s(X) | w, v] =

[∑d
j=1 2 (p(xj = 1 | w, v)− 1)∑d
j=2 (2p(xj = xj−1 | w, v))

]
Can compute all of these marginals with forward-backward
Could also compute logZ and use autodiff
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Learning Log-Linear Models (in general)

We often write log-linear UGMs in an exponential family form

p(x | w) =
exp

(
wTF (x)

)
Z(w)

where the feature functions F (x) count the number of times we use each wj

Examples of feature functions, and potentials for categoricals, in bonus slides

Feature functions are just sufficient statistics, so

∇w[− log p(X | w)] = −
n∑

i=1

F (xi) + nE[s(X) | w]

Computing this requires inference, which is #P-hard in general graphs

So we need to consider approximations when learning
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Approximate Learning: Pseudo-Likelihood

A popular approximation to the NLL is pseudo-likelihood (“fast, convex, crude”)

Pseudo-likelihood turns learning into d single-variables problem (similar to DAGs):

p(x1, x2, . . . , xd) ≈
d∏

j=1

p(xj | x¬j) =
d∏

j=1

p(xj | xnei(j))
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Approximate Learning: Marginal Approximations

Another way to approximate the NLL is with approximate inference
1 Deterministic variational approximations of E[F (x)]

Approximate p by a simpler q, and compute expectation for q

2 Monte Carlo approximation of E[Fj(x)] given current parameters w:

∇f(w) = −F (X) + E[F (x)]

≈ −F (X) +
1

t

t∑
i=1

F (x(i))︸ ︷︷ ︸
Monte Carlo approx

based on samples from p(x | w)
Unfortunately, we usually can’t sample efficiently. . .
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Approximate Learning with MCMC Marginal Approximation

An innefficient approach to using an MCMC approximation of gradient:
1 At iteration t, we want to sample from p(x | w(k))

Start from some x(k,0), sample x(k,1), sample x(k,2), etc from an MCMC chain for
w(k)

Treat the last sample x(k,T ) from the Markov chain as a sample from p(x | w(k))

2 Update the parameters using x(k,T ) to get a gradient estimate (sample size 1),

w(k+1) = w(k) + αk(F (X)− F (x(k,T )))

If we run MCMC long enough, converges via standard SGD arguments

But have to run MCMC on each iteration of the SGD method
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Younes Algorithm (“Persistent Contrastive Divergence”)

Younes algorithm (also known as “persistent contrastive divergence”):
1 At iteration k, we want to sample from p(x | wk)

Set x(k,0) = x(k−1,T ), sample x(k,1), sample x(k,2), and so on
Treat the last sample x(k,T ) from the Markov chain as a sample from p(x | w(k))

2 Update the parameters using x(k) to get a gradient estimate,

w(k+1) = w(k) + αk(F (X)− F (x(k,T )))

In Younes algorithm, you don’t need to run the Markov chain to stationarity

Usually you only run MCMC for 1 or a small number of iterations
This gives a biased estimate, but is much faster than running MCMC to stationarity
With small-enough step-size, can show convergence

26 / 159



Pairwise UGM on MNIST Digits

Samples from a lattice-structured pairwise UGM trained on MNIST:

Training: 100k stochastic gradient w/ Gibbs sampling steps with αt = 0.01

Samples are iteration 100k of Gibbs sampling with fixed w
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Outline

1 Undirected Graphical Models (UGMs)

2 Log-Linear Models

3 Conditional Random Fields

4 Hidden Markov Models
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Motivation: Rain Data with Month Information

Our Ising UGM model for the rain data with tied parameters was

p(y1, y2, . . . , yk | w, v) ∝ exp

(
k∑

c=1

wyc +

k∑
c=2

vycyc−1

)
;

we switched variable names from xj to yc (but model is same)

First term reflects that “not rain” is more likely

Second term reflects that consecutive days are more likely to be the same

This model is equivalent to a Markov chain model

But the model doesn’t know that some months are less rainy

We can add features that reflect the month (or other information)

Multi-label supervised learning, but modeling dependence in labels yc
Adding fixed features to a UGM is also called a conditional random field (CRF)
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Conditional Random Field (CRF) for Rain Data

A CRF model of rain data, conditioned on 12 “one of k” month features xj ,

p(y1, y2, . . . , yk | x,w0, w, v) ∝ exp

(
k∑

c=1

w0yc +

k∑
c=2

vycyc−1 +

k∑
c=1

ycw
Tx

)

The potentials in this model over the random variables yc are

ϕi(yi) = exp
(
w0yi + yiw

Tx
)
, ϕij(yi, yj) = exp(vyiyj)

If we draw the UGM over yc variables we get a chain structure

So inference can be done using forward-backward
And it’s still log-linear so the NLL will be convex

Gradient descent finds global optimum jointly with respect to w0, w, and v
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Rain Data with Month Information

Samples from CRF conditioned on x being December (left) and July (right):

Conditional NLL is 16.21, compared to Markov chain which gets NLL 16.81.

Mark has Matlab (:/) code for this and a variety of other UGM models:
https://www.cs.ubc.ca/~schmidtm/Software/UGM.html
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Conditional Random Fields (General Case)
We often write the likelihood for general CRFs in the form

p(y | x,w) = 1

Z(x,w)
exp(wTF (x, y))

for some parameters w and features F (x, y)

The NLL is convex; for a single (x, y) it’s

− log p(y | x,w) = −wTF (x, y) + logZ(x,w)

and the gradient is

−∇ log p(y | x,w) = −F (x, y) + E
y|x,w

[F (x, y)]

This requires inference for each value of x in training data
For rain data, need to do run forward-backward 12 times
If each example has its own features, need to run it n times
Can make sense to use stochastic gradient if n is large
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Motivation: Image Segmentation

Task: identification of tumours in multi-modal MRI

Applications:

Radiation therapy target planning, quantifying treatment response
Mining growth patterns, image-guided surgery

Challenges:

Variety of tumor appearances, similarity to normal tissue
“You are never going to solve this problem”
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Segmentation with Label Dependencies

After a lot pre-processing and feature engineering (convolutions, priors, etc.),
final system used logistic regression to label each pixel as “tumour” or not

p(yc | xc) =
1

1 + exp(−2ycwTxc)
=

exp(ycw
Txc)

exp(wTxc) + exp(−wTxc)

Gives a high “pixel-level” accuracy, but sometimes gives silly results:

Classifying each pixel independently misses dependence in labels y(i):

We prefer neighbouring voxels to have the same value
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Segmentation with Label Dependencies

With independent logistic, conditional distribution over all labels in one image is

p(y1, y2, . . . , yk | x1, x2, . . . , xk) =
k∏

c=1

exp(ycw
Txc)

exp(wTxc) + exp(−wTxc)

∝ exp

(
d∑

c=1

ycw
Txc

)

Here xc is the feature vector for position c in the image

We can view this as a log-linear UGM with no edges,

ϕc(yc) = exp(ycw
Txc)

Given the xc, there is no dependence between the yc
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Segmentation with Label Dependencies

Adding an Ising-like term to model dependencies between yc gives

p(y1, y2, . . . , yk | x1, x2, . . . , xk) ∝ exp

 k∑
c=1

ycw
Txc +

∑
(c,c′)∈E

ycyc′v


Now we have the same “good” logistic regression model,
but v controls how strongly we want neighbours to be the same

We can run gradient descent to jointly optimize w and v (convex NLL)

So we find the optimal joint logistic regression and Ising model
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Conditional Random Fields for Segmentation

Recall the performance with the independent classifier:

The pairwise CRF better modelled the “guilt by association”:

Trained with pseudo-likelihood, constraining v ≥ 0
Decoding with “graph cuts” (bonus slides)

(Using edge features xcc′ too (bonus slides), and different λ on edges)
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Combining Neural Networks and UGMs

Instead of fixed features, you could use a neural network:

p(y | x) ∝ exp

 k∑
c=1

ycv
Th(W 3h(W 2(W 1xc))) +

∑
(c,c′)∈E

uycyc′

 .

or you could have an encode-decode model spit out potentials of a UGM:

These are sometimes called conditional neural fields or deep structured models
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Multi-Label Classification

Learned dependencies on a mult-label image classification dataset:

http://proceedings.mlr.press/v37/chenb15.pdf
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Combining fully-convolutional nets with CRFs

DeepLab used a fully-connected pairwise UGM on top layer of FCN:

https://arxiv.org/pdf/1606.00915.pdf

Most recent iteration of the model removed the UGM

Still really helps if you don’t have tons of training data (Bae, . . . , Sutherland, IJCAI-23)
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Do we need UGMs in Neural Networks?

Recall that encode-decode hidden layers already capture label dependencies

So do we need a UGM to explicitly model label dependencies in output layer?

Factor 1: data size (big vs. small)

With a small dataset, it could be helpful to have direct dependencies in model
With a large dataset, the hidden layers should reflect dependencies

Factor 2: how you evaluate the model (individual parts or full decoding)

If you measure “pixel level” or “word level” error, UGMs may not help
If you measure “whole image” or “whole sentence” error, UGMs may help

For example, inference can discourage unlikely joint labellings
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Combining RNNs and Graphical Models
An example where we use explicit label dependencies is language translation:

Above model has usual deterministic edges, and DAG edges on labels

Can use Viterbi decoding to find best translation in this model

Taking into account probability of seeing neighbouring words

But there is not much information in the DAG part of the model

Only modeling dependencies between adjacent words

What we really want is to have the label we output affect the hidden state

So that the encoding reflects previously-output words
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Combining RNNs and Graphical Models

In order for the hidden states to depend on the output, we have this monstrosity:

This can still be written as a Markov chain, but we cannot do Viterbi decoding
Problem is that the hidden states in decoder become random variables
So the state at each time has discrete and continuous parts (cannot be enumerated)

To do decoding in this thing, we typically use beam search
Heuristic algorithm that maintains “k best decodings up to time t”

Can be arbitrarily bad, but works if decoding is obvious as we go forward in time

The type of edge and decoding strategy is also common with transformers
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Back to the Rain Data

“Vancouver Rain” data:

We used homogeneous Markov chains to model between-day dependence
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Back to the Rain Data

Before, we used a conditional random field to depend on the month

We could alternately try to learn the clusters using a mixture model

But mixture of independents wouldn’t capture dependencies within cluster

A mixture of Markov chains could capture direct dependence and clusters,

p(x1, x2, . . . , xd) =

k∑
c=1

p(z = c) p(x1 | z = c)p(x2 | x1, z = c) · · · p(xd | xd−1, z = c)︸ ︷︷ ︸
Markov chain for cluster c

Cluster z chooses which homogeneous Markov chain parameters to use.

We could learn that some months are more likely to have rain (like winter months)
Can do inference by running forward-backward on each mixture; fit model with EM
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Comparison of Models on Rain Data
Independent (homogeneous) Bernoulli:

Average NLL: 18.97 (1 parameter)
Independent Bernoullis:

Average NLL: 18.95, (28 parmaeters)
Mixture of Bernoullis (k = 10, five random restarts of EM):

Average NLL: 17.06 (10 + 10× 28 = 290 parameters)
Homogeneous Markov chain:

Average NLL: 16.81 (3 parameters)
Mixture of Markov chains (k = 10, five random restarts of EM):

Average NLL: 16.53 (10 + 10× 3 = 40 parameters)
Parameters of one of the clusters (possibly modeling summer months):

p(z = 5) = 0.14

p(x1 = “rain” | z = 5) = 0.22 (instead of usual 37%)

p(xj = “rain” | xj−1 = “rain”, z = 5) = 0.49 (instead of usual 65%)

p(xj = “rain” | xj−1 = “not rain”, z = 5) = 0.11 (instead of usual 35%)
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Back to the Rain Data

The rain data is artificially divided into months

We previously discussed viewing rain data as one very long sequence (n = 1)

We could apply homogeneous Markov chains due to parameter tying

But a mixture doesn’t make sense when n = 1

What we want: different “parts” of the sequence come from different clusters

We transition from “summer” cluster to “fall” cluster at some time j

One way to address this is with a “hidden” Markov model (HMM):

Instead of examples being assigned to clusters, days are assigned to clusters
Have a Markov dependency between cluster values of adjacent days
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Hidden Markov Models

Hidden Markov models have each xj depend on a hidden Markov chain

p(x1, x2, . . . , xd, z1, z2, . . . zd) = p(z1)

d∏
j=2

p(zj | zj−1)

d∏
j=1

p(xj | zj)

We’re going to learn clusters zj and the hidden dynamics between days

Hidden cluster zj could be “summer” or “winter” (we’re learning the clusters)
Transition probability p(zj | zj−1) is probability of staying in “summer”

Initial probability p(z1) is probability of starting chain in “summer”

Emission probability p(xj | zj) is probability of rain during “summer”
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Hidden Markov Models
Hidden Markov models have each xj depend on a hidden Markov chain

p(x1, x2, . . . , xd, z1, z2, . . . zd) = p(z1)

d∏
j=2

p(zj | zj−1)

d∏
j=1

p(xj | zj)

You observe the xj values but don’t see the zj values
There is a “hidden” Markov chain, whose state determines the cluster at each time

HMMs generalize both Markov chains and mixture of categoricals
Both models are obtained under appropriate parameters
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Hidden Markov Models
Hidden Markov models have each xj depend on a hidden Markov chain.

p(x1, x2, . . . , xd, z1, z2, . . . zd) = p(z1)

d∏
j=2

p(zj | zj−1)

d∏
j=1

p(xj | zj)

Note that the xj can be continuous even with discrete clusters zj
Data could come from a mixture of Gaussians, with cluster changing in time

If the zj are continuous it’s often called a state-space model
If everything is Gaussian, it leads to Kalman filtering
Keywords for non-Gaussian: unscented Kalman filter and particle filter

50 / 159



Applications of HMMs and Kalman Filters
HMMs variants are probably the most-used time-series model

Also includes chain-structured conditional random fields
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Example: Modeling DNA Sequences

Previously: Markov chain for DNA sequences:

https://www.tes.com/lessons/WE5E9RncBhieAQ/dna
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Example: Modeling DNA Sequences
Hidden Markov model (HMM) for DNA sequences (two hidden clusters):

This is a (hidden) state transition diagram
Can reflect that probabilities are different in different regions
The actual regions are not given, but instead are nuisance variables handled by EM

A better model might use a hidden and visible Markov chain
With 2 hidden clusters, you would have 8 “probability wheels” (4 per cluster)
Would have “treewidth 2”, so inference would be tractable
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Inference and Learning in HMMs

Given observed features xj , likelihood of a joint zj assignment is

p(z1, z2, . . . zd | x1, x2, . . . , xd) ∝ p(z1)
d∏

j=2

p(zj | zj−1)

d∏
j=1

p(xj | zj)

We can do inference with forward-backward by converting to potentials:

ϕ1(z1) = p(z1)p(x1 | z1)
ϕj(zj) = p(xj | zj) (j > 1)

ϕj,j−1(zj , zj−1) = p(zj | zj−1)

Marginals from forward-backward are used to update parameters in EM

In this setting EM is called the “Baum-Welch” algorithm
As with other mixture models, learning with EM is sensitive to initialization
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Who is Guarding Who?

There is a lot of data on scoring/offense of NBA basketball players
Every point and assist is recorded, more scoring gives more wins and $$$

But how do we measure defense (“stopping people from scoring”)?
We need to know who each player is guarding (which isn’t recorded)

http://www.lukebornn.com/papers/franks_ssac_2015.pdf

HMMs can be used to model who is guarding who over time
https://www.youtube.com/watch?v=JvNkZdZJBt4
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Neural Networks with Latent-Dynamics

Could have (undirected) HMM parameters come out of a neural network:
Tries to model hidden dynamics across time

Combines deep learning, mixture models, and graphical models
“Latent-dynamics model”
Previously achieved state of the art in several applications
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Summary
Undirected graphical models factorize probability into non-negative potentials

Also called “Markov random fields”
Gaussians are a special case, but can place potentials on any subset of variables
Checking independence is simple: is there a path in the (undirected) graph?
Exact inference is exponential in “treewidth” of graph

Log-linear parameterization can be useful for learning
Need approximate inference as a subroutine inside the learning loop

Conditional random fields add conditioning on other variables
Side information: month in the rain data
Consistency among outputs, like in image segmentation

Hidden Markov models have Markov structure on latent states
EM to do inference

Lots of bonus material today which were lectures in past years:
Graphical model inference
Topic models
Boltzmann machines
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Automatic Differentiation (AD) vs. Inference

Deep structured model gradient combines neural/Markov gradients:
1 Forward pass through neural network to get ŷc predictions
2 Forward message passing to compute normalizing constant
3 Backwards message passing to compute marginals
4 Backwards pass through neural network to get all gradients

You could skip the last two steps if you use automatic differentiation

But with approximate inference, AD may or may not work:
AD will work for iterative variational inference methods

But it takes way more memory than needed (needs to store all iterations)

AD is harder for Monte Carlo methods
Can’t AD through sampling steps – but can use “reparamaterization trick” (later)

Recent trend: run iterative variational method for a fixed number of iterations
AD can give gradient of result after this fixed number of iterations
“Train the inference you’ll use at test time”
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Example: Ising Model of Rain Data

E.g., for the rain data we could parameterize our node potentials using

log(ϕi(xi)) =

{
w1 no rain

0 rain
.

Why do we only need 1 parameter?

Scaling ϕi(1) and ϕ(2) by constant doesn’t change distribution.

In general, we only need (k − 1) parameters for a k-state variable.

But if we’re using regularization we may want to use k anyways (symmetry).
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Example: Ising Model of Rain Data

The Ising parameterization of edge potentials,

log(ϕij(xi, xj)) =

{
w2 xi = xj

0 xi ̸= xj
.

Applying gradient descent gives MLE of

w =

[
0.16
0.85

]
, ϕi =

[
exp(w1)
exp(0)

]
=

[
1.17
1

]
, ϕij =

[
exp(w2) exp(0)
exp(0) exp(w2)

]
=

[
2.34 1
1 2.34

]
,

preference towards no rain, and adjacent days being the same.

Average NLL of 16.8 vs. 19.0 for independent model.
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Full Model of Rain Data

We could alternately use fully expressive edge potentials

log(ϕij(xi, xj)) =

[
w2 w3

w4 w5

]
,

but these don’t improve the likelihood much.

We could fix one of these at 0 due to the normalization.

But we often don’t do this when using regularization.

We could also have special potentials for the boundaries.

Many language models are homogeneous, except for start/end of sentences.
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Example: Ising Model of Rain Data

Independent model vs. chain-UGM model with tied nodes and Ising tied edges:

For this dataset, using untied or general edges doesn’t change likelihood much.
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Example: Ising Model of Rain Data

Samples from Ising chain-UGM model if it rains on the first day:
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Example of Feature Function

Consider the 2-node 1-edge UGM (1)–(2), where each state has 2 values.
So we have potentials ϕ1(x1), ϕ2(x2), and ϕ12(x1, x2) and want to have

wTF (x) = w1,x1 + w2,x2 + w1,2,x1,x2 .

With no parameter tying and x =
[
2 1

]
, our parameter vector and features are

w =



w1,1

w1,2

w2,1

w2,2

w1,2,1,1

w1,2,1,2

w1,2,2,1

w1,2,2,2


, F (x) =



0
1
1
0
0
0
1
0


,
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Example of Feature Function

If we instead had Ising potentials (just measuring whether x1 = x2) we would have

wTF (x) = w1,x1 + w2,x2 + w1,2,same,

where w1,2,same is the parameter specifying how much we want x1 = x2.

With no parameter tying and x =
[
2 1

]
, our parameter vector and features are

w =


w1,1

w1,2

w2,1

w2,2

w1,2.same

 , F (x) =


0
1
1
0
0

 ,
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UGM Training Objective Function

With log-linear parameterization, NLL for IID training examples is

f(w) = −
n∑

i=1

log p(xi | w) = −
n∑

i=1

log

(
exp(wTF (xi))

Z(w)

)

= −
n∑

i=1

wTF (xi) +

n∑
i=1

logZ(w)

= −wTF (X) + n logZ(w).

where the F (X) =
∑

i F (x
i) are called the sufficient statistics of the dataset.

Given sufficient statistics F (X), we can throw out the examples xi.
(only go through data once)

Function f(w) is convex (it’s linear plus a big log-sum-exp function).
But notice that Z depends on w

.
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Log-Linear UGM Gradient

For 1 example x, we showed that NLL with log-linear parameterization is

f(w) = −wTF (X) + logZ(w).

The partial derivative with respect to parameter wj has a simple form

∇wjf(w) = −Fj(X) +
∑
x

exp(wTF (x))

Z(w)
Fj(x)

= −Fj(X) +
∑
x

p(x | w)Fj(x)

= −Fj(X) + E[Fj(x)].

Observe that derivative of log(Z) is expected value of feature.
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Segmentation with Label Dependencies

We got a bit more fancy and used edge features xij ,

p(y1, y2, . . . , yd | x1, x2, . . . , xd) = 1

Z
exp

 d∑
i=1

yiwTxi +
∑

(i,j)∈E

yiyjvTxij

 .

For example, we could use xij = 1/(1 + |xi − xj |).
Encourages yi and yj to be more similar if xi and xj are more similar.

This is a pairwise UGM with

ϕi(y
i) = exp(yiwTxi), ϕij(y

i, yj) = exp(yiyjvTxij),

so it didn’t make inference any more complicated.
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Modeling OCR Dependencies

What dependencies should we model for this problem?

ϕ(yc, xc): potential of individual letter given image.
ϕ(yc−1, yc): dependency between adjacent letters (‘q-u’).
ϕ(yc−1, yc, xc−1, xc): adjacent letters and image dependency.
ϕc(yc−1, yc): inhomogeneous dependency (French: ‘e-r’ ending).
ϕc(yc−2, yc−1, yc): third-order and inhomogeneous (English: ‘i-n-g’ end).
ϕ(y ∈ D): is y in dictionary D?
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Tractability of Discriminative Models

Features can be very complicated, since we just condition on the xc, .

Given the xc, tractability depends on the conditional UGM on the yc.
Inference tasks will be fast or slow, depending on the yc graph.

Besides “low treewidth”, some other cases where exact computation is possible:
Semi-Markov chains (allow dependence on time you spend in a state).

For example, in rain data the seasons will be approximately 3 months.

Context-free grammars (allows potentials on recursively-nested parts of sequence).
Sum-product networks (restrict potentials to allow exact computation).
“Dictionary” feature is non-Markov, but exact computation still easy.

We can alternately use our previous approximations:
1 Pseudo-likelihood (what we used).
2 Monte Carlo approximate inference (eventually better but probably much slower).
3 Variational approximate inference (fast, quality varies).
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Structure Learning in UGMs

Recall that in Ising UGMs, our edge potentials have the form

ϕij(xi, xj) = exp(wijxixj).

If we set wij = 0, it sets ϕij(xi, xj) = 1 for all xi and xj .

Potential just “multiplies by 1”, which is equivalent to removing the edge.

L1-regularization of wij values performs structure learning in UGM.

For general log-linear, each edge has multiple parameters wi,j,s,s′ .
In this case we can use “group L1-regularization” for structure learning.

Each group will be all parameters wi,j,·,· associated with an edge (i, j).
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Structure Learning on Rain Data

Large λ (and optimal tree):
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Structure Learning on USPS Digits
Structure learning of pairwise UGM with group-L1 on USPS digits:
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Structure Learning on News Words
Group-L1 on newsgroups data:
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Structure Learning on News Words
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Posterior Regularization

In some cases it might make sense to use posterior regularization:
Regularize the probabilities in the resulting model.

Consider an NLP labeling task where
You have a small amount of labeled sentences.
You have a huge amount of unlabeled sentences.

Maximize labeled likelihood, plus total-variation penalty on p(yc | x,w) values.
Give high regularization weights to words appearing in same trigrams:

http://jgillenw.com/conll2013-talk.pdf

Useful for “out of vocabulary” words (words that don’t appear in labeled data).
Has been replaced in recent by continuous word representations like word2vec.
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Does Semi-Supervised Learning Make Sense?

Should unlabeled examples always help supervised learning?
No!

Consider choosing unlabeled features x̄i uniformly at random.
Unlabeled examples collected in this way will not help.
By construction, distribution of x̄i says nothing about ȳi.

Example where SSL is not possible:
Try to detect food allergy by trying random combinations of food:

The actual random process isn’t important, as long as it isn’t affected by labels.
You can sample an infinite number of x̄i values, but they says nothing about labels.

Example where SSL is possible:
Trying to classify images as “cat” vs. “dog.:

Unlabeled data would need to be images of cats or dogs (not random images).
Unlabeled data contains information about what images of cats and dogs look like.
For example, there could be clusters or manifolds in the unlabeled images.
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Does Semi-Supervised Learning Make Sense?

Let’s assume our semi-supervised learning model is represented by this DAG:

Assume we observe {X, y, X̄} and are interested in test labels ỹ:
There is a dependency between y and ỹ because of path through w.

Parameter w is tied between training and test distributions.
There is a dependency between X and ỹ because of path through w (given y).

But note that there is also a second path through D and X̃.
There is a dependency between X̄ and ỹ because of path through D and X̃.

Unlabeled data helps because it tells us about data-generating distribution D.
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Does Semi-Supervised Learning Make Sense?

Now consider generating X̄ independent of D:

Assume we observe {X, y, X̄} and are interested in test labels ỹ:

Knowing X and y are useful for the same reasons as before.
But knowing X̄ is not useful:

Without knowing ȳ, X̄ is d-separated from ỹ (no dependence).
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Tabular Parameterization Example

https://en.wikipedia.org/wiki/Bayesian_network

Some quantities can be directly read from the tables:

p(R = 1) = 0.2.

p(G = 1 | S = 0, R = 1) = 0.8.

Can calculate any probabilities using marginalization/product-rule/Bayes-rule (bonus).
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Tabular Parameterization Example

https://en.wikipedia.org/wiki/Bayesian_network

Can calculate any probabilities using marginalization/product-rule/Bayes-rule, for example:

p(G = 1 | R = 1) = p(G = 1, S = 0 | R = 1) + p(G = 1, S = 1 | R = 1)

(
p(a | c) =

∑
b

p(a, b | c)
)

= p(G = 1 | S = 0, R = 1)p(S = 0 | R = 1) + p(G = 1 | S = 1, R = 1)p(S = 1 | R = 1)

= 0.8(0.99) + 0.99(0.01) = 0.81.
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Dynamic Bayesian Networks

Dynamic Bayesian networks combine ideas from DAGs and Markov chains:
At each time, we have a set of variables xt.
The initial x0 comes from an “initial” DAG.
Given xt−1, we generate xt from a “transition” DAG.

https://www.cs.ubc.ca/~murphyk/Papers/dbnsem_uai98.pdf

Can be used to model multiple variables over time.
Unconditional sampling is easy but inference may be hard.
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Outline

5 Bonus material on inference
More UGMs
Treewidth
ICM
Block Inference

6 Bonus: Topic Models

7 Topic Models

8 Bonus: Restricted Boltzmann Machines
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General Pairwise UGM

For general discrete xi a generalization of Ising models is

p(x1, x2, . . . , xd) =
1

Z
exp

 d∑
i=1

wi,xi +
∑

(i,j)∈E

wi,j,xi,xj

 ,

which can represent any “positive” pairwise UGM (meaning p(x) > 0 for all x).

Interpretation of weights for this UGM:

If wi,1 > wi,2 then we prefer xi = 1 to xi = 2.
If wi,j,1,1 > wi,j,2,2 then we prefer (xi = 1, xj = 1) to (xi = 2, xj = 2).

As before, we can use parameter tying:

We could use the same wi,xi
for all positions i.

Ising model corresponds to a particular parameter tying of the wi,j,xi,xj .
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Label Propagation (Graph-Based Semi-Supervised) as a UGM

Consider modeling the probability of a vector of labels ȳ ∈ Rt using

p(ȳ1, ȳ2, . . . , ȳt) ∝ exp

− n∑
i=1

t∑
j=1

wij(y
i − ȳi)2 − 1

2

t∑
i=1

t∑
j=1

w̄ij(ȳ
i − ȳj)2

 .

Decoding in this model is the label propagation problem.

This is a pairwise UGM:

ϕj(ȳ
j) = exp

(
−

n∑
i=1

wij(y
i − ȳj)2

)
, ϕij(ȳ

i, ȳj) = exp

(
−1

2
w̄ij(ȳ

i − ȳj)2
)
.
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Factor Graphs

Factor graphs are a way to visualize UGMs that distinguishes different orders.
Use circles for variables, squares to represent dependencies.

Factor graph of p(x1, x2, x3) ∝ ϕ12(x1, x2)ϕ13(x1, x3)ϕ23(x2, x3):

Factor graph of p(x1, x2, x3) ∝ ϕ123(x1, x2, x3):
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Other Graphical Models

Factor graphs: we use a square between variables that appear in same factor.

Can distinguish between a 3-way factor and 3 pairwise factors.

Chain-graphs: DAGs where each block can be a UGM.

Ancestral-graph:

Generalization of DAGs that is closed under conditioning.

Structural equation models (SEMs): generalization of DAGs that allows cycles.
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Outline

5 Bonus material on inference
More UGMs
Treewidth
ICM
Block Inference

6 Bonus: Topic Models

7 Topic Models

8 Bonus: Restricted Boltzmann Machines

63 / 159



Moralization: Converting DAGs to UGMs

To address the NP-hard problems, DAGs and UGMs use same techniques.
We’ll focus on UGMs, but we can convert DAGs to UGMs:

p(x1, x2, . . . , xd) =

d∏
j=1

p(xj |xpa(j)) =
d∏

j=1

ϕj(xj , xpa(j))︸ ︷︷ ︸
=p(xj |xpa(j))

,

which is a UGM with Z = 1.
Graphically: we drop directions and “marry” parents (moralization).

May no longer see some independences, but doesn’t change computational cost.
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Easy Cases: Chains, Trees and Forests

The forward-backward algorithm still works for chain-structured UGMs:
We compute the forward messages M and the backwards messages V .
With both M and V we can [conditionally] decode/marginalize/sample.

Belief propagation generalizes this to trees (undirected graphs with no cycles):
Pick an arbitrary node as the “root”, and order the nodes going away from the root.

Pass messages starting from the “leaves” going towards the root.

“Root” is like the last node in a Markov chain.
Backtrack from root to leaves to do decoding/sampling.
Send messages from the root going to the leaves to compute all marginals.

https://www.quora.com/

Probabilistic-graphical-models-what-are-the-relationships-between-sum-product-algorithm-belief-propagation-and-junction-tree-algorithm
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Easy Cases: Chains, Trees and Forests

Recall the CK equations in Markov chains:

Mc(xc) =
∑
xp

p(xc | xp)Mp(xp).

For chain-structure UGMs we would have:

Mc(xc) ∝
∑
xp

ϕ(xp)ϕ(xp, xc)Mp(xp).

In tree-structured UGMs, parent p in the ordering may have multiple parents.
Message coming from “neighbour” i that itself has neighbours j and k would be

Mic(xc) ∝
∑
xi

ϕi(xi)ϕic(xi, xc)Mji(xi)Mki(xi),

Univariate marginals are proportional to ϕi(xi) times all “incoming” messages.
The“forward” and “backward” Markov chain messages are a special case.
Replace

∑
xi

with maxxi for decoding.
“Sum-product” and “max-product” algorithms.
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Exact Inference in UGMs

For general graphs, the cost of message passing depends on
1 Graph structure.
2 Variable order.

To see the effect of the order, consider Markov chain inference with bad ordering:

p(x5) =
∑
x5

∑
x4

∑
x3

∑
x2

∑
x1

p(x1)p(x2 | x1)p(x3 | x2)p(x4 | x3)p(x5 | x4)

=
∑
x5

∑
x1

∑
x4

∑
x3

∑
x2

p(x1)p(x2 | x1)p(x3 | x2)p(x4 | x3)p(x5 | x4)

=
∑
x5

∑
x1

p(x1)
∑
x3

∑
x4

p(x4 | x3)p(x5 | x4)
∑
x2

p(x2 | x1)p(x3 | x2)︸ ︷︷ ︸
M13(x1,x3)

So even though we have a chain, we have an M with k2 values instead of k.
Increases cost to O(dk3) instead of O(dk2).
Inference can be exponentially more expensive with the wrong ordering.
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Exact Inference in UGMs

For general graphs, the cost of message passing depends on
1 Graph structure.
2 Variable order.

As a non-tree example, consider computing Z in a simple 4-node cycle:

Z =
∑
x4

∑
x3

∑
x2

∑
x1

ϕ12(x1, x2)ϕ23(x2, x3)ϕ34(x3, x4)ϕ14(x1, x4)

=
∑
x4

∑
x3

ϕ34(x3, x4)
∑
x2

ϕ23(x2, x3)
∑
x1

ϕ12(x1, x2)ϕ14(x1, x4)

=
∑
x4

∑
x3

ϕ34(x3, x4)
∑
x2

ϕ23(x2, x3)M24(x2, x4)

=
∑
x4

∑
x3

ϕ34(x3, x4)M34(x3, x4) =
∑
x4

M4(x4).

We again have an M with k2 values instead of k.
We can do inference tasks with this graph, but it costs O(dk3) instead of O(dk2).
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Variable Order and Treewidth

Cost of message passing in general graphs is given by O(dkω+1).

Here, ω is the number of dimensions of the largest message.
For trees, ω = 1 so we get our usual cost of O(dk2).

The minimum value of ω across orderings for a given graph is called treewidth.
In terms of graph: “minimum size of largest clique, minus 1, over all triangulations”.

Also called “graph dimension” or “ω-tree”.

Intuitively, you can think of low treewidth as being “close to a tree”.

Trees have a treewidth of 1, and a single loop has a treewidth of 2.
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Treewidth Examples

Examples of k-trees:

2-tree and 3-tree are trees if you use dotted circles to group nodes.
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Treewidth Examples

Trees have ω = 1, so with the right order inference costs O(dk2).

A big loop has ω = 2, so cost with the right ordering is O(dk3).

The below grid-like structure has ω = 3, so cost is O(dk4).
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Variable Order and Treewidth

Junction trees generalize belief propagation to general graphs (requires ordering).
This is the algorithm that achieves the O(dkω+1) runtime.

Computing ω and the optimal ordering is NP-hard.
But various heuristic ordering methods exist.

An m1 by m2 lattice has ω = min{m1,m2}.
So you can do exact inference on “wide chains” with Junction tree.
But for 28 by 28 MNIST digits it would cost O(784 · 229).

Some links if you want to read about treewidth:
https://www.win.tue.nl/~nikhil/courses/2015/2WO08/treewidth-erickson.pdf

https://math.mit.edu/~apost/courses/18.204-2016/18.204_Gerrod_Voigt_final_paper.pdf

For some graphs ω = (d− 1) so there is no gain over brute-force enumeration.
Many graphs have high treewidth so we need approximate inference.
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Iterated Conditional Mode (ICM)

The iterated conditional mode (ICM) algorithm for approximate decoding:

On each iteration k, choose a variable jt.
Maximie the joint probability in terms of xjt (with other variables fixed),

xt+1
j ∈ argmax cp(xt1, . . . , x

t
j−1, xj = c, xtj+1, . . . , x

t
d).

Equivalently, iterations correspond to finding mode of conditional p(xj | xt−j),

xt+1
j ∈ argmax cp(xj = c | xt−j),

where x−j means “xi for all i except xj”: x1, x2, . . . , xj−1, xj+1, . . . , xd.
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ICM in Action

Start with some initial value: x0 =
[
2 2 3 1

]
.

Select random j like j = 3.

Set j to maximize p(x3 | x0−3): x
1 =

[
2 2 1 1

]
.

Select random j like j = 1.

Set j to maximize p(x1 | x1−1): x
2 =

[
3 2 1 1

]
.

Select random j like j = 2.

Set j to maximize p(x2 | x2−2): x
3 =

[
3 2 1 1

]
.

. . .

Repeat until you can no longer improve by single-variable changes.

Intead of random, could cycle through the variables in order.
Or you could greedily choose the variable that increases the probability the most.
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Optimality and Globalization of ICM

Does ICM find the global optimum?

Decoding is usually non-convex, so doesn’t find global optimum.

ICM is an approximate decoding method.

There exist many globalization methods that can improve its performance:

Restarting with random initializations.
Global optimization methods:

Simulated annealing, genetic algorithms, ant colony optimization, GRASP, etc.
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Using the Unnormalized Objective

How can you maximize p(x) in terms of xj if evaluating it is NP-hard?

Let’s define the unnormalized probability p̃ as

p̃(x) =
∏
c∈C

ϕc(xc).

So the normalized probability is given by

p(x) =
p̃(x)

Z
.

In UGMs evaluating Z is hard but evaluating p̃(x) is easy.

And for decoding we only need unnormalized probabilities,

argmaxxp(x) ≡ argmaxx
p̃(x)

Z
≡ argmaxxp̃(x),

so we can decode based on p̃ without knowing Z.
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ICM Iteration Cost

How much does ICM cost?

Consider a pairwise UGM,

p̃(x) =

 d∏
j=1

ϕj(xj)

 ∏
(i,j)∈E

ϕij(xi, xj)

 .

Each ICM update would:
1 Set Mj(xj = s) to product of terms in p̃(x) involving xj , with xj set to s.
2 Set xj to the largest value of Mj(xj).

The variable xj has k values and appears in at most d factors here.
You can compute the k values of these d factors in O(dk) to find the largest.
If you only have m nodes in “Markov blanket”, this reduces to O(mk).

We will define “Markov blanket” in a couple slides.
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ICM in Action
Consider using a UGM for binary image denoising:

We have

Unary potentials ϕj for each position.

Pairwise potentials ϕij for neighbours on grid.

Parameters are trained as CRF (later).

Goal is to produce a noise-free binary image (show video).
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Digression: Closure of UGMs under Conditioning

UGMs are closed under conditioning:

If p(x) is a UGM, then p(xA | xB) can be written as a UGM (for partition A and B).

Conditioning on x2 and x3 in a chain,

gives a UGM defined on x1 and x4 that is disconnected:

Graphically, we “erase the black nodes and their edges”.

Notice that inference in the conditional UGM may be mucher easier.
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Digression: Closure of UGMs under Conditioning

Mathematically, a 4-node pairwise UGM with a chain structure assumes

p(x1, x2, x3, x4) ∝ ϕ1(x1)ϕ2(x2)ϕ3(x3)ϕ4(x4)ϕ12(x1, x2)ϕ23(x2, x3)ϕ34(x3, x4).

Conditioning on x2 and x3 gives UGM over x1 and x4.

p(x1, x4 | x2, x3) =
1

Z ′ϕ
′
1(x1)ϕ

′
4(x4),

where new potentials “absorb” the shared potentials with observed nodes:

ϕ′1(x1) = ϕ1(x1)ϕ12(x1, x2), ϕ′4(x4) = ϕ4(x4)ϕ34(x3, x4).
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Conditioning in UGMs

Conditioning on x2 and x3 in 4-node chain-UGM gives

82 / 159



Simpler Inference in Conditional UGMs

Consider the following graph which could describe bus stops:

If we condition on the “hubs”, the graph forms a forest (and inference is easy).
Simpler inference after conditioning is used by many approximate inference methods.
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Digression: Local Markov Property and Markov Blanket

Approximate inference methods often use conditional p(xj | x−j),

where xk−j means “xki for all i except xkj ”: x
k
1 , x

k
2 , . . . , x

k
j−1, x

k
j+1, . . . , x

k
d.

In UGMs, the conditional simplifies due to conditional independence,

p(xj | x−j) = p(xj | xnei(j)),

this local Markov property means conditional only depends on neighbours.

We say that the neighbours of xj are its “Markov blanket”.

Markov blanket is the set nodes that make you independent of all other nodes.
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Digression: Local Markov Property and Markov Blanket

In UGMs the Markov blanket is the neighbours.

Markov blanket in DAGs: parents, children, co-parents (parents of same children):
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Block-Structured Approximate Inference

Basic approximate inference methods like ICM and Gibb sampling:

Update one xj at a time.
Efficient because conditional UGM is 1 node.

Better approximate inference methods use block updates:

Update a block of xj values at once.
Efficient if conditional UGM allows exact inference.

If we choose the blocks cleverly, this works substantially better.
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Block-Structured Approximate Inference

Consider a lattice-structure and the following two blocks (“red-black ordering”):

Given black nodes, conditional UGM on red nodes is a disconnected graph.
“I can optimally update the red nodes given the black nodes” (and vice versa).

You update d/2 nodes at once for cost of this is O(dk), and easy to parallelize.

Minimum number of blocks to disconnect the graph is graph colouring.
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Block-Structured Approximate Inference

We could also consider general forest-structured blocks:

We can still optimally update the black nodes given the gray nodes in O(dk2).

This works much better than “one at a time”.
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Block Gibbs Sampling in Action

Gibbs vs. tree-structured block-Gibbs samples:

With block sampling, the samples are far less correlated.

We can also do tree-structured block ICM.

Harder to get stuck if you get to update entire trees.
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Block-Structured Approximate Inference

Or we could define a new tree-structured block on each iteration:

The above block updates around two thirds of the nodes optimally.
(Here we’re updating the black nodes.)
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Block ICM Based on Graph Cuts

Consider a binary pairwise UGM with “attractive” potentials,

log ϕij(1, 1) + log ϕij(2, 2) ≥ log ϕij(1, 2) + log ϕij(2, 1).

In words: “neighbours prefer to have similar states”.

In this setting exact decoding can be formulated as a max-flow/min-cut problem.

Can be solved in polynomial time.

This is widely-used computer vision:

Want neighbouring pixels/super-pixels/regions to be more likely to get same label.
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Graph Cut Example: “GrabCut”

http://cvg.ethz.ch/teaching/cvl/2012/grabcut-siggraph04.pdf

1 User draws a box around the object they want to segment.

2 Fit Gaussian mixture model to pixels inside the box, and to pixels outside the box.
3 Construct a pairwise UGM using:

ϕi(xi) set to GMM probability of pixel i being in class xi.
ϕij(xi, xj) set to Ising potential times RBF based on spatial/colour distance.

Use wij > 0 so the model is “attractive”.

4 Perform exact decoding in the binary attractive model using graph cuts.
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Graph Cut Example: “GrabCut”

GrabCut with extra user interaction:

http://cvg.ethz.ch/teaching/cvl/2012/grabcut-siggraph04.pdf
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Alpha-Beta Swap and Alpha-Expansions: ICM with Graph Cuts

If we have more than 2 states, we can’t use graph cuts.

Alpha-beta swaps are an approximate decoding method for “pairwise attractive”,

log ϕij(α, α) + log ϕij(β, β) ≥ log ϕij(α, β) + log ϕij(β, α).

Each step choose an α and β, optimally “swaps” labels among these nodes.

Alpha-expansions are another variation based on a slightly stronger assumption,

log ϕij(α, α) + log ϕij(β1, β2) ≥ log ϕij(α, β1) + log ϕij(β2, α).

Steps choose label α, and consider replacing the label of any node not labeled α.
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Alpha-Beta Swap and Alpha-Expansions: ICM with Graph Cuts

These don’t find global optima in general, but make huge moves:

A somewhat-related MCMC method is the Swendson-Wang algorithm.
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Example: Photomontage

Photomontage: combining different photos into one photo:

http://vision.middlebury.edu/MRF/pdf/MRF-PAMI.pdf

Here, xi corresponds to identity of original image at position i.
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Example: Photomontage

Photomontage: combining different photos into one photo:

http://vision.middlebury.edu/MRF/pdf/MRF-PAMI.pdf98 / 159
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Motivation for Topic Models
We want a model of the hidden “factors” making up a set of documents.

In this context, latent-factor models are called topic models.

https://www.sciencedirect.com/science/article/pii/S2468502X17300074

“Topics” could be useful for things like searching for relevant documents.
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Classic Approach: Latent Semantic Indexing

Classic methods are based on scores like TF-IDF:
1 Term frequency: probability of a word occuring within a document.

E.g., 7% of words in document i are the and 2% of the words are LeBron.
2 Document frequency: probability of a word occuring across documents.

E.g., 100% of documents contain the and 0.01% have LeBron.
3 TF-IDF: measures like (term frequency)*log 1/(document frequency).

Seeing LeBron tells you a lot about the document; seeing the tells you nothing.

Many many many variations exist.

TF-IDF features are very redundant.
Consider TF-IDF of LeBron, Durant, and Giannis.
High values of these typically just indicate topic of “basketball”.
Basically a weighted bag of words.

We want to find latent factors (“topics”) like “basketball”.
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Modern Approach: Latent Dirichlet Allocation

Latent semantic indexing (LSI) topic model:
1 Summarize each document by its TF-IDF values.
2 Run a latent-factor model like PCA or NMF on the matrix.
3 Treat the latent factors as the “topics”.

LSI has been largely replaced by latent Dirichlet allocation (LDA).
Hierarchical Bayesian model of all words in a document.

Still ignores word order.
Tries to explain all words in terms of topics.

The most cited ML paper in the 00s?

LDA has several components; we’ll build up to it by parts.

We’ll assume all documents have d words and word order doesn’t matter.
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Model 1: Categorical Distribution of Words

Base model: each word xj comes from the same categorical distribution.

p(xj = the) = θthe where θword ≥ 0 and
∑
word

θword = 1.

So to generate a document with d words:
Sample d words from the categorical distribution.

Drawback: misses that documents are about different “topics.”
We want the word distribution to depend on the “topics.”

103 / 159



Model 2: Mixture of Categorical Distributions

To represent “topics”, we’ll use a mixture model.
Each mixture has its own categorical distribution over words.

E.g., the “basketball” mixture will have higher probability of LeBron.

So to generate a document with d words:
Sample a topic z from a categorical distribution.
Sample d words from categorical distribution z.

Similar to a mixture of independent categorical distributions.
But we tie categorical distribution across the d variables, given cluster.

Drawback: misses that documents may be about more than one topic.
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Model 3: Multi-Topic Mixture of Categorical

Our third model introduces a new vector of “topic proportions” π.
Gives percentage of each topic that makes up the document.

E.g., 80% basketball and 20% politics.

Called probabilistic latent semantic indexing (PLSI).

So to generate a document with d words given topic proportions π:
Sample d topics zj from categorical distribution π.
Sample a word for each zj from corresponding categorical distribution.

Similar to HMM where each “time” has own cluster (but no Markov assumption).
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Model 4: Latent Dirichlet Allocation

Latent Dirichlet allocation (LDA) puts a prior on topic proportions.
Conjugate prior for categorical is Dirichlet distribution.

So to generate a document with d words given Dirichlet prior:
Sample mixture proportions π from the Dirichlet prior.
Sample d topics zj from categorical distribution π.
Sample a word for each zj from corresponding categorical distribution.

This is the generative model, typically used with MCMC or variational methods.
106 / 159



107 / 159



108 / 159



109 / 159



110 / 159



Latent Dirichlet Allocation Example

http://menome.com/wp/wp-content/uploads/2014/12/Blei2011.pdf
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Latent Dirichlet Allocation Example

http://menome.com/wp/wp-content/uploads/2014/12/Blei2011.pdf
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Latent Dirichlet Allocation Example
Health topics in social media:

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0103408
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Latent Dirichlet Allocation Example
Three topics in 100 years of “Vogue” fashion magazine:

http://dh.library.yale.edu/projects/vogue/topics/
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Discussion of Topic Models

There are many extensions of LDA:

We can put prior on the number of words (like Poisson).
Correlated and hierarchical topic models learn dependencies between topics.

http://people.ee.duke.edu/~lcarin/Blei2005CTM.pdf
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Discussion of Topic Models

There are many extensions of LDA:
We can put prior on the number of words (like Poisson).
Correlated and hierarchical topic models learn dependencies between topics.
Can be combined with Markov models to capture dependencies over time.

http://menome.com/wp/wp-content/uploads/2014/12/Blei2011.pdf116 / 159
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Discussion of Topic Models

There are many extensions of LDA:

We can put prior on the number of words (like Poisson).
Correlated and hierarchical topic models learn dependencies between topics.
Can be combined with Markov models to capture dependencies over time.
Better word representations like“word2vec” (CPSC 340).
Now being applied beyond text, like “cancer mutation signatures”:

http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1005657
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Discussion of Topic Models

Topic models for analyzing musical keys:

http://cseweb.ucsd.edu/~dhu/docs/nips09_abstract.pdf118 / 159
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Monte Carlo Methods for Topic Models

Nasty integrals in topic models:

https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation
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Monte Carlo Methods for Topic Models

How do we actually use Monte Carlo for topic models?

First we write out the posterior:
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Monte Carlo Methods for Topic Models

How do we actually use Monte Carlo for topic models?

First we generate samples from the posterior:
With Gibbs sampling we alternate between:

Sampling topics given word probabilities and topic proportions.
Sampling topic proportions given topics and prior parameters α.
Sampling word probabilities given topics, words, and prior parameters β.

Have a burn-in period, use thinning, try to monitor convergence, and so on.

Then we use posterior samples to do inference:

Distribution of topic proportions for sample i is frequency in samples.
To see if words come from same topic, check frequency in samples.
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Motivation for Topic Models
We want a model of the hidden “factors” making up a set of documents.

In this context, latent-factor models are called topic models.

https://www.sciencedirect.com/science/article/pii/S2468502X17300074

“Topics” could be useful for things like searching for relevant documents.
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Classic Approach: Latent Semantic Indexing

Classic methods are based on scores like TF-IDF:
1 Term frequency: probability of a word occuring within a document.

E.g., 7% of words in document i are the and 2% of the words are LeBron.
2 Document frequency: probability of a word occuring across documents.

E.g., 100% of documents contain the and 0.01% have LeBron.
3 TF-IDF: measures like (term frequency)*log 1/(document frequency).

Seeing LeBron tells you a lot about the document; seeing the tells you nothing.

Many many many variations exist.

TF-IDF features are very redundant.
Consider TF-IDF of LeBron, Durant, and Giannis.
High values of these typically just indicate topic of “basketball”.
Basically a weighted bag of words.

We want to find latent factors (“topics”) like “basketball”.
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Modern Approach: Latent Dirichlet Allocation

Latent semantic indexing (LSI) topic model:
1 Summarize each document by its TF-IDF values.
2 Run a latent-factor model like PCA or NMF on the matrix.
3 Treat the latent factors as the “topics”.

LSI has been largely replaced by latent Dirichlet allocation (LDA).
Hierarchical Bayesian model of all words in a document.

Still ignores word order.
Tries to explain all words in terms of topics.

The most cited ML paper in the 00s?

LDA has several components; we’ll build up to it by parts.

We’ll assume all documents have d words and word order doesn’t matter.
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Model 1: Categorical Distribution of Words

Base model: each word xj comes from the same categorical distribution.

p(xj = the) = θthe where θword ≥ 0 and
∑
word

θword = 1.

So to generate a document with d words:
Sample d words from the categorical distribution.

Drawback: misses that documents are about different “topics.”
We want the word distribution to depend on the “topics.”
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Model 2: Mixture of Categorical Distributions

To represent “topics”, we’ll use a mixture model.
Each mixture has its own categorical distribution over words.

E.g., the “basketball” mixture will have higher probability of LeBron.

So to generate a document with d words:
Sample a topic z from a categorical distribution.
Sample d words from categorical distribution z.

Similar to a mixture of independent categorical distributions.
But we tie categorical distribution across the d variables, given cluster.

Drawback: misses that documents may be about more than one topic.
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Model 3: Multi-Topic Mixture of Categorical

Our third model introduces a new vector of “topic proportions” π.
Gives percentage of each topic that makes up the document.

E.g., 80% basketball and 20% politics.

Called probabilistic latent semantic indexing (PLSI).

So to generate a document with d words given topic proportions π:
Sample d topics zj from categorical distribution π.
Sample a word for each zj from corresponding categorical distribution.

Similar to HMM where each “time” has own cluster (but no Markov assumption).
128 / 159



Model 4: Latent Dirichlet Allocation

Latent Dirichlet allocation (LDA) puts a prior on topic proportions.
Conjugate prior for categorical is Dirichlet distribution.

So to generate a document with d words given Dirichlet prior:
Sample mixture proportions π from the Dirichlet prior.
Sample d topics zj from categorical distribution π.
Sample a word for each zj from corresponding categorical distribution.

This is the generative model, typically used with MCMC or variational methods.
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Latent Dirichlet Allocation Example

http://menome.com/wp/wp-content/uploads/2014/12/Blei2011.pdf
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Latent Dirichlet Allocation Example

http://menome.com/wp/wp-content/uploads/2014/12/Blei2011.pdf
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Latent Dirichlet Allocation Example
Health topics in social media:

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0103408
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Latent Dirichlet Allocation Example
Three topics in 100 years of “Vogue” fashion magazine:

http://dh.library.yale.edu/projects/vogue/topics/
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Discussion of Topic Models

There are many extensions of LDA:

We can put prior on the number of words (like Poisson).
Correlated and hierarchical topic models learn dependencies between topics.

http://people.ee.duke.edu/~lcarin/Blei2005CTM.pdf
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Discussion of Topic Models

There are many extensions of LDA:
We can put prior on the number of words (like Poisson).
Correlated and hierarchical topic models learn dependencies between topics.
Can be combined with Markov models to capture dependencies over time.

http://menome.com/wp/wp-content/uploads/2014/12/Blei2011.pdf139 / 159
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Discussion of Topic Models

There are many extensions of LDA:

We can put prior on the number of words (like Poisson).
Correlated and hierarchical topic models learn dependencies between topics.
Can be combined with Markov models to capture dependencies over time.
Better word representations like“word2vec” (CPSC 340).
Now being applied beyond text, like “cancer mutation signatures”:

http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1005657
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Discussion of Topic Models

Topic models for analyzing musical keys:

http://cseweb.ucsd.edu/~dhu/docs/nips09_abstract.pdf141 / 159
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Monte Carlo Methods for Topic Models

Nasty integrals in topic models:

https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation
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Monte Carlo Methods for Topic Models

How do we actually use Monte Carlo for topic models?

First we write out the posterior:
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Monte Carlo Methods for Topic Models

How do we actually use Monte Carlo for topic models?

First we generate samples from the posterior:
With Gibbs sampling we alternate between:

Sampling topics given word probabilities and topic proportions.
Sampling topic proportions given topics and prior parameters α.
Sampling word probabilities given topics, words, and prior parameters β.

Have a burn-in period, use thinning, try to monitor convergence, and so on.

Then we use posterior samples to do inference:

Distribution of topic proportions for sample i is frequency in samples.
To see if words come from same topic, check frequency in samples.
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Outline

5 Bonus material on inference

6 Bonus: Topic Models
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8 Bonus: Restricted Boltzmann Machines
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Mixture of Bernoullis Models

Recall the mixture of Bernoullis models:

p(x) =

k∑
c=1

p(z = c)

d∏
j=1

p(xj | z = c).

Given z, each variable xj comes from a product of Bernoullis

This is enough to model any multivariate binary distribution.
But not an efficient representation: number of cluster might need to be huge.

Need to learn each cluster independently (no “shared” information across clusters).
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Mixture of Independents as a UGM

The mixture of independents assumptions can be represented as a UGM:

“The xj are independent given the cluster z”.

A log-linear parameterization for xj ∈ {−1,+1} and z ∈ {−1,+1} could be

ϕj(xj) = exp(wjxj), ϕz(z) = exp(vz), ϕj,z(xj , z) = exp(wjxjz).

We have three types of parameters:
Weight wj in ϕj affects probability of xj = 1 (independent of cluster).
Weight v in ϕz affecst probability that zj = 1 (prior for cluster).
Weight wj in ϕj,z affects probability that xj and z are same.

Can encourage each binary variable to be same or different than “cluster sign”.
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“Double Clustering” Model

Now consider adding a second binary cluster variable:

“The xj are independent given both cluster variables z1 and z2”.

A log-linear parameterization for xj ∈ {−1,+1} and zc ∈ {−1,+1} could be

ϕj(xj) = exp(wjxj), ϕc(zc) = exp(vczc), ϕj,c(xj , zc) = exp(wjcxjz)

We have three types of parameters:
Weight wj in ϕj affects probability of xj = 1 (independent of cluster).
Weight vc in ϕz affecst probability that zc = 1 (prior for cluster variable).
Weight wjc in ϕj,z affects probability that xj and zc are same.

Can encourage each binary variable to be same or different than “cluster variable”.
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“Double Clustering” Model

Now consider adding a second binary cluster variable:

Have we gained anything?

We have 4 clusters based on two hidden variables.
Each cluster shares parameters with 2 of the other clusters.

Hope is to achieve some degree of composition

Don’t need to re-learn basic things about the xj in each cluster.
Maybe one hidden zc models clusters, and another models correlations.

So that when you use both, you can capture both aspects.
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Restricted Boltzmann Machines (RBMs)

Now consider adding two more binary latent variables:

Now we have 16 clusters, in general we’ll have 2k with k hidden binary nodes.
This discrete latent-factors give combinatorial number of mixtures.

You can think of each zc as a “part” that can be included or not (“binary PCA”).

This is called a restricted Boltzmann machine (RBM).
A Boltzmann machine is a UGM with binary hidden variables.

It is restricted because all edges are between “visible” xj and “hidden” zc.
If we know the xj , then the zc are independent.
If we know the zc, then the xj are independent.
Inference on both x and z is hard.

But we could alternate between Gibbs sampling of all x and all z variables.
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Generating Digits with RBMs

http://deeplearning.net/tutorial/rbm.html
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Generating Digits with RBMs
Visualizing each zc’s interaction parameters (wjc for all j) as images:

http://deeplearning.net/tutorial/rbm.html
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Restricted Boltzmann Machines

The RBM graph structure leads to a joint distribution of the form

p(x, z) =
1

Z

 d∏
j=1

ϕj(xj)

( k∏
c=1

ϕc(zc)

) d∏
j=1

k∏
c=1

ϕjc(xj , zc)

 .

RBMs usually use a log-linear parameterization like

p(x, z) ∝ exp

 d∑
j=1

wjxj +

k∑
c=1

vczc +

d∑
j=1

k∑
c=1

wjcxjzc

 ,

for parameters wj , vc, and wjc (variants exist for non-binary xj).
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Learning UGMs with Hidden Variables

For RBMs we have hidden variables:

With hidden (“nuissance”) variables z the observed likelihood has the form

p(x) =
∑
z

p(x, z) =
∑
z

p̃(x, z)

Z

=
1

Z

∑
z

p̃(x, z)︸ ︷︷ ︸
Z(x)

=
Z(x)

Z
,

where Z(x) is the partition function of the conditional UGM given x.
Z(x) is cheap in RBMs because the z are independent given x.
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Learning UGMs with Hidden Variables

This gives an observed NLL of the form

− log p(x) = − log(Z(x)) + logZ,

where Z(x) sums over hidden z values, and Z sums over z and x.

The second term is convex but the first term is non-convex.
This is expected when we have hidden variables.

With a log-linear parameterization, the gradient has the form

−∇ log p(x) = − E
z|x

[F (X,Z)] + E
z,x

[F (X,Z)].

For RBMs, first term is cheap due to independence of z given x.
We can approximate second term using block Gibbs sampling.

For other problems, you would also need to approximate first term.
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Deep Boltzmann Machines

15 years ago, a hot topic was “stacking RBMs”, as in deep Boltzmann Machine:

Part of the motivation for people to re-consider “deep” models.

Model above allows block Gibbs sampling “by layer”.

Variables in layer are conditionally independent given layer above and below.
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Deep Boltzmann Machines

Performance of deep Boltzmann machine on NORB data:

http://www.cs.toronto.edu/~fritz/absps/dbm.pdf
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Deep Belief Networks

There were also deep belief networks where RBM outputs DAG layers.

More difficult to train and do inference due to explaining away.

Though easier to sample using ancestral sampling.
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Cool Pictures Motivation for Deep Learning

First layer of zi in a convolutional deep belief network:

Visualization of second and third layers trained on specific objects:

http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf

Many classes use these particular images to motivate deep neural networks
But they’re not from a neural network: they’re from a deep DAG model
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