Directed Acyclic Graphical Models

CPSC 440/550: Advanced Machine Learning
cs.ubc.ca/~dsuth/440/23w2

University of British Columbia, on unceded Musqueam land

$$
\text { 2023-24 Winter Term } 2 \text { (Jan-Apr 2024) }
$$

Higher-Order Markov Models

- Markov models use a density of the form

$$
p(x)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}\right) p\left(x_{4} \mid x_{3}\right) \cdots p\left(x_{d} \mid x_{d-1}\right)
$$

- They support efficient computation but Markov assumption is strong
- A more flexible model would be a second-order Markov model,

$$
p(x)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}, x_{1}\right) p\left(x_{4} \mid x_{3}, x_{2}\right) \cdots p\left(x_{d} \mid x_{d-1}, x_{d-2}\right)
$$

or even higher-order models

- General case is called directed acyclic graphical (DAG) models:
- They allow dependence on any subset of previous features

DAG Models

- As in Markov chains, DAG models use the chain rule to write

$$
p\left(x_{1}, x_{2}, \ldots, x_{d}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) \cdots p\left(x_{d} \mid x_{1}, x_{2}, \ldots, x_{d-1}\right)
$$

- We can alternately write this as:

$$
p\left(x_{1}, x_{2}, \ldots, x_{d}\right)=\prod_{j=1}^{d} p\left(x_{j} \mid x_{1: j-1}\right)
$$

- In Markov chains, we assumed x_{j} only depends on previous x_{j-1} given past
- In DAGs, x_{j} can depend on any subset of the past $x_{1}, x_{2}, \ldots, x_{j-1}$

DAG Models

- We often write joint probability in DAG models as

$$
p\left(x_{1}, x_{2}, \ldots, x_{d}\right)=\prod_{j=1}^{d} p\left(x_{j} \mid x_{\mathrm{pa}(j)}\right)
$$

where $\mathrm{pa}(j)$ are the "parents" of feature j

- For Markov chains, the only parent of j is $j-1$
- If everything is binary, a variable with k parents needs (up to) 2^{k+1} parameters
- This corresponds to a set of conditional independence assumptions:

$$
p\left(x_{j} \mid x_{1: j-1}\right)=p\left(x_{j} \mid x_{\mathrm{pa}(j)}\right)
$$

- Variables are independent of previous non-parents, given the parents

MNIST Digits with Markov Chains

- Recall trying to model digits using an inhomogeneous Markov chain:

- Only models dependence on pixel above, not on 2 pixels above nor across columns

MNIST Digits with DAG Model (Sparse Parents)

- Samples from a DAG model with 8 parents per feature:

- Parents of (i, j) are 8 other pixels in the neighbourhood ("up by 2 , left by 2 "):

$$
\{(i-2, j-2),(i-1, j-2),(i, j-2),(i-2, j-1),(i-1, j-1),(i, j-1),(i-2, j),(i-1, j)\}
$$

DAG Models

- "Graphical" name comes from visualizing parents/features as a graph:
- We have a node for each feature j
- We place an edge into j from each of its parents
- This graph is not just a visualization tool:
- Can be used to test arbitrary conditional independences ("d-separation")
- Graph structure tells us whether message passing is efficient ("treewidth")

Graph Structure Examples

- For a product of independent distributions, we have

$$
p(x)=\prod_{j=1}^{d} p\left(x_{j}\right)
$$

- So, $\operatorname{pa}(j)=\{ \}$, and the graph is
$\otimes{ }^{*}$

Graph Structure Examples

- In a Markov chain, we have

$$
p(x)=p\left(x_{1}\right) \prod_{j=2}^{d} p\left(x_{j} \mid x_{j-1}\right)
$$

- So, $\mathrm{pa}(j)=\{j-1\}$, and the graph is

Graph Structure Examples

- In a second-order Markov chain, we have

$$
p(x)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) \prod_{j=3}^{d} p\left(x_{j} \mid x_{j-1}, x_{j-2}\right)
$$

- So, $\mathrm{pa}(j)=\{j-2, j-1\}$, and the graph is

Graph Structure Examples

- With a fully general distribution, we have

$$
p(x)=\prod_{j=1}^{d} p\left(x_{j} \mid x_{1: j-1}\right)
$$

- So, $\operatorname{pa}(j)=\{1,2, \ldots, j-1\}$, and the graph is

Graph Structure Examples

- In naive Bayes (or GDA with diagonal Σ) we add an extra variable y :

$$
p(y, x)=p(y) \prod_{j=1}^{d} p\left(x_{j} \mid y\right)
$$

- So, $\mathrm{pa}(y)=\{ \}, \mathrm{pa}\left(x_{j}\right)=y$:

- Notation inconsistent: both parents of a random variable $\left(x_{j}\right)$ and of index (j)

Graph Structure Examples

- We can consider genetic phylogeny (family trees):

- The "parents" in the graph are an individual's biological parents
- Independence assumption: only depend on grandparent's genes through parents

First DAG Model

- DAGs were first used to analyze inheritance in guinea pigs (1920):

Diagram illustrating the casual relations between litter mates ($\mathrm{O}, \mathrm{O}^{\prime}$) and between each of them and their parents. $\mathrm{H}, \mathrm{H}^{\prime}, \mathrm{H}^{\prime \prime}, \mathrm{H},{ }^{\prime \prime \prime}$ represent the genetic constitutions of the four individuals, $\mathrm{G}, \mathrm{G}^{\prime}, \mathrm{G}^{\prime \prime}$, and $\mathrm{G}^{\prime \prime \prime}$ that of four germ cells. E represents such environmental factors as are common to litter mates. D represents other factors, largely ontogenetic irregularity. The small letters stand for the various path coefficients.

Example: Vehicle Insurance

- Want to predict bottom three "cost" variables, given observed and unobserved values:

https://www.cs.princeton.edu/courses/archive/fall10/cos402/assignments/bayes

Example: Radar and Aircraft Control

- Modeling multiple planes and radar signals:

Example: Water Resource Management

- Dependencies in environmental monitor and susatainability issues:

https://www.jstor.org/stable/26268156

Outline

(1) Directed Acyclic Graphical Models
(2) D-Separation
(3) Plate Notation

4 DAG Model Learning and Inference

Density Estimators vs. Relationship Visualizers

- In machine learning, DAGs are often used in two different ways:
(1) As a multivariate density estimation method (soon)
(2) As a way to describe the relationships we are modeling
- All independence assumptions we have used in $340 / 440$ have DAG representation*
- Includes product of Bernoullis and naive Bayes, but also IID and prior vs. hyper-prior
- *Except multivariate Gaussians (which can use "undirected" independence)
- For example, we'll talk later about hidden Markov models (HMMs):

- The graph and variable names already give you an idea of what this model does:
- Hidden variables z_{j} follow a Markov chain; feature x_{j} depends on z_{j}

Extra Conditional Independences in Markov Chains

- Markov assumption in Markov chains: $x_{j} \Perp x_{1}, x_{2}, \ldots, x_{j-2} \mid x_{j-1}$ for all j
- This implies other independences, like $x_{j} \Perp x_{1}, x_{2}, \ldots, x_{j-3} \mid x_{j-2}$
- We didn't assume this directly; it follows from assumptions we made
- We can use this property to easily compute $p\left(x_{j} \mid x_{j-2}, x_{j-3}, \ldots, x_{1}\right)$:

$$
\begin{aligned}
p\left(x_{j} \mid x_{j-2}, x_{j-3}, \ldots x_{1}\right) & =p\left(x_{j} \mid x_{j-2}\right) \\
& =\sum_{x_{j-1}} p\left(x_{j}, x_{j-1} \mid x_{j-2}\right) \\
& =\sum_{x_{j-1}} p\left(x_{j} \mid x_{j-1}, x_{j-2}\right) p\left(x_{j-1} \mid x_{j-2}\right) \\
& =\sum_{x_{j-1}} \underbrace{p\left(x_{j} \mid x_{j-1}\right)}_{\text {transition prob }} \underbrace{p\left(x_{j-1} \mid x_{j-2}\right)}_{\text {transition prob }}
\end{aligned}
$$

- Mathematically showing extra independence assumptions is tedious (see bonus)
- But all conditional independences implied by a DAG can seen in the graph

D-Separation: From Graphs to Conditional Independence

- In DAGs: sets of variables A and B are conditionally independent given C if:
- "D-separation blocks all undirected paths in the graph from any variable in A to any variable in $B^{\prime \prime}$
- In the special case of product of independent models our graph is:

- Here there are no paths to block, which implies the variables are independent
- Checking paths in a graph tends to be faster than tedious calculations

D-Separation as Genetic Inheritance

- The rules of d-separation are intuitive in a simple model of gene inheritance:
- Each node/person has single number, which we'll call a "gene"
- If you have no parents, your gene is a random number
- If you have parents, your gene is a sum of your parents plus noise
- For example, think of something like this:

- Graph corresponds to the factorization $p\left(x_{1}, x_{2}, x_{3}\right)=p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{3} \mid x_{1}, x_{2}\right)$
- In this model, does $p\left(x_{1}, x_{2}\right)=p\left(x_{1}\right) p\left(x_{2}\right)$? (Are x_{1} and x_{2} independent?)

D-Separation as Genetic Inheritance

- Genes of people are independent if knowing one says nothing about the other
- Your gene is dependent on your parents:
- If I know your parent's gene, I know something about yours
- Your gene is independent of your (unrelated) friends:
- If you know your friend's gene, it doesn't tell me anything about you
- Genes of people can be conditionally independent given a third person:
- Knowing your grandparent's gene tells you something about your gene
- But grandparent's gene isn't useful if you know parent's gene
- You're conditionally independent of grandparent, given parent

D-Separation Case 0 (No Paths and Direct Links)

Are genes in person x independent of the genes in person y ?

- No path: x and y are not related (independent)

We have $x \Perp y$: there are no paths to be blocked

- Direct link: X is the parent of y

We have $x \mathbb{H} y$: knowing x tells you about y (direct paths aren't blockable)

- And similarly, knowing y tells you about x

D-Separation Case 0 (No Paths and Direct Links)

Neither case changes if we have a third independent person z :

- No path: If x and y are independent,

We have $x \Perp y$: adding z doesn't make a path.

- Direct link: x is the parent of y,

We have $x \nVdash y \mid z$: adding z doesn't block path

- We'll use black or shaded nodes to denote values we condition on (in this case Z)
- We sometimes also call the nodes that we condition on the "observations"

D-Separation Case 1: Chain

- Case 1: x is the grandparent of y
- If z is the parent we have:

We have $x \nVdash y$: knowing x would give information about y because of z

- But if z is observed:

In this case $x \Perp y \mid z$: knowing z "breaks" dependence between x and y

D-Separation Case 1: Chain

- The same logic holds for great-grandparents:

- We have $x \nVdash y$ (left), but $x \Perp y \mid z_{1}$ (right).
- We also have $x \Perp y \mid z_{2}$ and that $x \Perp y \mid z_{1}, z_{2}$
- This case lets you test any independence in Markov chains
- "Variables are independent conditioned on any variable in betweeen"

D-Separation Case 1: Chain

- Consider weird case where parents z_{1} and z_{2} share parent x :
- If z_{1} and z_{2} are observed:

We have $x \Perp y \mid z_{1}, z_{2}$: knowing both parents breaks dependency

- But if only z_{1} is observed:

We have $x \nVdash y \mid z_{1}$: dependence still "flows" through z_{2}

D-Separation Case 2: Common Parent

- Case 2: x and y are siblings
- If z is a common unobserved parent:

We have $x \nVdash y$: knowing x would give information about y

- But if z is observed:

In this case $x \Perp y \mid z$: knowing z "breaks" dependence between x and y

- This is the type of independence used in naive Bayes

D-Separation Case 2: Common Parent

- Case 2: x and y are siblings
- If z_{1} and z_{2} are common observed parents:

We have $x \Perp y \mid z_{1}, z_{2}$: knowing z_{1} and z_{2} breaks dependence between x and y - But if we only observe z_{2} :

Then we have $x \not \Perp y \mid z_{2}$: dependence still "flows" through z_{1}

D-Separation Case 3: Common Child

- Case 3: x and y share a child z :
- If we observe z then we have:

We have $x \nVdash y \mid z$: if we know z, then knowing x gives us information about Y (Sometimes called "explaining away")

- But if z is not observed:

We have $x \Perp y$: if you don't observe z then x and y are independent

- Different from Case 1 and Case 2: not observing the child blocks the path

D-Separation Case 3: Common Child

- Case 3: x and y share a child z_{1} :
- If there exists an unobserved grandchild z_{2} :

We have $x \Perp y$: the path is still blocked by not knowing z_{1} or z_{2}.

- But if z_{2} is observed:

We have $x \nVdash y \mid z_{2}$: grandchild creates dependence even with unobserved child

- Case 3 needs to consider descendants of child

D-Separation Summary (MEMORIZE)

- Undirected path from A to B is a path between anything in A and anything in B, ignoring the direction of edges and whether nodes are observed
- A and B are d-separated given C if all undirected paths from A to B have (at least) one of the following somewhere on the path:
(1) P includes a "chain" with an observed middle node (e.g., Markov chain):

(2) P includes a "fork" with an observed parent node (e.g., naive Bayes):

(3) P includes a " v -structure" or "collider" (e.g., genetic inheritance):

where the "child" and all its descendants are unobserved

Alarm Example

- Case 1:
- Earthquake 느 Call
- Earthquake \Perp Call \| Alarm
- Case 2:
- Alarm $\not \Perp$ Stuff Missing
- Alarm \Perp Stuff Missing | Burglary

Alarm Example

- Case 3:
- Earthquake \Perp Burglary
- Earthquake \mathbb{L} Burglary | Alarm
- "Explaining away": knowing one parent can make the other less/more likely
- Multiple Cases:
- Call ㄴ Stuff Missing
- Earthquake \Perp Stuff Missing
- Earthquake \nVdash Stuff Missing | Call

Discussion of D-Separation

- D-separation lets you say if conditional independence is implied by assumptions:

$$
(A \text { and } B \text { are d-separated given } C) \Rightarrow A \Perp B \mid C
$$

- However, there might be extra conditional independences in the distribution:
- These would depend on specific choices of the DAG parameters
- For example, if we set Markov chain parameters so that $p\left(x_{j} \mid x_{j-1}\right)=p\left(x_{j}\right)$
- Or some orderings of the chain rule may reveal different independences
- Lack of d-separation doesn't imply dependence
- Just that it's not guaranteed to be independent by the graph structure
- Instead of using the order $\{1,2, \ldots, j-1\}$, can have general parent choices
- So x_{2} could be a parent of x_{1}
- As long the graph is acyclic, there exists some valid ordering
(all DAGs have a "topological order" of variables where parents are before children)

Non-Uniqueness of Graph and Equivalent Graphs

- Note that some graphs imply same conditional independences:
- Equivalent graphs: same v-structures and other (undirected) edges are the same
- Examples of 3 equivalent graphs (left) and 3 non-equivalent graphs (right):

Beware of the "Causal" DAG

- It can be helpful to use the language of causality when reasoning about DAGs
- You'll find that they give the correct causal interpretation based on our intuition
- However, keep in mind that the arrows are not necessarily causal
- " A causes B " can have the same graph as " B causes A "!
- There is work on causal DAGs which add semantics to deal with "interventions"
- But these require assuming that the arrow directions are causal
- Fitting a DAG to observational data doesn't imply anything about causality

Outline

(1) Directed Acyclic Graphical Models
(2) D-Separation
(3) Plate Notation

4 DAG Model Learning and Inference

Tilde Notation as a DAG

- When we write

$$
y^{(i)} \sim \mathcal{N}\left(w^{\top} x^{(i)}, 1\right)
$$

this can be interpreted as a DAG model:

- "The variables on the right of \sim are the parents of the variables on the left"
- We can see our standard $x \Perp w$ assumption in the graph
- Common child case: w only depends on x if we know y

IID Assumption as a DAG

- During week 1 , our first independence assumption was the IID assumption:

- Training/test examples come independently from data-generating process D - e.g. D could be "use a normal distribution with mean $\boldsymbol{\mu}$ and covariance $\boldsymbol{\Sigma}$ "
- But D is unobserved, so knowing about some $x^{(i)}$ tells us about the others
- This why the IID assumptions lets us learn

Plate Notation

- Graphical representation of the IID assumption:

- It's common to represent repeated parts of graphs using plate notation:

Linear Regresion

- If the $x^{(i)}$ are IID then we can represent linear regression as

- From d-separation on this graph we have $p(\mathbf{y} \mid \mathbf{X}, w)=\prod_{i=1}^{n} p\left(y^{(i)} \mid x^{(i)}, w\right)$
- Our standard assumption that data is independent given parameters
- We often omit the data-generating distribution D
- But if you want to learn it, then you should remember that it's there
- Discriminative model: here we don't try to model things about $p\left(x^{(i)}\right)$
- Note that plate reflects parameter tying: that we use same w for all i

IID Bernoulli-Beta Model

- The Bernoulli-beta model as a DAG (with parameters and hyper-parameters):

- Notice data is independent of hyper-parameters given parameters
- This is another of our standard independence assumptions

Non-IID Bernoulli-Beta Model

- The non-IID variant we considered with grouped data:

- DAG reflects that we do not tie parameters across all training examples
- Notice that if you fix α and β then you can't learn across groups:
- The θ_{j} are d-separated given α and β
- Can also write more succinctly with nested plates

Non-IID Bernoulli-Beta Model

- Variant of the previous model with a hyper-hyper-parameter:

- Needed to avoid degeneracy

Naive Bayes with DAGs/Plates

- For naive Bayes we have

$$
y^{(i)} \sim \operatorname{Cat}(\theta), \quad x^{(i)} \mid\left(y^{(i)}=c\right) \sim \operatorname{Cat}\left(\theta_{c}\right)
$$

Bayesian Linear Regression as a DAG

- In Bayesian linear regression we assume

$$
y^{i} \sim \mathcal{N}\left(w^{\top} x^{i}, 1\right), \quad w_{j} \sim \mathcal{N}(0,1 / \lambda)
$$

which we can write as

Outline

(1) Directed Acyclic Graphical Models
(2) D-Separation
(3) Plate Notation

4 DAG Model Learning and Inference

Density Estimators vs. Relationship Visualizers

- Besides dependency visualization, we can use DAGs as density estimators
- Recall that DAGs model joint distribution using

$$
p\left(x_{1}, x_{2}, \ldots, x_{d}\right)=\prod_{j=1}^{d} p\left(x_{j} \mid x_{\mathrm{pa}(j)}\right)
$$

- We need to choose a parameterization for these conditional probabilities:
- Tabular parameterization (discrete x_{j}): can model any joint probability
- Common choice; sometimes set parameters from expert knowledge
- Gaussian (continuous x_{j}): $x_{j} \sim \mathcal{N}\left(w^{\top} x_{\mathrm{pa}(j)}, \sigma^{2}\right)$
- Called a Gaussian belief net; joint distribution becomes a multivariate Gaussian
- Sigmoid (binary $\left.x_{j} \in\{-1,+1\}\right): p\left(x_{j} \mid x_{j-1}, w\right)=1 /\left(1+\exp \left(-x_{j} w^{\top} x_{\mathrm{pa}(j)}\right)\right)$
- Called a sigmoid belief net
- Could use softmax, probabilistic random forest, neural network, and so on
- Our tricks for probabilistic supervised learning can be used for unsuperivsed learning

Tabular Parameterization Example

Some companies sell software to help companies reason using tabular DAGs:

DAG Learning and Sampling

- For $j=1,2, \ldots, d$:
(1) Set $\bar{y}^{(i)}=x_{j}^{(i)}$ and $\bar{x}^{(i)}=x_{\mathrm{pa}(j)}^{(i)}$
(2) Solve a supervised learning problem using $\{\overline{\mathbf{X}}, \overline{\mathbf{y}}\}$
- Gives you a model of $p\left(x_{j} \mid x_{\mathrm{pa}(j)}\right)$
- Can sample from DAGs using ancestral sampling:
- Sample x_{1} from $p\left(x_{1}\right)$
- Sample x_{2} from $p\left(x_{2} \mid x_{\mathrm{pa}(2)}\right)$
- ...
- Sample x_{d} from $p\left(x_{d} \mid x_{\mathrm{pa}(d)}\right)$
- This allows us to do inference with Monte Carlo methods
- Conditional sampling can be hard; might need rejection sampling/MCMC/...for conditionals

MNIST Digits with Tabular DAG Model

- Recall our latest MNIST model using a tabular DAG:

- This model is pretty bad because you only see 8 parents

MNIST Digits with Sigmoid Belief Network

- Samples from sigmoid belief network:
(DAG with logistic regression for each variable)

using all previous pixels as parents (from 0 to 783 parents)
- Models long-range dependencies but has a linear assumption

Exact Inference in DAGs?

- Can we do exact inference in DAGs like in Markov chains?
- Continuous-state Gaussian DAGs:
- Special case of multvariate Gaussian, so inference is tractable
- Most operations are $\mathcal{O}(d)$ or $\mathcal{O}\left(d^{3}\right)$
- Continuous-state non-Gaussian DAGs:
- Inference usually isn't closed-form; need Monte Carlo or variational inference
- Discrete-state DAGs (whether tabular or sigmoid or other):
- Inference takes exponential-time in the "treewidth" of the graph
- Exact inference is cheap in trees and forests, which have a treewidth of 1
- Low-treewidth graphs allow efficient exact inference; otherwise need approximations

Inference in Forest DAGs ("Belief Propagation")

- Connected graphs with at most one parent per node are called trees

- If not connected, these kinds of graphs are forests; both are "singly-connected"
- We can generalize the CK equations to trees/forests:

$$
p\left(x_{j}=s\right)=\sum_{x_{\mathrm{pa}(j)}} p\left(x_{j}=s, x_{\mathrm{pa}(j)}\right)=\sum_{x_{\mathrm{pa}(j)}}^{p\left(x_{j}=s \mid x_{\mathrm{pa}(j)}\right)} p\left(x_{\mathrm{pa}(j)}\right)
$$

- Trees/forests allow efficient dynamic programming methods as in Markov chains
- Decoding and univariate marginals/conditionals in $\mathcal{O}\left(d k^{2}\right)$
- Forward-backward applied to tree-structured graphs is called belief propagation
- Also possible to find the optimal tree given data ("structure learning") - bonus slides
- Less-efficient variant (message passing) on general DAGs: bonus slides

Summary

- DAG models factorize joint distribution into product of conditionals.
- Usually we assume conditionals depend on small number of "parents".
- Most models we've seen can be represented as DAGs.
- Plate notation helps us do this efficiently.
- D-separation allows us to test conditional independences based on graph.
- Conditional independence follows if all undirected paths are "blocked".
- Observed values in chain or parent block paths.
- Unobserved children (with no observed grandchildren) also blocks paths.
- Next time: learning with DAGs.

Extra Conditional Independences in Markov Chains

- Proof that x_{j} is independent of $\left\{x_{1}, x_{2}, \ldots, x_{j-3}\right\}$ given x_{j-2} in Markov chain:

$$
\begin{aligned}
p\left(x_{j} \mid x_{j-2}, x_{j-3}, \ldots, x_{1}\right) & =\frac{p\left(x_{j}, x_{j-2}, x_{j-3}, \ldots, x_{1}\right)}{p\left(x_{j-2}, x_{j-3}, \ldots, x_{1}\right)} \quad \text { (def'n cond. prob.) } \\
& =\frac{\sum_{x_{j-1}} p\left(x_{j}, x_{j-1}, x_{j-2}, \ldots, x_{1}\right)}{p\left(x_{j-2} \mid x_{j-3}, x_{j-4}, \ldots, x_{1}\right) p\left(x_{j-3} \mid x_{j-4}, x_{j-5}, \ldots, x_{1}\right) \cdots p\left(x_{1}\right)} \quad \text { (marg. and chain rule) } \\
& =\frac{\sum_{x_{j-1}} p\left(x_{j} \mid x_{j-1}, x_{j-2}\right) p\left(x_{j-1} \mid x_{j-2}\right) \cdots p\left(x_{2} \mid x_{1}\right) p\left(x_{1}\right)}{p\left(x_{j-2} \mid x_{j-3}\right) p\left(x_{j-3} \mid x_{j-4}\right) \cdots p\left(x_{1}\right)} \quad \text { (chain rule and Markov) } \\
& =\frac{p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) \cdots p\left(x_{j-2} \mid x_{j-3}\right) \sum_{x_{j-1}} p\left(x_{j} \mid x_{j-1}, x_{j-2}\right) p\left(x_{j-1} \mid x_{j-2}\right)}{p\left(x_{j-2} \mid x_{j-3}\right) p\left(x_{j-3} \mid x_{j-4}\right) \cdots p\left(x_{1}\right)} \quad \text { (take terms outside } \\
& =\sum_{x_{j-1}} p\left(x_{j} \mid x_{j-1}, x_{j-2}\right) p\left(x_{j-1} \mid x_{j-2}\right) \quad \text { (cancel out in numerator/denominator) } \\
& =\sum_{x_{j-1}} p\left(x_{j}, x_{j-1} \mid x_{j-2}\right) \quad \text { (product rule) } \\
& =p\left(x_{j} \mid x_{j-2}\right) \quad \text { (marg rule). }
\end{aligned}
$$

- Similar steps could be used to show $X_{j} \Perp X_{j+2} \mid X_{j+1}$, and a variety of other conditional independences like $X_{1} \Perp X_{10} \mid X_{5}$.

Conditional Independence in Star Graphs

- Consider the following star graph:

- " 5 aliens get together and make a baby alien".
- Unconditionally, the 5 aliens are independent.

Conditional Independence in Star Graphs

- Consider the following star graph:

- " 5 aliens get together and make a baby alien".
- Conditioned on the baby, the 5 aliens are dependent.

Conditional Independence in Star Graphs

- Consider the following star graph:

- "An organism produces 5 clones".
- Unconditionally, the 5 clones are dependent.

Conditional Independence in Star Graphs

- Consider the following star graph:

- "An organism produces 5 clones".
- Conditioned on the original, the 5 clones are independent.

Inference in General DAGs

- If we try to generalize the CK equations to DAGs we obtain

$$
p\left(x_{j}=s\right)=\sum_{x_{\mathrm{pa}(j)}} p\left(x_{j}=s, x_{\mathrm{pa}(j)}\right)=\sum_{x_{\mathrm{pa}(j)}}^{p\left(x_{j}=s \mid x_{\mathrm{pa}(j)}\right)} p\left(x_{\mathrm{pa}(j)}\right)
$$

- What goes wrong if nodes have multiple parents?
- The expression $p\left(x_{\mathrm{pa}(j)}\right)$ is a joint distribution depending on multiple variables.
- Consider the non-tree graph:

Inference in General DAGs

- We can compute $p\left(x_{4}\right)$ in this non-tree using:

$$
\begin{aligned}
p\left(x_{4}\right) & =\sum_{x_{3}} \sum_{x_{2}} \sum_{x_{1}} p\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
& =\sum_{x_{3}} \sum_{x_{2}} \sum_{x_{1}} p\left(x_{4} \mid x_{2}, x_{3}\right) p\left(x_{3} \mid x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{1}\right) \\
& =\sum_{x_{3}} \sum_{x_{2}} p\left(x_{4} \mid x_{2}, x_{3}\right) \underbrace{\sum_{x_{1}} p\left(x_{3} \mid x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{1}\right)}_{M_{23}\left(x_{2}, x_{3}\right)}
\end{aligned}
$$

- Dependencies between $\left\{x_{1}, x_{2}, x_{3}\right\}$ mean our message depends on two variables.

$$
\begin{aligned}
p\left(x_{4}\right) & =\sum_{x_{3}} \sum_{x_{2}} p\left(x_{4} \mid x_{2}, x_{3}\right) M_{23}\left(x_{2}, x_{3}\right) \\
& =\sum_{x_{3}} M_{34}\left(x_{3}, x_{4}\right)
\end{aligned}
$$

Inference in General DAGs

- With 2 -variable messages, our cost increases to $O\left(d k^{3}\right)$.
- If we add the edge $x_{1} \rightarrow x_{4}$, then the cost is $O\left(d k^{4}\right)$.
(the same cost as enumerating all possible assignments)
- Unfortunately, cost is not as simple as counting number of parents.
- Even if each node has 2 parents, we may need huge messages.
- Decoding is NP-hard and computing marginals is \#P-hard in general.
- We'll see later that maximum message size is "treewidth" of a particular graph.
- On the other hand, ancestral sampling is easy:
- We can obtain Monte Carlo estimates of solutions to these NP-hard problems.

Conditional Sampling in DAGs

- What about conditional sampling in DAGs?
- Could be easy or hard depending on what we condition on.
- For example, easy if we condition on the first variables in the order:
- Just fix these and run ancestral sampling.

- Hard to condition on the last variables in the order:
- Conditioning on descendent makes ancestors dependent.

DAG Structure Learning

- Structure learning is the problem of choosing the graph.
- Input is data X.
- Output is a graph G.
- The "easy" case is when we're given the ordering of the variables.
- So the parents of j must be chosen from $\{1,2, \ldots, j-1\}$.
- Given the ordering, structure learning reduces to feature selection:
- Select features $\left\{x_{1}, x_{2}, \ldots, x_{j-1}\right\}$ that best predict "label" x_{j}.
- We can use any feature selection method to solve these d problems.

Example: Structure Learning in Rain Data Given Ordering

- Structure learning in rain data using L1-regularized logistic regression.
- For different λ values, assuming chronological ordering.

(8) (3)

DAG Structure Learning without an Ordering

- Without an ordering, a common approach is "search and score"
- Define a score for a particular graph structure (like BIC or other L0-regularizers).
- Search through the space of possible DAGs.
- "DAG-Search": at each step greedily add, remove, or reverse an edge.
- May have equivalent graphs with the same score (don't trust edge direction).
- Do not interpret causally a graph learned from data.
- Structure learning is NP-hard in general, but finding the optimal tree is poly-time:
- For symmetric scores, can be found by minimum spanning tree ("Chow-Liu").
- Score is symmetric if score $\left(x_{j} \rightarrow x_{j^{\prime}}\right)$ is the same as score $\left(x_{j^{\prime}} \rightarrow x_{j}\right)$.
- For asymetric scores, can be found by minimum spanning arborescence.

Structure Learning on USPS Digits

An optimal tree on USPS digits (16 by 16 images of digits).

20 Newsgroups Data

- Data containing presence of 100 words from newsgroups posts:

car	drive	files	hockey	mac	league	pc	win
0	0	1	0	1	0	1	0
0	0	0	1	0	1	0	1
1	1	0	0	0	0	0	0
0	1	1	0	1	0	0	0
0	0	1	0	0	0	1	1

- Structure learning should give some relationship between word occurrences.

Structure Learning on News Words

Optimal tree on newsgroups data:

"Constraint-Based" DAG Structure Learning

- Another common structure learning approach is "constraint-based":
- Based on performing a sequence of conditional independence tests.
- Prune edge between x_{i} and x_{j} if you find variables S making them independent,

$$
x_{i} \perp x_{j} \mid x_{S} .
$$

- Challenge is considering exponential number of sets x_{S} (heuristic: "PC algorithm").
- Assumes "faithfulness" (all independences are reflected in graph).
- Otherwise it's weird (a duplicated feature would be disconnected from everything.)

