
Directed Acyclic Graphical Models
CPSC 440/550: Advanced Machine Learning

cs.ubc.ca/~dsuth/440/23w2

University of British Columbia, on unceded Musqueam land

2023-24 Winter Term 2 (Jan–Apr 2024)

1 / 57

https://cs.ubc.ca/~dsuth/440/23w2


Higher-Order Markov Models

Markov models use a density of the form

p(x) = p(x1)p(x2 | x1)p(x3 | x2)p(x4 | x3) · · · p(xd | xd−1).

They support efficient computation but Markov assumption is strong

A more flexible model would be a second-order Markov model,

p(x) = p(x1)p(x2 | x1)p(x3 | x2, x1)p(x4 | x3, x2) · · · p(xd | xd−1, xd−2)

or even higher-order models

General case is called directed acyclic graphical (DAG) models:

They allow dependence on any subset of previous features

2 / 57



DAG Models

As in Markov chains, DAG models use the chain rule to write

p(x1, x2, . . . , xd) = p(x1)p(x2 | x1)p(x3 | x1, x2) · · · p(xd | x1, x2, . . . , xd−1)

We can alternately write this as:

p(x1, x2, . . . , xd) =

d∏
j=1

p(xj | x1:j−1)

In Markov chains, we assumed xj only depends on previous xj−1 given past

In DAGs, xj can depend on any subset of the past x1, x2, . . . , xj−1

3 / 57



DAG Models

We often write joint probability in DAG models as

p(x1, x2, . . . , xd) =

d∏
j=1

p(xj | xpa(j))

where pa(j) are the “parents” of feature j

For Markov chains, the only parent of j is j − 1
If everything is binary, a variable with k parents needs (up to) 2k+1 parameters

This corresponds to a set of conditional independence assumptions:

p(xj | x1:j−1) = p(xj | xpa(j))

Variables are independent of previous non-parents, given the parents

4 / 57



MNIST Digits with Markov Chains

Recall trying to model digits using an inhomogeneous Markov chain:

Only models dependence on pixel above, not on 2 pixels above nor across columns

5 / 57



MNIST Digits with DAG Model (Sparse Parents)
Samples from a DAG model with 8 parents per feature:

Parents of (i, j) are 8 other pixels in the neighbourhood (“up by 2, left by 2”):

{(i−2, j−2), (i−1, j−2), (i, j−2), (i−2, j−1), (i−1, j−1), (i, j−1), (i−2, j), (i−1, j)}

6 / 57



DAG Models

“Graphical” name comes from visualizing parents/features as a graph:

We have a node for each feature j
We place an edge into j from each of its parents

This graph is not just a visualization tool:

Can be used to test arbitrary conditional independences (“d-separation”)
Graph structure tells us whether message passing is efficient (“treewidth”)

7 / 57



Graph Structure Examples

For a product of independent distributions, we have

p(x) =

d∏
j=1

p(xj)

So, pa(j) = {}, and the graph is

8 / 57



Graph Structure Examples

In a Markov chain, we have

p(x) = p(x1)

d∏
j=2

p(xj | xj−1),

So, pa(j) = {j − 1}, and the graph is

9 / 57



Graph Structure Examples

In a second-order Markov chain, we have

p(x) = p(x1)p(x2 | x1)
d∏

j=3

p(xj | xj−1, xj−2),

So, pa(j) = {j − 2, j − 1}, and the graph is

10 / 57



Graph Structure Examples

With a fully general distribution, we have

p(x) =

d∏
j=1

p(xj | x1:j−1)

So, pa(j) = {1, 2, . . . , j − 1}, and the graph is

11 / 57



Graph Structure Examples

In naive Bayes (or GDA with diagonal Σ) we add an extra variable y:

p(y, x) = p(y)

d∏
j=1

p(xj | y)

So, pa(y) = {}, pa(xj) = y:

Notation inconsistent: both parents of a random variable (xj) and of index (j)

12 / 57



Graph Structure Examples

We can consider genetic phylogeny (family trees):

The “parents” in the graph are an individual’s biological parents

Independence assumption: only depend on grandparent’s genes through parents

13 / 57



First DAG Model

DAGs were first used to analyze inheritance in guinea pigs (1920):

https://www.pnas.org/doi/pdf/10.1073/pnas.6.6.320
14 / 57

https://www.pnas.org/doi/pdf/10.1073/pnas.6.6.320


Example: Vehicle Insurance

Want to predict bottom three “cost” variables, given observed and unobserved
values:

https://www.cs.princeton.edu/courses/archive/fall10/cos402/assignments/bayes

15 / 57

https://www.cs.princeton.edu/courses/archive/fall10/cos402/assignments/bayes


Example: Radar and Aircraft Control

Modeling multiple planes and radar signals:

https://pr-owl.org/basics/bn.php

16 / 57

https://pr-owl.org/basics/bn.php


Example: Water Resource Management

Dependencies in environmental monitor and susatainability issues:

https://www.jstor.org/stable/26268156

17 / 57

https://www.jstor.org/stable/26268156


Outline

1 Directed Acyclic Graphical Models

2 D-Separation

3 Plate Notation

4 DAG Model Learning and Inference

18 / 57



Density Estimators vs. Relationship Visualizers
In machine learning, DAGs are often used in two different ways:

1 As a multivariate density estimation method (soon)
2 As a way to describe the relationships we are modeling

All independence assumptions we have used in 340/440 have DAG representation*
Includes product of Bernoullis and naive Bayes, but also IID and prior vs. hyper-prior
*Except multivariate Gaussians (which can use “undirected” independence)

For example, we’ll talk later about hidden Markov models (HMMs):

The graph and variable names already give you an idea of what this model does:

Hidden variables zj follow a Markov chain; feature xj depends on zj

19 / 57



Extra Conditional Independences in Markov Chains
Markov assumption in Markov chains: xj ⊥⊥ x1, x2, . . . , xj−2 | xj−1 for all j

This implies other independences, like xj ⊥⊥ x1, x2, . . . , xj−3 | xj−2

We didn’t assume this directly; it follows from assumptions we made
We can use this property to easily compute p(xj | xj−2, xj−3, . . . , x1):

p(xj | xj−2, xj−3, . . . x1) = p(xj | xj−2)

=
∑
xj−1

p(xj , xj−1 | xj−2)

=
∑
xj−1

p(xj | xj−1, xj−2)p(xj−1 | xj−2)

=
∑
xj−1

p(xj | xj−1)︸ ︷︷ ︸
transition prob

p(xj−1 | xj−2)︸ ︷︷ ︸
transition prob

Mathematically showing extra independence assumptions is tedious (see bonus)
But all conditional independences implied by a DAG can seen in the graph

20 / 57



D-Separation: From Graphs to Conditional Independence

In DAGs: sets of variables A and B are conditionally independent given C if:

“D-separation blocks all undirected paths in the graph
from any variable in A to any variable in B”

In the special case of product of independent models our graph is:

Here there are no paths to block, which implies the variables are independent

Checking paths in a graph tends to be faster than tedious calculations

21 / 57



D-Separation as Genetic Inheritance
The rules of d-separation are intuitive in a simple model of gene inheritance:

Each node/person has single number, which we’ll call a “gene”
If you have no parents, your gene is a random number
If you have parents, your gene is a sum of your parents plus noise

For example, think of something like this:

Graph corresponds to the factorization p(x1, x2, x3) = p(x1)p(x2)p(x3 | x1, x2)
In this model, does p(x1, x2) = p(x1)p(x2)? (Are x1 and x2 independent?)

22 / 57



D-Separation as Genetic Inheritance

Genes of people are independent if knowing one says nothing about the other

Your gene is dependent on your parents:

If I know your parent’s gene, I know something about yours

Your gene is independent of your (unrelated) friends:

If you know your friend’s gene, it doesn’t tell me anything about you

Genes of people can be conditionally independent given a third person:

Knowing your grandparent’s gene tells you something about your gene
But grandparent’s gene isn’t useful if you know parent’s gene

You’re conditionally independent of grandparent, given parent

23 / 57



D-Separation Case 0 (No Paths and Direct Links)

Are genes in person x independent of the genes in person y?

No path: x and y are not related (independent)

We have x ⊥⊥ y: there are no paths to be blocked

Direct link: X is the parent of y

We have x ⊥̸⊥ y: knowing x tells you about y (direct paths aren’t blockable)

And similarly, knowing y tells you about x

24 / 57



D-Separation Case 0 (No Paths and Direct Links)

Neither case changes if we have a third independent person z:

No path: If x and y are independent,

We have x ⊥⊥ y: adding z doesn’t make a path.

Direct link: x is the parent of y,

We have x ⊥̸⊥ y | z: adding z doesn’t block path
We’ll use black or shaded nodes to denote values we condition on (in this case Z)

We sometimes also call the nodes that we condition on the “observations”

25 / 57



D-Separation Case 1: Chain
Case 1: x is the grandparent of y

If z is the parent we have:

We have x ⊥̸⊥ y: knowing x would give information about y because of z
But if z is observed:

In this case x ⊥⊥ y | z: knowing z “breaks” dependence between x and y

26 / 57



D-Separation Case 1: Chain

The same logic holds for great-grandparents:

We have x ⊥̸⊥ y (left), but x ⊥⊥ y | z1 (right).

We also have x ⊥⊥ y | z2 and that x ⊥⊥ y | z1, z2

This case lets you test any independence in Markov chains

“Variables are independent conditioned on any variable in betweeen”

27 / 57



D-Separation Case 1: Chain
Consider weird case where parents z1 and z2 share parent x:

If z1 and z2 are observed:

We have x ⊥⊥ y | z1, z2: knowing both parents breaks dependency
But if only z1 is observed:

We have x ⊥̸⊥ y | z1: dependence still “flows” through z2
28 / 57



D-Separation Case 2: Common Parent

Case 2: x and y are siblings

If z is a common unobserved parent:

We have x ⊥̸⊥ y: knowing x would give information about y
But if z is observed:

In this case x ⊥⊥ y | z: knowing z “breaks” dependence between x and y

This is the type of independence used in naive Bayes

29 / 57



D-Separation Case 2: Common Parent

Case 2: x and y are siblings

If z1 and z2 are common observed parents:

We have x ⊥⊥ y | z1, z2: knowing z1 and z2 breaks dependence between x and y
But if we only observe z2:

Then we have x ⊥̸⊥ y | z2: dependence still “flows” through z1

30 / 57



D-Separation Case 3: Common Child
Case 3: x and y share a child z:

If we observe z then we have:

We have x ⊥̸⊥ y | z: if we know z, then knowing x gives us information about Y
(Sometimes called “explaining away”)
But if z is not observed:

We have x ⊥⊥ y: if you don’t observe z then x and y are independent

Different from Case 1 and Case 2: not observing the child blocks the path
31 / 57



D-Separation Case 3: Common Child

Case 3: x and y share a child z1:

If there exists an unobserved grandchild z2:

We have x ⊥⊥ y: the path is still blocked by not knowing z1 or z2.
But if z2 is observed:

We have x ⊥̸⊥ y | z2: grandchild creates dependence even with unobserved child

Case 3 needs to consider descendants of child

32 / 57



D-Separation Summary (MEMORIZE)
Undirected path from A to B is a path between anything in A and anything in B,
ignoring the direction of edges and whether nodes are observed

A and B are d-separated given C if all undirected paths from A to B
have (at least) one of the following somewhere on the path:

1 P includes a “chain” with an observed middle node (e.g., Markov chain):

2 P includes a “fork” with an observed parent node (e.g., naive Bayes):

3 P includes a “v-structure” or “collider” (e.g., genetic inheritance):

where the “child” and all its descendants are unobserved
33 / 57



Alarm Example

Case 1:

Earthquake ⊥̸⊥ Call
Earthquake ⊥⊥ Call | Alarm

Case 2:

Alarm ⊥̸⊥ Stuff Missing
Alarm ⊥⊥ Stuff Missing | Burglary

34 / 57



Alarm Example

Case 3:

Earthquake ⊥⊥ Burglary
Earthquake ⊥̸⊥ Burglary | Alarm

“Explaining away”: knowing one parent can make the other less/more likely

Multiple Cases:

Call ⊥̸⊥ Stuff Missing
Earthquake ⊥⊥ Stuff Missing
Earthquake ⊥̸⊥ Stuff Missing | Call

35 / 57



Discussion of D-Separation

D-separation lets you say if conditional independence is implied by assumptions:

(A and B are d-separated given C) ⇒ A ⊥⊥ B | C

However, there might be extra conditional independences in the distribution:
These would depend on specific choices of the DAG parameters

For example, if we set Markov chain parameters so that p(xj | xj−1) = p(xj)

Or some orderings of the chain rule may reveal different independences
Lack of d-separation doesn’t imply dependence

Just that it’s not guaranteed to be independent by the graph structure

Instead of using the order {1, 2, . . . , j − 1}, can have general parent choices

So x2 could be a parent of x1

As long the graph is acyclic, there exists some valid ordering
(all DAGs have a “topological order” of variables where parents are before children)

36 / 57



Non-Uniqueness of Graph and Equivalent Graphs

Note that some graphs imply same conditional independences:

Equivalent graphs: same v-structures and other (undirected) edges are the same
Examples of 3 equivalent graphs (left) and 3 non-equivalent graphs (right):

37 / 57



Beware of the “Causal” DAG

It can be helpful to use the language of causality when reasoning about DAGs

You’ll find that they give the correct causal interpretation based on our intuition

However, keep in mind that the arrows are not necessarily causal

“A causes B” can have the same graph as “B causes A”!

There is work on causal DAGs which add semantics to deal with “interventions”
But these require assuming that the arrow directions are causal

Fitting a DAG to observational data doesn’t imply anything about causality

38 / 57



Outline

1 Directed Acyclic Graphical Models

2 D-Separation

3 Plate Notation

4 DAG Model Learning and Inference

39 / 57



Tilde Notation as a DAG

When we write
y(i) ∼ N (wTx(i), 1),

this can be interpreted as a DAG model:

“The variables on the right of ∼ are the parents of the variables on the left”

We can see our standard x ⊥⊥ w assumption in the graph
Common child case: w only depends on x if we know y

40 / 57



IID Assumption as a DAG

During week 1, our first independence assumption was the IID assumption:

Training/test examples come independently from data-generating process D

e.g. D could be “use a normal distribution with mean µ and covariance Σ”

But D is unobserved, so knowing about some x(i) tells us about the others

This why the IID assumptions lets us learn

41 / 57



Plate Notation

Graphical representation of the IID assumption:

It’s common to represent repeated parts of graphs using plate notation:

42 / 57



Linear Regresion
If the x(i) are IID then we can represent linear regression as

or
From d-separation on this graph we have p(y | X, w) =

∏n
i=1 p(y

(i) | x(i), w)
Our standard assumption that data is independent given parameters

We often omit the data-generating distribution D
But if you want to learn it, then you should remember that it’s there

Discriminative model: here we don’t try to model things about p(x(i))

Note that plate reflects parameter tying: that we use same w for all i
43 / 57



IID Bernoulli-Beta Model

The Bernoulli-beta model as a DAG (with parameters and hyper-parameters):

Notice data is independent of hyper-parameters given parameters

This is another of our standard independence assumptions

44 / 57



Non-IID Bernoulli-Beta Model

The non-IID variant we considered with grouped data:

or

DAG reflects that we do not tie parameters across all training examples

Notice that if you fix α and β then you can’t learn across groups:

The θj are d-separated given α and β

Can also write more succinctly with nested plates

45 / 57



Non-IID Bernoulli-Beta Model

Variant of the previous model with a hyper-hyper-parameter:

or

Needed to avoid degeneracy

46 / 57



Naive Bayes with DAGs/Plates

For naive Bayes we have

y(i) ∼ Cat(θ), x(i) | (y(i) = c) ∼ Cat(θc)

or

47 / 57



Bayesian Linear Regression as a DAG

In Bayesian linear regression we assume

yi ∼ N (wTxi, 1), wj ∼ N (0, 1/λ),

which we can write as

or

48 / 57



Outline

1 Directed Acyclic Graphical Models

2 D-Separation

3 Plate Notation

4 DAG Model Learning and Inference

49 / 57



Density Estimators vs. Relationship Visualizers
Besides dependency visualization, we can use DAGs as density estimators

Recall that DAGs model joint distribution using

p(x1, x2, . . . , xd) =

d∏
j=1

p(xj | xpa(j))

We need to choose a parameterization for these conditional probabilities:
Tabular parameterization (discrete xj): can model any joint probability

Common choice; sometimes set parameters from expert knowledge

Gaussian (continuous xj): xj ∼ N (wTxpa(j), σ
2)

Called a Gaussian belief net; joint distribution becomes a multivariate Gaussian

Sigmoid (binary xj ∈ {−1,+1}): p(xj | xj−1, w) = 1/(1 + exp(−xjw
Txpa(j)))

Called a sigmoid belief net

Could use softmax, probabilistic random forest, neural network, and so on

Our tricks for probabilistic supervised learning can be used for unsuperivsed learning

50 / 57



Tabular Parameterization Example
Some companies sell software to help companies reason using tabular DAGs:

http://www.hugin.com/index.php/technology

51 / 57

http://www.hugin.com/index.php/technology


DAG Learning and Sampling

For j = 1, 2, . . . , d:

1 Set ȳ(i) = x
(i)
j and x̄(i) = x

(i)
pa(j)

2 Solve a supervised learning problem using {X̄, ȳ}
Gives you a model of p(xj | xpa(j))

Can sample from DAGs using ancestral sampling:

Sample x1 from p(x1)
Sample x2 from p(x2 | xpa(2))
. . .
Sample xd from p(xd | xpa(d))

This allows us to do inference with Monte Carlo methods

Conditional sampling can be hard; might need rejection sampling/MCMC/. . . for
conditionals

52 / 57



MNIST Digits with Tabular DAG Model

Recall our latest MNIST model using a tabular DAG:

This model is pretty bad because you only see 8 parents

53 / 57



MNIST Digits with Sigmoid Belief Network

Samples from sigmoid belief network:
(DAG with logistic regression for each variable)

using all previous pixels as parents (from 0 to 783 parents)

Models long-range dependencies but has a linear assumption

54 / 57



Exact Inference in DAGs?

Can we do exact inference in DAGs like in Markov chains?

Continuous-state Gaussian DAGs:
Special case of multvariate Gaussian, so inference is tractable

Most operations are O(d) or O(d3)

Continuous-state non-Gaussian DAGs:

Inference usually isn’t closed-form; need Monte Carlo or variational inference

Discrete-state DAGs (whether tabular or sigmoid or other):

Inference takes exponential-time in the “treewidth” of the graph
Exact inference is cheap in trees and forests, which have a treewidth of 1

Low-treewidth graphs allow efficient exact inference; otherwise need approximations

55 / 57



Inference in Forest DAGs (“Belief Propagation”)

Connected graphs with at most one parent per node are called trees

If not connected, these kinds of graphs are forests; both are “singly-connected”

We can generalize the CK equations to trees/forests:

p(xj = s) =
∑
xpa(j)

p(xj = s, xpa(j)) =
∑
xpa(j)

p(xj = s | xpa(j))︸ ︷︷ ︸
given

p(xpa(j))

Trees/forests allow efficient dynamic programming methods as in Markov chains
Decoding and univariate marginals/conditionals in O(dk2)
Forward-backward applied to tree-structured graphs is called belief propagation
Also possible to find the optimal tree given data (“structure learning”) – bonus slides

Less-efficient variant (message passing) on general DAGs: bonus slides
56 / 57



Summary

DAG models factorize joint distribution into product of conditionals.

Usually we assume conditionals depend on small number of “parents”.
Most models we’ve seen can be represented as DAGs.
Plate notation helps us do this efficiently.

D-separation allows us to test conditional independences based on graph.

Conditional independence follows if all undirected paths are “blocked”.
Observed values in chain or parent block paths.
Unobserved children (with no observed grandchildren) also blocks paths.

Next time: learning with DAGs.

57 / 57



Extra Conditional Independences in Markov Chains

Proof that xj is independent of {x1, x2, . . . , xj−3} given xj−2 in Markov chain:

p(xj | xj−2, xj−3, . . . , x1) =
p(xj , xj−2, xj−3, . . . , x1)

p(xj−2, xj−3, . . . , x1)
(def’n cond. prob.)

=

∑
xj−1

p(xj , xj−1, xj−2, . . . , x1)

p(xj−2 | xj−3, xj−4, . . . , x1)p(xj−3 | xj−4, xj−5, . . . , x1) · · · p(x1)
(marg. and chain rule)

=

∑
xj−1

p(xj | xj−1, xj−2)p(xj−1 | xj−2) . . . p(x2 | x1)p(x1)

p(xj−2 | xj−3)p(xj−3 | xj−4) · · · p(x1)
(chain rule and Markov)

=
p(x1)p(x2 | x1) · · · p(xj−2 | xj−3)

∑
xj−1

p(xj | xj−1, xj−2)p(xj−1 | xj−2)

p(xj−2 | xj−3)p(xj−3 | xj−4) · · · p(x1)
(take terms outside)

=
∑

xj−1

p(xj | xj−1, xj−2)p(xj−1 | xj−2) (cancel out in numerator/denominator)

=
∑

xj−1

p(xj , xj−1 | xj−2) (product rule)

= p(xj | xj−2) (marg rule).

Similar steps could be used to show Xj ⊥⊥ Xj+2 | Xj+1,
and a variety of other conditional independences like X1 ⊥⊥ X10 | X5.

58 / 57



Conditional Independence in Star Graphs

Consider the following star graph:

“5 aliens get together and make a baby alien”.
Unconditionally, the 5 aliens are independent.

59 / 57



Conditional Independence in Star Graphs

Consider the following star graph:

“5 aliens get together and make a baby alien”.
Conditioned on the baby, the 5 aliens are dependent.

60 / 57



Conditional Independence in Star Graphs

Consider the following star graph:

“An organism produces 5 clones”.
Unconditionally, the 5 clones are dependent.

61 / 57



Conditional Independence in Star Graphs

Consider the following star graph:

“An organism produces 5 clones”.
Conditioned on the original, the 5 clones are independent.

62 / 57



Inference in General DAGs

If we try to generalize the CK equations to DAGs we obtain

p(xj = s) =
∑
xpa(j)

p(xj = s, xpa(j)) =
∑
xpa(j)

p(xj = s | xpa(j))︸ ︷︷ ︸
given

p(xpa(j)).

What goes wrong if nodes have multiple parents?
The expression p(xpa(j)) is a joint distribution depending on multiple variables.

Consider the non-tree graph:

63 / 57



Inference in General DAGs

We can compute p(x4) in this non-tree using:

p(x4) =
∑
x3

∑
x2

∑
x1

p(x1, x2, x3, x4)

=
∑
x3

∑
x2

∑
x1

p(x4 | x2, x3)p(x3 | x1)p(x2 | x1)p(x1)

=
∑
x3

∑
x2

p(x4 | x2, x3)
∑
x1

p(x3 | x1)p(x2 | x1)p(x1)︸ ︷︷ ︸
M23(x2,x3)

Dependencies between {x1, x2, x3} mean our message depends on two variables.

p(x4) =
∑
x3

∑
x2

p(x4 | x2, x3)M23(x2, x3)

=
∑
x3

M34(x3, x4),

64 / 57



Inference in General DAGs

With 2-variable messages, our cost increases to O(dk3).

If we add the edge x1 → x4, then the cost is O(dk4).
(the same cost as enumerating all possible assignments)

Unfortunately, cost is not as simple as counting number of parents.

Even if each node has 2 parents, we may need huge messages.
Decoding is NP-hard and computing marginals is #P-hard in general.

We’ll see later that maximum message size is “treewidth” of a particular graph.

On the other hand, ancestral sampling is easy:

We can obtain Monte Carlo estimates of solutions to these NP-hard problems.

65 / 57



Conditional Sampling in DAGs

What about conditional sampling in DAGs?
Could be easy or hard depending on what we condition on.

For example, easy if we condition on the first variables in the order:
Just fix these and run ancestral sampling.

Hard to condition on the last variables in the order:
Conditioning on descendent makes ancestors dependent.

66 / 57



DAG Structure Learning

Structure learning is the problem of choosing the graph.

Input is data X.
Output is a graph G.

The “easy” case is when we’re given the ordering of the variables.

So the parents of j must be chosen from {1, 2, . . . , j − 1}.

Given the ordering, structure learning reduces to feature selection:

Select features {x1, x2, . . . , xj−1} that best predict “label” xj .
We can use any feature selection method to solve these d problems.

67 / 57



Example: Structure Learning in Rain Data Given Ordering

Structure learning in rain data using L1-regularized logistic regression.
For different λ values, assuming chronological ordering.

68 / 57



DAG Structure Learning without an Ordering

Without an ordering, a common approach is “search and score”

Define a score for a particular graph structure (like BIC or other L0-regularizers).
Search through the space of possible DAGs.

“DAG-Search”: at each step greedily add, remove, or reverse an edge.

May have equivalent graphs with the same score (don’t trust edge direction).

Do not interpret causally a graph learned from data.

Structure learning is NP-hard in general, but finding the optimal tree is poly-time:
For symmetric scores, can be found by minimum spanning tree (“Chow-Liu”).

Score is symmetric if score(xj → xj′) is the same as score(xj′ → xj).

For asymetric scores, can be found by minimum spanning arborescence.

69 / 57



Structure Learning on USPS Digits
An optimal tree on USPS digits (16 by 16 images of digits).

1,1

2,11,2

2,2

1,3

2,3

1,4

2,4

1,5

2,5

1,6

2,61,7

2,7

1,8

2,8

1,9

2,9

1,10

2,10

1,11

2,11 1,12

2,121,13

2,131,14

2,14

1,15

2,15 2,16

1,16

3,2 3,3 3,4 3,5

3,6

3,8 3,9 3,10 3,11

3,12

3,143,153,16

3,1

4,1 4,2 4,3 4,4

3,7 4,5

4,6

4,8 4,9 4,10

4,113,13

4,144,15

5,1 5,2 5,3

5,4

5,5

4,7

5,8 5,9

4,12

5,11

4,13

5,13

5,144,16

5,16

6,1 6,2 6,3

6,45,6

6,56,6

5,7

6,76,8 6,9

5,10

6,10 6,11

5,12

6,12 6,13

5,15

6,15

7,1 7,2 7,3

7,4

7,5 7,67,77,8 7,9 7,10 7,11 7,12

6,14

7,14

6,16

7,15

8,1 8,2 8,3

8,4

8,5 8,68,78,8 8,9 8,10 8,11

7,13

8,128,13

8,148,15

7,16

9,1 9,2 9,3

9,4

9,59,79,8 9,9 9,10

9,119,12

9,149,15

8,16

10,1 10,2 10,3

10,49,6

10,510,610,710,8 10,9

10,1010,11 9,13

10,12 10,1310,1410,15

9,16

10,16

11,1 11,2 11,3

11,4

11,511,6 11,711,8

11,911,10

11,11 11,12 11,1311,1411,1511,16

12,1 12,2 12,3

12,412,5 12,612,7 12,8

12,1212,1312,1412,1512,16

13,1

13,5

12,9

12,10

12,11

13,1213,1313,14

13,2 14,1

13,3

14,3

13,4

13,6

14,513,7

14,6

13,8

13,9

13,10

13,11

14,1314,14

13,15

14,15

13,16

14,2

15,2

15,3 14,4

15,4

15,5 14,7

15,6 15,7

14,8

14,9 15,8

14,10

14,11

14,12

15,1215,13 15,14 14,1615,15

15,1

16,1

16,2

16,3

16,4

16,5 16,6 16,7

16,8

15,9

15,1016,9

15,11 16,10

16,11

16,1216,13 16,14 15,16 16,15

16,16

70 / 57



20 Newsgroups Data

Data containing presence of 100 words from newsgroups posts:

car drive files hockey mac league pc win

0 0 1 0 1 0 1 0
0 0 0 1 0 1 0 1
1 1 0 0 0 0 0 0
0 1 1 0 1 0 0 0
0 0 1 0 0 0 1 1

Structure learning should give some relationship between word occurrences.

71 / 57



Structure Learning on News Words
Optimal tree on newsgroups data:

aids

baseball

hit

bible

bmw

cancer

car

dealer engine honda

card

graphics video

case

children

christian

computercourse

data

disease

disk

drive memory system

display

server

doctor

dos

scsi

driver

earth

god

email

ftp phone

oil

evidence

fact

question

fans

files

format windows

food

msg water

image

games

jesus religion

government

power president rights state war

gun

health

insurance medicine

help hockey

nhl

human

israel

jews

launch

law

league

lunar

mac

mars

patients studies

mission

moon nasa

number

orbit

satellite solar

vitamin

pc

software

players

problem

program

space

puck

research science

seasonshuttle technology

university

team

version

world

win

won

72 / 57



“Constraint-Based” DAG Structure Learning

Another common structure learning approach is “constraint-based”:

Based on performing a sequence of conditional independence tests.
Prune edge between xi and xj if you find variables S making them independent,

xi ⊥ xj | xS .

Challenge is considering exponential number of sets xS (heuristic: “PC algorithm”).
Assumes “faithfulness” (all independences are reflected in graph).

Otherwise it’s weird (a duplicated feature would be disconnected from everything.)

73 / 57


	Directed Acyclic Graphical Models
	D-Separation
	Plate Notation
	DAG Model Learning and Inference
	Appendix

