Markov Chain Monte Carlo
CPSC 440/550: Advanced Machine Learning

cs.ubc.ca/~dsuth/440/23w2
University of British Columbia, on unceded Musqueam land

2023-24 Winter Term 2 (Jan—-Apr 2024)

1/24

https://cs.ubc.ca/~dsuth/440/23w2

Markov Chains for Monte Carlo Estimation

@ We've been discussing inference in Markov chains

e Sampling, marginals, stationary distribution, decoding, conditionals
o Usually (for discrete chains) there are dynamic programming algorithms

@ We can also use Markov chains for inference in other models

o Most common way to do this is Markov chain Monte Carlo (MCMC)
o Widely used for approximate inference, e.g. in Bayesian logistic regression

o High-level idea of MCMC:
o We want to use Monte Carlo estimates with a distribution p
o But we don't know how to generate iid samples from p
o Design a homogeneous Markov chain whose stationary distribution is p
@ This is usually surprisingly easy to do
e Use ancestral sampling to sample from a long version of this Markov chain
o Use the Markov chain samples within the Monte Carlo approximation

2/24

Degenerate Example: “Pointless MCMC"

@ Consider finding the expected value of a fair die:
o For a 6-sided die, the expected value is 3.5

o Consider the following “pointless MCMC" algorithm:

e Start with some initial value, like “4"
o At each step, roll the die and generate a random number w:

o If u < 0.5, “accept” the roll and take the roll as the next sample
o Otherwise, “reject” the roll and take the old value (e.g. “4") as the next sample

@ Generates samples from a Markov chain with this transition probability:

T/12 xp =4
1 1.1

Ti—1 = x) =5 L@ =x4-1) +5- 5=

4 1) =3 1z 1)+ {1/12 Ty # Ty

o g(s — ') is a “proposal” distribution over s’

3/24

Degenerate Example: “Pointless MCMC"

@ Pointless MCMC in action:

Start with “4"”, so record “4"

Roll a “6" and generate 0.234, so record “6"
Roll a “3" and generate 0.612, so record “6"
Roll a “2" and generate 0.523, so record “6"
Roll a “3" and generate 0.125, so record “3"
Roll a “2" and generate 0.433, so record “2"

@ So our samples are 4,6,6,6,3,2. ..

e If you run this long enough, you will spend 1/6 of the time on each number
@ Stationary distribution is uniform: if we start at a uniform number, either staying
there or going to a uniformly random number is still uniform
@ So the stationary distribution of the chain is p (the uniform distribution)
e This is the key feature of MCMC methods

@ It is “pointless” since it assumes we can generate |ID samples from p
e If you can do that, don't use this algorithm for approximate samples!
4/2

Markov Chain Monte Carlo (MCMC)

@ Markov chain Monte Carlo (MCMC):
e Design a Markov chain that has 7(x) = p(x)
o For large enough k, a sample 2(*) from the chain will be distributed according to p(x)
o Changing notation a bit: 2™ is the first sampled state, z® the second, ..., (™ last
e Use the Markov chain samples within a Monte Carlo estimator,
1 n
Elg(x)] =~ = g(z")

n
t=1

e Generalization of the law of large numbers (“ergodic theorem”) shows:
asn — o0, 230, g(z®) = E[g(z)] (almost surely)
e But convergence is slower since we're generating dependent samples
o e.g. the variance is higher than Var[g(x)]/n, since samples aren't iid

@ A popular way to design the Markov chain is Metropolis-Hastings algorithm.
o Oldest algorithm out of the “10 Best Algorithms of the 20th Century”

5/24

Special Case: Metropolis Algorithm

@ The Metropolis algorithm for sampling from a continuous target p(x):
@ Assumes we can evaluate p up to a normalizing constant, p(x) = p(x)/Z
e Start with some initial value (%)
e Until we get bored:
o Add zero-mean Gaussian noise to z(*~1) to give proposal z(*)
o Generate a u uniformly between 0 and 1
o "Accept” the proposal and set z(1) = #(t) if

< p(2®) (probability of proposed)
~ p(z(t=D) (probability of current)

o Otherwise “reject” the sample and use z(*~1) again as the next sample z(*)

@ Proposals that increase probability density are always accepted
@ Proposals that decrease probability density might be accepted or rejected
@ Always converges for continuous densities, but might be really slow

@ You can implement this even if you don’t know normalizing constant
6/24

Metropolis Algorithm in Action

" | M=0.615,0.398; N,=1000, ::“;:o,ag
"é -
while True:
g xhat = x + \
& rs.multivariate_normal (cov=Sigma)
= u = rs.random()
if u < p(xhat) / p(x):
il x = xhat
° yield x

0.0 0.2 0.4 0.6 08 1.0

http://www.columbia.edu/~cjdl1l/charles_dimaggio/DIRE/styled-4/
7/24

http://www.columbia.edu/~cjd11/charles_dimaggio/DIRE/styled-4/styled-11/code-5
http://www.columbia.edu/~cjd11/charles_dimaggio/DIRE/styled-4/styled-11/code-5

Metropolis Algorithm Analysis

@ Markov chain with transitions ¢(s — §) is reversible if
m(s)q(s = §') =n(s) q(s' — s)

for some distribution 7; this condition is called detailed balance

@ Reversibility implies 7 is a stationary distribution:

7t (s) = Zw(s’) q(s’ — s) = Zw(s) q(s — s') (detailed balance for each term)

s’ s’

=7(s) Zq(s —§')

s/

1
=7(s) exactly the stationarity condition

e Metropolis is reversible, with p its stationary distribution (bonus slide)
e And positive transition probabilities mean 7 exists, and is unique/reached

8/24

Markov Chain Monte Carlo
MCMC sampling from a Gaussian:
From top left to bottom right: histograms of 1000 independent

Markov chains with a normal distribution as target distribution.

0.06

=) ES

0.04

0.02

o

9/24

http://www.cs.ubc.ca/~arnaud/stat535/slides10.pdf

MCMC Implementation Issues
@ In practice, we often don't use all the samples in our Monte Carlo estimate
@ Burn-in: throw away early samples, when we're far from the stationary dist
@ Thinning: only keep every k samples, since they'll be highly correlated

@ Two common ways that MCMC is applied:
@ Sample from a huge number of Markov chains for a long time, use final states
o Great for parallelization
o Like an extreme form of thinning: only use one sample per chain
o Need to worry about burn-in for each chain

@ Sample from one Markov chain for a really long time, use states across time

@ Less worry about burn in
@ May need to thin, since samples will be correlated

@ It can very hard to diagnose if we have reached stationary distribution
o Formally, it's PSPACE-hard — even harder than NP-hard

e Various heuristics exist
10/24

Outline

© Metropolis-Hastings and Gibbs

11/24

Metropolis-Hastings

@ Metropolis algorithm is a special case of Metropolis-Hastings

e General version uses a general proposal distribution
q@(tﬂ) | x(t)) — q(x(t) N j(t+1))
o In Metropolis, ¢ is a Gaussian with mean z(*)

@ Metropolis-Hastings accepts a proposed 2 if

L < PE) @ =t
S D ga T o)

@ These extra terms ensures reversibility (detailed balance) for asymmetric ¢
o If you're more likely to propose (!~ — &) than the other way, less likely to accept

@ Eventually converges under very weak conditions, e.g. all q(:z(t) — i(t“‘l)) >0
e But practical convergence can change a lot with different ¢

12/24

Metropolis-Hastings Example: Rolling Dice with Coins

@ Say we want to sample from a fair 6-sided die
o Pr(X =c¢) =} foreach c€ {1,...,6}
o But we don't have a die, or a computer, just coins
@ and don’t want to do rejection sampling. ..

@ Consider the following random walk on the numbers 1-6:

o If x =1, always propose 2
If x = 2, 50% of the time propose 1 and 50% of the time propose 3
If x = 3, 50% of the time propose 2 and 50% of the time propose 4
If z =4, 50% of the time propose 3 and 50% of the time propose 5
If x =5, 50% of the time propose 4 and 50% of the time propose 6
If z =6, always propose 5

@ Flip a coin: go up if it's heads (and you can), go down it it's tails (and you can)
o A random walk on this graph:

O2HOHO0

13/24

Metropolis-Hastings Example: Rolling Dice with Coins

@ “Roll a die with a coin” by using random walk as transitions ¢ in M-H:
0 q1—+2)=1,4¢2-1)=1%4¢2-3)=13% ...,¢6—-5=1

o If x = 3 and we propose & = 2, then we always accept: check is

p(2) q2—3) 1/6 1/2

pB3) ¢B3—=2) 1/6 1/2
@ Same for any z in the "middle” (2 to 5)
e If x =2 and we propose £ = 1, we also always accept: check is

p(l) ¢1—2) 1/6 1

) a1 " 1/6 172
o If z is at the end (1 or 6), you accept with probability 1/2:
p(2).q(2—>1) _ﬁ.1/2_ 1

p(1) ¢1—2) 1/6 1 2

14 /24

Metropolis-Hastings Example: Rolling Dice with Coins

@ So Metropolis-Hastings modifies random walk probabilities:

o If you're at the end (1 or 6), stay there half the time
e This accounts for the fact that 1 and 6 have only one neighbour

@ Which means they aren't visited as often by the random walk

@ Could also be viewed as a random surfer in a different graph:

@ f?@-’ %6/9/@3/“& é/‘ﬂ@

&\ &I

@ You can think of Metropolis-Hastings as the modification that
“makes the random walk have the right probabilities”

o For any (“reasonable”) proposal distribution ¢

15/24

Special Case: Gibbs Sampling

@ An important special case of Metropolis-Hastings is Gibbs sampling

o Method to sample from a multi-dimensional distribution
e Maybe the most common multi-dimensional sampler

@ Gibbs sampling starts with some x and then repeats:
© Choose a variable j uniformly at random

@ Update x; by resampling it from its conditional distribution given everything else:

t t—1 t—1) (t—1 t—1
acg.) Np(xj | xg),...,xg_l),x;+1)7...,x£l))

Keep other variables the same

@ Common variation: resample x1, then xo, ..., then x4, then x1, then xo, ...

16 /24

Gibbs Sampling in Action

e Start with some initial value: z(?) = [2 2 3 1]
@ Select random index: j =3

o Sample variable j: z(1) = [2 2 1 1}

@ Select random index: j =1

o Sample variable j: z(?) = [3 2 1 1}

@ Select random index: j = 2

e Sample variable j: z(3) = [3 21 1}
°
°

Use the samples to form a Monte Carlo estimator

17/24

Gibbs Sampling in Action: Multivariate Gaussian

@ Gibbs sampling works for general distributions
e E.g., sampling from multivariate Gaussian by univariate Gaussian sampling

4
2
0
Y
-2
Samples
_4‘. s o 15t 50 Samples
o w0
-5 L
-4 2 0 2 4 3

https://theclevermachine.wordpress.com/2012/11/05/mcmc-the-gibbs-sampler

@ Video: https://wuw.youtube.com/watch?v=AEwY6QXWoUg

18/24

https://theclevermachine.wordpress.com/2012/11/05/mcmc-the-gibbs-sampler
https://www.youtube.com/watch?v=AEwY6QXWoUg

Sampling from Conditionals
@ For discrete X, the conditionals needed for Gibbs sampling have a simple form
@ Using z—; to mean “everything but z;":

plrj=cz~y) _ plrj=cas) plrj =c)
p(z—) oo p(@y=c) bz =d 1)

plzj=clzy) =

using unnormalized p since Z is the same in numerator/denominator
o Last expression is easy to evaluate: just sum over all values of z;

@ For continuous x;, replace the sum by an integral

e Might have an easy form (e.g. conditionally Gaussian)
e Might be able to figure out the (inverse) cdf, for inverse transform sampling
e Might need to use rejection sampling, especially in non-conjugate cases

19/24

Gibbs Sampling as a Markov Chain

@ The “Gibbs sampling Markov chain” if p is over 4 binary variables:
o The states are the possible configurations of the four variables:
@ [0000],[0001],[0010], etc (there are 2* = 16 of them)
o The initial probability 7(°) is a “point mass" for the initial state:
o If you start at [1 10 1], then 7 ([1101]) =1 and 7(?([0000]) =0
e The transition probabilities ¢ are based on the variable we choose and target p:
o If we are at [1 1 0 1] and choose coordinate randomly we have:

Gibbs only updates one variable)

—~

q([1101] = [0011])=0

g([1101]—[1001]) = plxe=0|z1 =123 =0,24 =1).

{~1-

s unifo from target distribution p
J I1s unitorm

e Not homogeneous if cycling, but can “hack it": add “last updated variable” to state

20 /24

Gibbs is Metropolis-Hastings

@ For random coordinates, proposal is g(x —

@ For a proposal with #—; = x—;, acceptance

A d ~ ~
&) = 4 252 Wiy = a—)p(5 | 2—)

probability is min of 1 and

ISUEISWI

(since z—; = ;)

e Detailed balance is satisfied; also need ergodicity for unique stationary dist

21/24

Metropolis-Hastings bonus!

e

@ Common choices for proposal distribution ¢ in Metropolis-Hastings:
o Metropolis et al. originally used random walks: () = 2= 4 ¢ for ¢ ~ N(0, %)
o Hastings originally used independent proposal: gz~ — £0) = ¢(z®)
@ Usually not a good choice in high dimensions
Gibbs sampling updates a single variable based on conditional
e Block Gibbs sampling:
o If you can sample multiple variables at once Gibbs sampling tends to work better
o Collapsed Gibbs sampling (Rao-Blackwellization):

@ MCMC provably works better at sampling marginals of a joint distribution
@ "“Try to integrate over variables you don't care about”

@ Unlike rejection sampling, high acceptance rate is not always good:
o High acceptance rate may mean we're not moving very much (samples very
dependent)
o Low acceptance rate definitely means we're not moving very much
e Designing good proposals ¢ is an “art”
22 /24

Advanced Monte Carlo Methods bonus!

o “Adaptive MCMC": tries to update g as we go. Needs to be done carefully
@ “Particle MCMC": use particle filter to make proposal

@ Auxiliary-variable sampling: introduce variables to sample bigger blocks:
e For example, introduce z variables in mixture models
o Also used in Bayesian logistic regression (beginning with Albert and Chib)

@ Trans-dimensional MCMC:
o Needed when dimensionality of problem can change on different iterations
e Most important application is probably Bayesian feature selection

@ Hamiltonian Monte Carlo:
o Faster-converging method based on Hamiltonian dynamics (using V logp)

@ Population MCMC:
e Run multiple MCMC methods, each having different “move” size
e Large moves do exploration and small moves refine good estimates 23/ 24

Summary

@ Markov chain Monte Carlo (MCMC) approximates complicated expectations
o Generate samples from a Markov chain that has p as stationary distribution
o Use these samples within a Monte Carlo approximation
e Burn-in period, and samples are highly correlated (sometimes thin them)

@ Metropolis: add Gaussian noise, maybe “reject” if it decreases density

@ Metropolis-Hastings: general MCMC method allowing arbitrary “proposals”
o Accept/reject samples based on proposal and target probabilities

@ Gibbs sampling: Samples each variable conditioned on all others
e Special case of Metropolis-Hastings MCMC method

@ Next time: a very quick tour of fancier probabilistic models

24 /24

Metropolis Algorithm Analysis bﬁ/\is.‘

e Metropolis algorithm has g(s — ') > 0 for all s, &’
e This ensures stationary distribution is unique, and that we reach it

@ Also has detailed balance with target distribution p, p(s)gsss = p(s')q(s’ — s)
@ We can show this by defining the transition probabilities as

1 _ /E—l _ o p(s'
_eXp(2(8 s') (s 3)) qses,:cs_s,min{l,p(S)}

S @ =)
(8/ = Cs_op(S) min éﬁ(S/)
(S) } — Ls—s p() {1’ éﬁ(s) }

and observing that
s’ :
(s) } = C4_g Min {p(S),p<3/)}

(s)
(s

" (s

~—

=1

pelals =) = copls)min {1

’E’Uz

= Csfs’p(s) min {)

E

_/

’B

— p(s')cy— min { } — p(s)a(s’ = 9)

~—

25 /24

	Metropolis algorithm
	Metropolis-Hastings and Gibbs
	Appendix

