
Markov Chain Monte Carlo
CPSC 440/550: Advanced Machine Learning

cs.ubc.ca/~dsuth/440/23w2

University of British Columbia, on unceded Musqueam land

2023-24 Winter Term 2 (Jan–Apr 2024)

1 / 24

https://cs.ubc.ca/~dsuth/440/23w2

Markov Chains for Monte Carlo Estimation

We’ve been discussing inference in Markov chains

Sampling, marginals, stationary distribution, decoding, conditionals
Usually (for discrete chains) there are dynamic programming algorithms

We can also use Markov chains for inference in other models

Most common way to do this is Markov chain Monte Carlo (MCMC)
Widely used for approximate inference, e.g. in Bayesian logistic regression

High-level idea of MCMC:
We want to use Monte Carlo estimates with a distribution p

But we don’t know how to generate iid samples from p

Design a homogeneous Markov chain whose stationary distribution is p

This is usually surprisingly easy to do

Use ancestral sampling to sample from a long version of this Markov chain
Use the Markov chain samples within the Monte Carlo approximation

2 / 24

Degenerate Example: “Pointless MCMC”
Consider finding the expected value of a fair die:

For a 6-sided die, the expected value is 3.5

Consider the following “pointless MCMC” algorithm:

Start with some initial value, like “4”
At each step, roll the die and generate a random number u:

If u < 0.5, “accept” the roll and take the roll as the next sample
Otherwise, “reject” the roll and take the old value (e.g. “4”) as the next sample

Generates samples from a Markov chain with this transition probability:

q(xt−1 → xt) =
1
2 1(xt = xt−1) +

1
2 · 1

6 =

{
7/12 xt = xt−1

1/12 xt ̸= xt−1

q(s → s′) is a “proposal” distribution over s′

3 / 24

Degenerate Example: “Pointless MCMC”
Pointless MCMC in action:

Start with “4”, so record “4”
Roll a “6” and generate 0.234, so record “6”
Roll a “3” and generate 0.612, so record “6”
Roll a “2” and generate 0.523, so record “6”
Roll a “3” and generate 0.125, so record “3”
Roll a “2” and generate 0.433, so record “2”

So our samples are 4,6,6,6,3,2. . .

If you run this long enough, you will spend 1/6 of the time on each number

Stationary distribution is uniform: if we start at a uniform number, either staying
there or going to a uniformly random number is still uniform
So the stationary distribution of the chain is p (the uniform distribution)

This is the key feature of MCMC methods

It is “pointless” since it assumes we can generate IID samples from p
If you can do that, don’t use this algorithm for approximate samples!

4 / 24

Markov Chain Monte Carlo (MCMC)

Markov chain Monte Carlo (MCMC):
Design a Markov chain that has π(x) = p(x)

For large enough k, a sample x(k) from the chain will be distributed according to p(x)
Changing notation a bit: x(1) is the first sampled state, x(2) the second, . . . , x(n) last

Use the Markov chain samples within a Monte Carlo estimator,

E[g(x)] ≈ 1

n

n∑
t=1

g(x(t))

Generalization of the law of large numbers (“ergodic theorem”) shows:
as n → ∞, 1

n

∑n
t=1 g(x

(t)) → E[g(x)] (almost surely)
But convergence is slower since we’re generating dependent samples
e.g. the variance is higher than Var[g(x)]/n, since samples aren’t iid

A popular way to design the Markov chain is Metropolis-Hastings algorithm.
Oldest algorithm out of the “10 Best Algorithms of the 20th Century”

5 / 24

Special Case: Metropolis Algorithm
The Metropolis algorithm for sampling from a continuous target p(x):
Assumes we can evaluate p up to a normalizing constant, p(x) = p̃(x)/Z

Start with some initial value x(0)

Until we get bored:
Add zero-mean Gaussian noise to x(t−1) to give proposal x̂(t)

Generate a u uniformly between 0 and 1
“Accept” the proposal and set x(t) = x̂(t) if

u ≤ p̃(x̂(t))

p̃(x(t−1))

(probability of proposed)

(probability of current)

Otherwise “reject” the sample and use x(t−1) again as the next sample x(t)

Proposals that increase probability density are always accepted
Proposals that decrease probability density might be accepted or rejected
Always converges for continuous densities, but might be really slow
You can implement this even if you don’t know normalizing constant

6 / 24

Metropolis Algorithm in Action

http://www.columbia.edu/~cjd11/charles_dimaggio/DIRE/styled-4/

styled-11/code-5

while True:

xhat = x + \
rs.multivariate normal(cov=Sigma)

u = rs.random()

if u < p(xhat) / p(x):

x = xhat

yield x

7 / 24

http://www.columbia.edu/~cjd11/charles_dimaggio/DIRE/styled-4/styled-11/code-5
http://www.columbia.edu/~cjd11/charles_dimaggio/DIRE/styled-4/styled-11/code-5

Metropolis Algorithm Analysis
Markov chain with transitions q(s → s′) is reversible if

π(s) q(s → s′) = π(s′) q(s′ → s)

for some distribution π; this condition is called detailed balance

Reversibility implies π is a stationary distribution:

π+(s) =
∑
s′

π(s′) q(s′ → s) =
∑
s′

π(s) q(s → s′) (detailed balance for each term)

= π(s)
∑
s′

q(s → s′)︸ ︷︷ ︸
1

= π(s) exactly the stationarity condition

Metropolis is reversible, with p its stationary distribution (bonus slide)
And positive transition probabilities mean π exists, and is unique/reached

8 / 24

Markov Chain Monte Carlo
MCMC sampling from a Gaussian:

http://www.cs.ubc.ca/~arnaud/stat535/slides10.pdf

9 / 24

http://www.cs.ubc.ca/~arnaud/stat535/slides10.pdf

MCMC Implementation Issues
In practice, we often don’t use all the samples in our Monte Carlo estimate

Burn-in: throw away early samples, when we’re far from the stationary dist

Thinning: only keep every k samples, since they’ll be highly correlated

Two common ways that MCMC is applied:
1 Sample from a huge number of Markov chains for a long time, use final states

Great for parallelization
Like an extreme form of thinning: only use one sample per chain
Need to worry about burn-in for each chain

2 Sample from one Markov chain for a really long time, use states across time

Less worry about burn in
May need to thin, since samples will be correlated

It can very hard to diagnose if we have reached stationary distribution
Formally, it’s PSPACE-hard – even harder than NP-hard
Various heuristics exist

10 / 24

Outline

1 Metropolis algorithm

2 Metropolis-Hastings and Gibbs

11 / 24

Metropolis-Hastings

Metropolis algorithm is a special case of Metropolis-Hastings

General version uses a general proposal distribution
q(x̂(t+1) | x(t)) = q(x(t) → x̂(t+1))
In Metropolis, q is a Gaussian with mean x(t)

Metropolis-Hastings accepts a proposed x̂(t) if

u ≤ p̃(x̂t)

p̃(xt−1)
· q(x̂

t → xt−1)

q(xt−1 → x̂t)

These extra terms ensures reversibility (detailed balance) for asymmetric q

If you’re more likely to propose x(t−1) → x̂(t) than the other way, less likely to accept

Eventually converges under very weak conditions, e.g. all q(x(t) → x̂(t+1)) > 0

But practical convergence can change a lot with different q

12 / 24

Metropolis-Hastings Example: Rolling Dice with Coins
Say we want to sample from a fair 6-sided die

Pr(X = c) = 1
6 for each c ∈ {1, . . . , 6}

But we don’t have a die, or a computer, just coins
and don’t want to do rejection sampling. . .

Consider the following random walk on the numbers 1-6:
If x = 1, always propose 2
If x = 2, 50% of the time propose 1 and 50% of the time propose 3
If x = 3, 50% of the time propose 2 and 50% of the time propose 4
If x = 4, 50% of the time propose 3 and 50% of the time propose 5
If x = 5, 50% of the time propose 4 and 50% of the time propose 6
If x = 6, always propose 5

Flip a coin: go up if it’s heads (and you can), go down it it’s tails (and you can)
A random walk on this graph:

13 / 24

Metropolis-Hastings Example: Rolling Dice with Coins
“Roll a die with a coin” by using random walk as transitions q in M-H:

q(1 → 2) = 1, q(2 → 1) = 1
2 , q(2 → 3) = 1

2 , . . . , q(6 → 5) = 1

If x = 3 and we propose x̂ = 2, then we always accept: check is

u <
p(2)

p(3)
· q(2 → 3)

q(3 → 2)
=

1/6

1/6
· 1/2
1/2

= 1

Same for any x in the “middle” (2 to 5)

If x = 2 and we propose x̂ = 1, we also always accept: check is

u <
p(1)

p(2)
· q(1 → 2)

q(2 → 1)
=

1/6

1/6
· 1

1/2
= 2

If x is at the end (1 or 6), you accept with probability 1/2:

u <
p(2)

p(1)
· q(2 → 1)

q(1 → 2)
=

1/6

1/6
· 1/2

1
=

1

2

14 / 24

Metropolis-Hastings Example: Rolling Dice with Coins

So Metropolis-Hastings modifies random walk probabilities:

If you’re at the end (1 or 6), stay there half the time
This accounts for the fact that 1 and 6 have only one neighbour

Which means they aren’t visited as often by the random walk

Could also be viewed as a random surfer in a different graph:

You can think of Metropolis-Hastings as the modification that
“makes the random walk have the right probabilities”

For any (“reasonable”) proposal distribution q

15 / 24

Special Case: Gibbs Sampling

An important special case of Metropolis-Hastings is Gibbs sampling

Method to sample from a multi-dimensional distribution
Maybe the most common multi-dimensional sampler

Gibbs sampling starts with some x and then repeats:
1 Choose a variable j uniformly at random
2 Update xj by resampling it from its conditional distribution given everything else:

x
(t)
j ∼ p

(
xj | x(t−1)

1 , . . . , x
(t−1)
j−1 , x

(t−1)
j+1 , . . . , x

(t−1)
d

)
Keep other variables the same

Common variation: resample x1, then x2, . . . , then xd, then x1, then x2, . . .

16 / 24

Gibbs Sampling in Action

Start with some initial value: x(0) =
[
2 2 3 1

]
Select random index: j = 3

Sample variable j: x(1) =
[
2 2 1 1

]
Select random index: j = 1

Sample variable j: x(2) =
[
3 2 1 1

]
Select random index: j = 2

Sample variable j: x(3) =
[
3 2 1 1

]
. . .

Use the samples to form a Monte Carlo estimator

17 / 24

Gibbs Sampling in Action: Multivariate Gaussian
Gibbs sampling works for general distributions

E.g., sampling from multivariate Gaussian by univariate Gaussian sampling

https://theclevermachine.wordpress.com/2012/11/05/mcmc-the-gibbs-sampler

Video: https://www.youtube.com/watch?v=AEwY6QXWoUg

18 / 24

https://theclevermachine.wordpress.com/2012/11/05/mcmc-the-gibbs-sampler
https://www.youtube.com/watch?v=AEwY6QXWoUg

Sampling from Conditionals

For discrete Xj , the conditionals needed for Gibbs sampling have a simple form

Using x¬j to mean “everything but xj”:

p(xj = c | x¬j) =
p(xj = c, x¬j)

p(x¬j)
=

p(xj = c, x¬j)∑
c′ p(xj = c′, x¬j)

=
p̃(xj = c, x¬j)∑
c′ p̃(xj = c′, x¬j)

using unnormalized p̃ since Z is the same in numerator/denominator

Last expression is easy to evaluate: just sum over all values of xj

For continuous xj , replace the sum by an integral

Might have an easy form (e.g. conditionally Gaussian)
Might be able to figure out the (inverse) cdf, for inverse transform sampling
Might need to use rejection sampling, especially in non-conjugate cases

19 / 24

Gibbs Sampling as a Markov Chain

The “Gibbs sampling Markov chain” if p is over 4 binary variables:
The states are the possible configurations of the four variables:

[0 0 0 0], [0 0 0 1], [0 0 1 0], etc (there are 24 = 16 of them)

The initial probability π(0) is a “point mass” for the initial state:

If you start at [1 1 0 1], then π(0)([1 1 0 1]) = 1 and π(0)([0 0 0 0]) = 0

The transition probabilities q are based on the variable we choose and target p:

If we are at [1 1 0 1] and choose coordinate randomly we have:

q([1 1 0 1] → [0 0 1 1]) = 0 (Gibbs only updates one variable)

q([1 1 0 1] → [1 0 0 1]) =
1

d︸︷︷︸
j is uniform

p(x2 = 0 | x1 = 1, x3 = 0, x4 = 1)︸ ︷︷ ︸
from target distribution p

.

Not homogeneous if cycling, but can “hack it”: add “last updated variable” to state

20 / 24

Gibbs is Metropolis-Hastings

For random coordinates, proposal is q(x → x̂) = 1
d

∑d
j=1 1(x̂¬j = x¬j)p(x̂j | x¬j)

For a proposal with x̂¬j = x¬j , acceptance probability is min of 1 and

p(x̂)

p(x)
· q(x̂ → x)

q(x → x̂)
=

p(x̂j | x̂¬j)p(x̂¬j)
p(xj | x¬j)p(x¬j)

·
1
d p(xj | x̂¬j)
1
d p(x̂j | x¬j)

=
p(x̂j | x¬j)p(x¬j)
p(xj | x¬j)p(x¬j)

· p(xj | x¬j)
p(x̂j | x¬j)

(since x¬j = x̂¬j)

= 1

Detailed balance is satisfied; also need ergodicity for unique stationary dist

21 / 24

Metropolis-Hastings

Common choices for proposal distribution q in Metropolis-Hastings:
Metropolis et al. originally used random walks: x(t) = x(t−1) + ϵ for ϵ ∼ N (0,Σ)
Hastings originally used independent proposal: q(x(t−1) → x()) = q(x(t))

Usually not a good choice in high dimensions

Gibbs sampling updates a single variable based on conditional
Block Gibbs sampling:

If you can sample multiple variables at once Gibbs sampling tends to work better

Collapsed Gibbs sampling (Rao-Blackwellization):
MCMC provably works better at sampling marginals of a joint distribution
“Try to integrate over variables you don’t care about”

Unlike rejection sampling, high acceptance rate is not always good:
High acceptance rate may mean we’re not moving very much (samples very
dependent)
Low acceptance rate definitely means we’re not moving very much
Designing good proposals q is an “art”

22 / 24

Advanced Monte Carlo Methods

“Adaptive MCMC”: tries to update q as we go. Needs to be done carefully
“Particle MCMC”: use particle filter to make proposal

Auxiliary-variable sampling: introduce variables to sample bigger blocks:
For example, introduce z variables in mixture models
Also used in Bayesian logistic regression (beginning with Albert and Chib)

Trans-dimensional MCMC:
Needed when dimensionality of problem can change on different iterations
Most important application is probably Bayesian feature selection

Hamiltonian Monte Carlo:
Faster-converging method based on Hamiltonian dynamics (using ∇ log p)

Population MCMC:
Run multiple MCMC methods, each having different “move” size
Large moves do exploration and small moves refine good estimates

With mechanism to exchange samples between chains
23 / 24

Summary

Markov chain Monte Carlo (MCMC) approximates complicated expectations

Generate samples from a Markov chain that has p as stationary distribution
Use these samples within a Monte Carlo approximation
Burn-in period, and samples are highly correlated (sometimes thin them)

Metropolis: add Gaussian noise, maybe “reject” if it decreases density

Metropolis-Hastings: general MCMC method allowing arbitrary “proposals”

Accept/reject samples based on proposal and target probabilities

Gibbs sampling: Samples each variable conditioned on all others

Special case of Metropolis-Hastings MCMC method

Next time: a very quick tour of fancier probabilistic models

24 / 24

Metropolis Algorithm Analysis

Metropolis algorithm has q(s → s′) > 0 for all s, s′

This ensures stationary distribution is unique, and that we reach it

Also has detailed balance with target distribution p, p(s)qs)s′ = p(s′)q(s′ → s)
We can show this by defining the transition probabilities as

cs−s′ =
exp

(
−1

2(s− s′)Σ−1(s− s′)
)

(2π |Σ|)d/2
qs)s′ = cs−s′ min

{
1,

p̃(s′)

p̃(s)

}
and observing that

p(s)q(s → s′) = cs−s′p(s)min

{
1,

p̃(s′)

p̃(s)

}
= cs−s′p(s)min

{
1,

1
Z p̃(s

′)
1
Z p̃(s)

}

= cs−s′p(s)min

{
1,

p(s′)

p(s)

}
= cs−s′ min

{
p(s), p(s′)

}
= p(s′)cs′−smin

{
1,

p(s)

p(s′)

}
= p(s′)q(s′ → s)

25 / 24

	Metropolis algorithm
	Metropolis-Hastings and Gibbs
	Appendix

