Message Passing in Markov Chains

 CPSC 440/550: Advanced Machine Learning

 CPSC 440/550: Advanced Machine Learning}
cs.ubc.ca/~dsuth/440/23w2

University of British Columbia, on unceded Musqueam land

$$
\text { 2023-24 Winter Term } 2 \text { (Jan-Apr 2024) }
$$

Last Time: Markov Chains

- State space, initial probabilities, transition matrix
- Homogeneous or inhomogeneous
- MLE: just fit appropriate categorical distribution (by counting) for each part
- Inference: ancestral sampling, marginals with CK equations

Application: Voice Photoshop

- Adobe VoCo uses decoding in a Markov chain as part of synthesizing voices:

Fig. 7. Dynamic triphone preselection. For each query triphone (top) we find a candidate set of good potential matches (columns below). Good paths through this set minimize differences from the query, number and severity of breaks, and contextual mismatches between neighboring triphones.

- https://www.youtube.com/watch?v=I314XLZ59iw

Decoding: Maximizing Joint Probability

- Decoding the mode in density models: finding x with highest joint probability:

$$
\underset{x_{1}, x_{2}, \ldots, x_{d}}{\arg \max } p\left(x_{1}, x_{2}, \ldots, x_{d}\right)
$$

- For CS grad student $(d=60)$ the mode is industry for all years
- The mode often doesn't look like a typical sample
- The mode can change if you increase d
- Decoding is easy for independent models:
- Here, $p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{3}\right) p\left(x_{4}\right)$
- You can optimize $p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ by optimizing each $p\left(x_{j}\right)$ independently
- Can we also maximize the marginals to decode a Markov chain?

Example of Decoding vs. Maximizing Marginals

- Consider the "plane of doom" 2-variable Markov chain:

$$
X=\left[\begin{array}{cc}
\text { land } & \text { alive } \\
\text { land } & \text { alive } \\
\text { crash } & \text { dead } \\
\text { explode } & \text { dead } \\
\text { crash } & \text { dead } \\
\text { land } & \text { alive } \\
\vdots & \vdots
\end{array}\right]
$$

- 40% of the time the plane lands and you live
- 30% of the time the plane crashes and you die
- 30% of the time the explodes and you die

Example of Decoding vs. Maximizing Marginals

- Initial probabilities are given by

$$
\operatorname{Pr}\left(x_{1}=\text { land }\right)=0.4, \quad \operatorname{Pr}\left(x_{1}=\text { crash }\right)=0.3, \quad \operatorname{Pr}\left(x_{1}=\operatorname{explode}\right)=0.3
$$

and transition probabilites are:

$$
\begin{array}{ll}
\operatorname{Pr}\left(X_{2}=\text { alive } \mid X_{1}=\text { land }\right)=1 & \operatorname{Pr}\left(X_{2}=\text { alive } \mid X_{1}=\text { crash }\right)=0 \\
& \operatorname{Pr}\left(X_{2}=\text { alive } \mid X_{1}=\operatorname{explode}\right)=0
\end{array}
$$

- From the CK equations, we know

$$
\operatorname{Pr}\left(X_{2}=\text { alive }\right)=0.4, \quad \operatorname{Pr}\left(X_{2}=\text { dead }\right)=0.6
$$

- Maximizing the marginals $p\left(x_{j}\right)$ independently gives (land, dead)
- This has probability 0 , since $\operatorname{Pr}($ dead \mid land $)=0$
- Decoding considers the joint assignment to x_{1} and x_{2} maximizing probability
- In this case it's (land, alive), which has probability 0.4

Decoding with Dynamic Programming

- Note that decoding can't be done forward in time as in CK equations
- Even if $\operatorname{Pr}\left(x_{1}=1\right)=0.99$, the most likely sequence could have $x_{1}=2$
- So we need to optimize over all k^{d} assignments to all variables
- Fortunately, we can solve this problem using dynamic programming
- Ingredients of dynamic programming:
(1) Optimal sub-structure
- We can divide the problem into sub-problems that can be solved individually
(2) Overlapping sub-problems
- The same sub-problems are reused several times

Decoding with Dynamic Programming

- For decoding in Markov chains, we'll use the following sub-problem:
- Compute the highest probability sequence of length j ending in state c
- We'll use $M_{j}(c)$ as the probability of this sequence

$$
M_{j}(c)=\max _{x_{1}, x_{2}, \ldots, x_{j-1}} p\left(x_{1}, x_{2}, \ldots, x_{j-1}, c\right)
$$

- Optimal sub-structure:
- We can find the decoding by taking $\arg \max _{x_{d}} M_{d}\left(x_{d}\right)$, then backtracking
- Base case: $M_{1}(c)=p\left(x_{1}=c\right)$, which we're given
- We can compute other $M_{j}(s)$ recursively; we'll derive this in a second
- Overlapping sub-problems:
- The same k values of $M_{j-1}(s)$ are used to compute the k values of $M_{j}(s)$

Digression: Recursive Joint Maximization

- To derive the M_{j} formula, it will be helpful to re-write joint maximizations as

$$
\begin{aligned}
\max _{x_{1}, x_{2}} f\left(x_{1}, x_{2}\right) & =\max _{x_{1}} \underbrace{\max _{x_{2}} f\left(x_{1}, x_{2}\right)}_{g\left(x_{1}\right)} \\
& =\max _{x_{1}} g\left(x_{1}\right) \quad \text { where } \quad g\left(x_{1}\right)=\max _{x_{2}} f\left(x_{1}, x_{2}\right)
\end{aligned}
$$

- This "maximizes out" x_{2}, similar to marginalization rule in probability
- You can do this trick repeatedly, and/or with any number of variables

Decoding with Dynamic Programming

- Derivation of recursive calculation for $M_{j}\left(x_{j}\right)$ for decoding Markov chains:

$$
\begin{aligned}
& M_{j}\left(x_{j}\right)=\max _{x_{1}, x_{2}, \ldots, x_{j-1}} p\left(x_{1}, x_{2}, \ldots, x_{j}\right) \\
& =\max _{x_{1}, x_{2}, \ldots x_{j-1}} p\left(x_{j} \mid x_{1}, x_{2}, \ldots x_{j-1}\right) p\left(x_{1}, x_{2}, \ldots, x_{j-1}\right) \\
& =\max _{x_{1}, x_{2}, \ldots x_{j-1}} p\left(x_{j} \mid x_{j-1}\right) p\left(x_{1}, x_{2}, \ldots, x_{j-1}\right) \quad \text { (Markov property) } \\
& =\max _{x_{j-1}}\left\{\max _{x_{1}, x_{2}, \ldots x_{j-2}} p\left(x_{j} \mid x_{j-1}\right) p\left(x_{1}, x_{2}, x_{j-1}\right)\right\} \quad \text { (recursive max) } \\
& =\max _{x_{j-1}}\left\{p\left(x_{j} \mid x_{j-1}\right) \max _{x_{1}, x_{2}, \ldots x_{j-2}} p\left(x_{1}, x_{2}, x_{j-1}\right)\right\} \quad\left(\max _{i} \alpha a_{i}=\alpha \max _{i} a_{i} \text { for } \alpha \geq 0\right) \\
& =\max _{x_{j-1}} \underbrace{p\left(x_{j} \mid x_{j-1}\right)}_{\text {given }} \underbrace{M_{j-1}\left(x_{j-1}\right)}_{\text {recurse }} \\
& \text { (definition of } M_{j}\left(x_{j}\right) \text {) } \\
& \text { (product rule) } \\
& \text { (Markov property) } \\
& \text { (recursive max) } \\
& \text { (definition of } M_{j-1}\left(x_{j-1}\right) \text {) }
\end{aligned}
$$

- Recall base case: $M_{1}(s)=\max _{\text {nothing }} p\left(x_{1}=s\right)$ is given
- We also store the argmax over x_{j-1} for each (j, s) : "how did I get here"?
- Once we have $M_{j}(s)$ for all j and s values, backtrack to get solution

Example: Decoding the Plane of Doom

- We have $M_{1}\left(x_{1}\right)=p\left(x_{1}\right)$ so in "plane of doom" we have

$$
M_{1}(\text { land })=0.4, \quad M_{1}(\text { crash })=0.3, \quad M_{1}(\text { explode })=0.3
$$

- We have $M_{2}\left(x_{2}\right)=\max _{x_{1}} p\left(x_{2} \mid x_{1}\right) M_{1}\left(x_{1}\right)$ so we get

$$
M_{2}(\text { alive })=0.4, \quad M_{2}(\text { dead })=0.3
$$

- $M_{2}(2) \neq p\left(x_{2}=2\right)$ because we needed to choose either crash or explode
- Notice that $\sum_{c=1}^{k} M_{2}\left(x_{j}=c\right) \neq 1$ (this is not a distribution over x_{2})
- We maximize $M_{2}\left(x_{2}\right)$ to find that the optimal decoding ends with alive
- We now need to backtrack to find the state that led to alive, giving land

Viterbi Decoding

- The Viterbi decoding dynamic programming algorithm:
(1) Set $M_{1}\left(x_{1}\right)=p\left(x_{1}\right)$ for all x_{1}
(2) Compute $M_{2}\left(x_{2}\right)$ for all x_{2}, store argmax of x_{1} leading to each x_{2}
(3) Compute $M_{3}\left(x_{3}\right)$ for all x_{3}, store argmax of x_{2} leading to each x_{3}
©
(5) Maximize $M_{d}\left(x_{d}\right)$ to find value of x_{d} in a decoding
(0) Backtrack to find the value of x_{d-1} that led to this x_{d}
(3) Backtrack to find the value of x_{d-2} that led to this x_{d-1}
(8)
(0) Backtrack to find the value of x_{1} that led to this x_{2}
- For a fixed j, computing all $M_{j}\left(x_{j}\right)$ given all $M_{j-1}\left(x_{j-1}\right) \operatorname{costs} \mathcal{O}\left(k^{2}\right)$
- Total cost is only $\mathcal{O}\left(d k^{2}\right)$ to search over all k^{d} paths
- Has numerous applications, like decoding digital TV

Viterbi Decoding

- What Viterbi decoding data structures might look like $(d=4, k=3)$:

$$
M=\left[\begin{array}{lll}
0.25 & 0.25 & 0.50 \\
0.35 & 0.15 & 0.05 \\
0.10 & 0.05 & 0.05 \\
0.02 & 0.03 & 0.05
\end{array}\right], \quad B=\left[\begin{array}{lll}
\emptyset & \emptyset & \emptyset \\
1 & 1 & 3 \\
2 & 1 & 1 \\
2 & 2 & 1
\end{array}\right]
$$

- The $d \times k$ matrix M stores the values $M_{j}(s)$, while B stores the argmax values
- From the last row of M and the backtracking matrix B, the decoding is $x_{1}=1, x_{2}=2, x_{3}=1, x_{4}=3$

Conditional Probabilities in Markov Chains: Easy Case

- How do we compute conditionals like $p\left(x_{j}=c \mid x_{j^{\prime}}=c^{\prime}\right)$ in Markov chains?
- Consider conditioning on an earlier time, like computing $p\left(x_{10} \mid x_{3}\right)$:
- We are given the value of x_{3}
- We obtain $p\left(x_{4} \mid x_{3}\right)$ by looking it up among transition probabilities
- We can compute $p\left(x_{5} \mid x_{3}\right)$ by adding conditioning to the CK equations,

$$
\begin{array}{rlr}
p\left(x_{5} \mid x_{3}\right) & =\sum_{x_{4}} p\left(x_{5}, x_{4} \mid x_{3}\right) & \text { (marginalizing) } \\
& =\sum_{x_{4}} p\left(x_{5} \mid x_{4}, x_{3}\right) p\left(x_{4} \mid x_{3}\right) & \text { (product rule) } \\
& =\sum_{x_{4}} \underbrace{p\left(x_{5} \mid x_{4}\right)}_{\text {given }} \underbrace{p\left(x_{4} \mid x_{3}\right)}_{\text {recurse }} & \text { (Markov property) }
\end{array}
$$

- Repeat this to find $p\left(x_{6} \mid x_{3}\right)$, then $p\left(x_{7} \mid x_{3}\right)$, up to $p\left(x_{10} \mid x_{3}\right)$

Conditional Probabilities in Markov Chains with "Forward" Messages

- How do we condition on a future time, like computing $p\left(x_{3} \mid x_{6}\right)$?
- Need to sum over "past" values x_{1} and x_{2}, and over "future" values x_{4} and x_{5}

$$
\begin{aligned}
p\left(x_{3} \mid x_{6}\right) & \propto p\left(x_{3}, x_{6}\right)=\sum_{x_{5}} \sum_{x_{4}} \sum_{x_{2}} \sum_{x_{1}} p\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \\
& =\sum_{x_{5}} \sum_{x_{4}} \sum_{x_{2}} \sum_{x_{1}} p\left(x_{6} \mid x_{5}\right) p\left(x_{5} \mid x_{4}\right) p\left(x_{4} \mid x_{3}\right) p\left(x_{3} \mid x_{2}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{1}\right) \\
& =\sum_{x_{5}} p\left(x_{6} \mid x_{5}\right) \sum_{x_{4}} p\left(x_{5} \mid x_{4}\right) p\left(x_{4} \mid x_{3}\right) \sum_{x_{2}} p\left(x_{3} \mid x_{2}\right) \sum_{x_{1}} p\left(x_{2} \mid x_{1}\right) p\left(x_{1}\right) \\
& =\sum_{x_{5}} p\left(x_{6} \mid x_{5}\right) \sum_{x_{4}} p\left(x_{5} \mid x_{4}\right) p\left(x_{4} \mid x_{3}\right) \sum_{x_{2}} p\left(x_{3} \mid x_{2}\right) M_{2}\left(x_{2}\right) \\
& =\sum_{x_{5}} p\left(x_{6} \mid x_{5}\right) \sum_{x_{4}} p\left(x_{5} \mid x_{4}\right) p\left(x_{4} \mid x_{3}\right) M_{3}\left(x_{3}\right) \\
& =\sum_{x_{5}} p\left(x_{6} \mid x_{5}\right) M_{5}\left(x_{5}\right)=M_{6}\left(x_{6}\right)
\end{aligned}
$$

- Forward message $M_{j}\left(x_{j}\right)$: "everything you need to know up to time j, for this x_{j} value"
- Value of M_{6} depends on $x_{3}($ for $j>3)$; to get $p\left(x_{3} \mid x_{6}\right)$, normalize by sum for all x_{3}

Conditional Probabilities in Markov Chains with "Backward" Messages

- We could exchange order of sums to do computation "backwards" in time:

$$
\begin{aligned}
p\left(x_{3} \mid x_{6}\right) & =\sum_{x_{1}} \sum_{x_{2}} \sum_{x_{4}} \sum_{x_{5}} p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}\right) p\left(x_{4} \mid x_{3}\right) p\left(x_{5} \mid x_{4}\right) p\left(x_{6} \mid x_{5}\right) \\
& =\sum_{x_{1}} p\left(x_{1}\right) \sum_{x_{2}} p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}\right) \sum_{x_{4}} p\left(x_{4} \mid x_{3}\right) \sum_{x_{5}} p\left(x_{5} \mid x_{4}\right) p\left(x_{6} \mid x_{5}\right) \\
& =\sum_{x_{1}} p\left(x_{1}\right) \sum_{x_{2}} p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}\right) \sum_{x_{4}} p\left(x_{4} \mid x_{3}\right) V_{4}\left(x_{4}\right) \\
& =\sum_{x_{1}} p\left(x_{1}\right) \sum_{x_{2}} p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}\right) V_{3}\left(x_{3}\right) \\
& =\sum_{x_{1}} p\left(x_{1}\right) V_{1}\left(x_{1}\right)
\end{aligned}
$$

- The V_{j} summarize "everything you need to know after time j for this x_{j} value"
- Sometimes called "cost to go" function, as in "what is the cost for going to x_{j} "
- Sometimes called a value function, as in "what is the future value of being in x_{j} "

Motivation for Forward-Backward Algorithm

- Why do care about being able to solve this "forward" or "backward" in time?
- Cost is $\mathcal{O}\left(d k^{2}\right)$ in both directions to compute conditionals in Markov chains
- Consider computing $p\left(x_{1} \mid A\right), p\left(x_{2} \mid A\right), \ldots, p\left(x_{d} \mid A\right)$ for some event A
- Need all these conditionals to add features, compute conditionals with neural networks, or partial observations (as in hidden Markov models, HMMs)
- We could solve this in $\mathcal{O}\left(d k^{2}\right)$ for each time, giving a total cost of $\mathcal{O}\left(d^{2} k^{2}\right)$
- Using forward messages $M_{j}\left(x_{j}\right)$ at each time, or backwards messages $V_{j}\left(x_{j}\right)$
- Alternately, the forward-backward algorithm computes all conditionals in $\mathcal{O}\left(d k^{2}\right)$
- Does one "forward" pass and one "backward" pass with appropriate messages

Potential Function Representation of Markov Chains

- Forward-backward algorithm considers probabilities written in the form

$$
p\left(x_{1}, x_{2}, \ldots, x_{d}\right)=\frac{1}{Z}\left(\prod_{j=1}^{d} \phi_{j}\left(x_{j}\right)\right)\left(\prod_{j=2}^{d} \psi_{j}\left(x_{j}, x_{j-1}\right)\right)
$$

- The ϕ_{j} and ψ_{j} functions are called potential functions
- They can map from a state (ϕ) or two states (ψ) to a non-negative number
- Normalizing constant Z ensures we sum/integrate to 1 (over all $x_{1}, x_{2}, \ldots, x_{d}$)
- We can write Markov chains in this form by using (in this case $Z=1$):
- $\phi_{1}\left(x_{1}\right)=p\left(x_{1}\right)$ and $\phi_{j}\left(x_{j}\right)=1$ when $j \neq 1$
- $\psi_{j}\left(x_{j-1}, x_{j}\right)=p\left(x_{j} \mid x_{j-1}\right)$
- Why do we need the ϕ_{j} functions?
- To condition on $x_{j}=c$, set $\phi_{j}(c)=1$ and $\phi_{j}\left(c^{\prime}\right)=0$ for $c^{\prime} \neq c$
- For "hidden Markov models" (HMMs), the ϕ_{j} will be the "emission probabilities"
- For neural networks, ϕ_{j} will be \exp (neural network output) (generalizes softmax)

Forward-Backward Algorithm

- Forward pass in forward-backward algorithm (generalizes CK equations):
- Set each $M_{1}\left(x_{1}\right)=\phi_{1}\left(x_{1}\right)$
- For $j=2$ to $j=d$, set each $M_{j}\left(x_{j}\right)=\sum_{x_{j-1}} \phi_{j}\left(x_{j}\right) \psi_{j}\left(x_{j}, x_{j-1}\right) M_{j-1}\left(x_{j-1}\right)$
- "Multiply by new terms at time j, summing up over x_{j-1} values"
- Backward pass in forward-backward algorithm:
- Set each $V_{d}\left(x_{d}\right)=\phi_{d}\left(x_{d}\right)$
- For $(d-1)$ to $j=1$, set each $V_{j}\left(x_{j}\right)=\sum_{x_{j+1}} \phi_{j}\left(x_{j}\right) \psi_{j+1}\left(x_{j+1}, x_{j}\right) V_{j+1}\left(x_{j+1}\right)$
- We then have that $p\left(x_{j}\right) \propto \frac{M_{j}\left(x_{j}\right) V_{j}\left(x_{j}\right)}{\phi_{j}\left(x_{j}\right)}$
- Not obvious; see bonus for how it gives conditional in Markov chain
- We divide by $\phi_{j}\left(x_{j}\right)$ since it is included in both the forward and backward messages
- You can alternately shift ϕ_{j} to earlier/later message to remove division
- We can also get the normalizing constant as $Z=\sum_{c=1}^{k} M_{d}(c)$

Sequential Monte Carlo (Particle Filters)

- For continuous non-Gaussian Markov chains, we usually need approximate inference
- A popular strategy in this setting is sequential Monte Carlo (SMC)
- Importance sampling where proposal q_{t} changes over time from simple to posterior
- AKA sequential importance sampling, annealed importance sampling, particle filter
- And can be viewed as a special case of genetic algorithms
- "Particle Filter Explained without Equations":
https://www.youtube.com/watch?v=aUkBa1zMKv4

Forward-Backward for Decoding and Sampling

- Viterbi decoding can be generalized to use potentials ϕ and ψ :
- Compute forward messages, but with summation replaced by maximization:

$$
M_{j}\left(x_{j}\right) \propto \max _{x_{j-1}} \phi_{j}\left(x_{j}\right) \psi_{j}\left(x_{j}, x_{j-1}\right) M_{j-1}\left(x_{j-1}\right) .
$$

- Find the largest value of $M_{d}\left(x_{d}\right)$, then backtrack to find decoding
- Forward-filter backward-sample is a potentials (ϕ and ψ) variant for sampling
- Forward pass is the same
- Backward pass generates samples (ancestral sampling backwards in time):
- Sample x_{d} from $M_{d}\left(x_{d}\right)=p\left(x_{d}\right)$.
- Sample x_{d-1} using $M_{d-1}\left(x_{d-1}\right)$ and sampled x_{d}
- Sample x_{d-2} using $M_{d-2}\left(x_{d-2}\right)$ and sampled x_{d-1}
- (continue until you have sampled x_{1})

Summary

- Viterbi decoding allow efficient decoding with Markov chains
- A special case of dynamic programming
- Potential representation of Markov chains (more general formulation)
- Non-negative potential ϕ at each time and ψ for each transition
- Forward-backward generalizes CK equations for potentials
- Allows computing all marginals in $\mathcal{O}\left(d k^{2}\right)$
- Next time: MCMC, at last

Computing Markov Chain Conditional using Forward-Backward

$$
\begin{aligned}
p\left(x_{3} \mid x_{6}\right) & \propto \sum_{x_{4}} \sum_{x_{5}} \sum_{x_{2}} \sum_{x_{1}} p\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \quad \text { (set up both sums to work "outside in") } \\
& =\sum_{x_{4}} \sum_{x_{5}} \sum_{x_{2}} \sum_{x_{1}} p\left(x_{4} \mid x_{3}\right) p\left(x_{5} \mid x_{4}\right) p\left(x_{6} \mid x_{5}\right) p\left(x_{3} \mid x_{2}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{1}\right) \\
& =\sum_{x_{4}} p\left(x_{4} \mid x_{3}\right) \sum_{x_{5}} p\left(x_{5} \mid x_{4}\right) p\left(x_{6} \mid x_{5}\right) \sum_{x_{2}} p\left(x_{3} \mid x_{2}\right) \sum_{x_{1}} p\left(x_{2} \mid x_{1}\right) p\left(x_{1}\right) \\
& =\sum_{x_{4}} p\left(x_{4} \mid x_{3}\right) \sum_{x_{5}} p\left(x_{5} \mid x_{4}\right) p\left(x_{6} \mid x_{5}\right) \sum_{x_{2}} p\left(x_{3} \mid x_{2}\right) \sum_{x_{1}} p\left(x_{2} \mid x_{1}\right) M_{1}\left(x_{1}\right) \\
& =\sum_{x_{4}} p\left(x_{4} \mid x_{3}\right) \sum_{x_{5}} p\left(x_{5} \mid x_{4}\right) p\left(x_{6} \mid x_{5}\right) \sum_{x_{2}} p\left(x_{3} \mid x_{2}\right) M_{2}\left(x_{2}\right) \\
& =\sum_{x_{4}} p\left(x_{4} \mid x_{3}\right) \sum_{x_{5}} p\left(x_{5} \mid x_{4}\right) p\left(x_{6} \mid x_{5}\right) M_{3}\left(x_{3}\right) \\
= & M_{3}\left(x_{3}\right) \sum_{x_{4}} p\left(x_{4} \mid x_{3}\right) \sum_{x_{5}} p\left(x_{5} \mid x_{4}\right) p\left(x_{6} \mid x_{5}\right) \quad \quad \text { (take } M_{3}\left(x_{3}\right) \text { outside sums) } \\
= & M_{3}\left(x_{3}\right) \sum_{x_{4}} p\left(x_{4} \mid x_{3}\right) \sum_{x_{5}} p\left(x_{5} \mid x_{4}\right) p\left(x_{6} \mid x_{5}\right) V_{6}\left(x_{6}\right) \quad\left(V_{6}\left(x_{6}\right)=1\right) \\
= & M_{3}\left(x_{3}\right) \sum_{x_{4}} p\left(x_{4} \mid x_{3}\right) \sum_{x_{5}} p\left(x_{5} \mid x_{4}\right) V_{5}\left(x_{5}\right) \\
= & M_{3}\left(x_{3}\right) \sum_{x_{4}} p\left(x_{4} \mid x_{3}\right) V_{4}\left(x_{4}\right) \\
= & M_{3}\left(x_{3}\right) V_{3}\left(x_{3}\right)\left(\phi_{3}\left(x_{3}\right)=1 \text { so no division, normalize over } x_{3}\right. \text { values to get final answer) }
\end{aligned}
$$

