Message Passing in Markov Chains
CPSC 440/550: Advanced Machine Learning

cs.ubc.ca/~dsuth/440/23w2
University of British Columbia, on unceded Musqueam land

2023-24 Winter Term 2 (Jan—-Apr 2024)

1/22

https://cs.ubc.ca/~dsuth/440/23w2

Last Time: Markov Chains

State space, initial probabilities, transition matrix
Homogeneous or inhomogeneous

MLE: just fit appropriate categorical distribution (by counting) for each part

Inference: ancestral sampling, marginals with CK equations

2/22

Application: Voice Photoshop bﬂnis.‘

@ Adobe VoCo uses decoding in a Markov chain as part of synthesizing voices:

Query | !
ouy | sesa || sie || rer G_RAH
'/' r B ™
spS1 r-{ SIK IY_ G_R G_R_AH
sp_S_I =1 SIIE IY GR ; G_REY
spS1 k-1 SIT 1GN \ G.REY
\ SIYG /| 160 | \ GRAY
sp LG
[Initial candidate table
P1G including all Triphones
R and Diphones.
Triphone match 5:;;"‘":‘:::; ‘ Diphone match ‘ """ Cmﬁ‘:&

Fig. 7. Dynamic triphone preselection. For each query triphone (top) we
find a candidate set of good potential matches (columns below). Good paths
through this set minimize differences from the query, number and severity
of breaks, and contextual mismatches between neighboring triphones.

http://gfx.cs.princeton.edu/pubs/Jin_2017_VTI/Jin2017-VoCo-paper.pdf
e https://www.youtube.com/watch?v=I314XLZ59iw

3/22

http://gfx.cs.princeton.edu/pubs/Jin_2017_VTI/Jin2017-VoCo-paper.pdf
https://www.youtube.com/watch?v=I3l4XLZ59iw

Decoding: Maximizing Joint Probability

@ Decoding the mode in density models: finding x with highest joint probability:

argmax p(x1,z2,...,2q)
T1,22;---,2d

@ For CS grad student (d = 60) the mode is industry for all years

e The mode often doesn't look like a typical sample
e The mode can change if you increase d

@ Decoding is easy for independent models:

o Here, p(x1, 22,25, %4) = p(x1)p(w2)p(23)p(4)
o You can optimize p(x1, x2, 3, x4) by optimizing each p(z;) independently

@ Can we also maximize the marginals to decode a Markov chain?

4/22

Example of Decoding vs. Maximizing Marginals

o Consider the “plane of doom” 2-variable Markov chain:

land
land
crash
explode
crash
land

@ 40% of the time the plane lands and you live

alive]
alive
dead
dead
dead
alive

@ 30% of the time the plane crashes and you die

@ 30% of the time the explodes and you die

Example of Decoding vs. Maximizing Marginals
o Initial probabilities are given by
Pr(z; = land) = 0.4, Pr(x; = crash) =0.3, Pr(z; = explode)=0.3
and transition probabilites are:
Pr(Xy = alive | X; = land) =1 Pr(Xs =alive| X; = crash) =0
Pr(Xy = alive | X; = explode) =0
@ From the CK equations, we know
Pr(Xy = alive) = 0.4, Pr(X;=dead)=0.6
@ Maximizing the marginals p(z;) independently gives (1and, dead)

e This has probability 0, since Pr(dead | 1and) = 0

@ Decoding considers the joint assignment to 1 and x2 maximizing probability
o In this case it's (1and, alive), which has probability 0.4

6/22

Decoding with Dynamic Programming

@ Note that decoding can’t be done forward in time as in CK equations

o Even if Pr(z; = 1) = 0.99, the most likely sequence could have z; = 2
e So we need to optimize over all k% assignments to all variables

@ Fortunately, we can solve this problem using dynamic programming

@ Ingredients of dynamic programming:
© Optimal sub-structure
@ We can divide the problem into sub-problems that can be solved individually
@ Overlapping sub-problems

@ The same sub-problems are reused several times

7/22

Decoding with Dynamic Programming

@ For decoding in Markov chains, we'll use the following sub-problem:

e Compute the highest probability sequence of length j ending in state ¢
o We'll use Mj(c) as the probability of this sequence

Mi(c)= max p(z1,22,...,25-1,¢)
L1250y Lj—1
@ Optimal sub-structure:
o We can find the decoding by taking arg max, , M(z4), then backtracking
e Base case: M(c) = p(x1 = ¢), which we're given
o We can compute other M;(s) recursively; we'll derive this in a second
@ Overlapping sub-problems:
o The same k values of M;_;(s) are used to compute the k values of M;(s)

8/22

Digression: Recursive Joint Maximization

@ To derive the M; formula, it will be helpful to re-write joint maximizations as

max f(x1,x2) = maxmax f(x1,x2)
T To

T1,72
—_——
g(x1)

=maxg(r;) where g(z1)=max f(z1,z2)
1 T2

@ This “maximizes out” w9, similar to marginalization rule in probability

@ You can do this trick repeatedly, and/or with any number of variables

9/22

Decoding with Dynamic Programming
@ Derivation of recursive calculation for M;(x;) for decoding Markov chains:

M;(z;)= max p(z1,22,...,%;) (definition of M;(x;))
: : L1,T2,.-,T5—1 T

= max p(xj | T1,T2,. .. xj_l)p(xl, To, ... ,xj_l) (product rule)
L1,L2,---Lj—1

= max p(.’L‘j | l‘j_l)p(l‘l, To, ... ,xj_l) (Markov property)
L1,T2,-..Lj—1

= max{ max p(x; | zj—1)p(x1, 2, a:j_l)} (recursive max)
J)j,1 271,.’1)2,...36]',2

= max {p(xj ‘ :L‘jfl) max p(z1, 2, le)} (max aa; = amaxa; for a > 0)
Tj_1 T1,T2,...T5_2 i i

= max p(‘LJ ‘ JL‘jfl) Afj,1($j,1) (definition of M;_1(xj_1))
Tj_1

given recurse

® Recall base case: M (s) = maxnothing P(T1 = 5) is given
@ We also store the argmax over x;_; for each (j,s): “how did | get here"?
@ Once we have M, (s) for all j and s values, backtrack to get solution

10/22

Example: Decoding the Plane of Doom

e We have M;(z1) = p(x1) so in “plane of doom” we have
Mi(land) = 0.4, M;j(crash) =0.3, M;i(explode)=0.3
@ We have Ms(x2) = maxy, p(x2 | x1)Mi(z1) so we get
Ms(alive) = 0.4, My(dead) =0.3

@ M5(2) # p(xe = 2) because we needed to choose either crash or explode
o Notice that Zlcc:l My (z; = ¢) # 1 (this is not a distribution over x)

e We maximize Ms(z2) to find that the optimal decoding ends with alive
e We now need to backtrack to find the state that led to alive, giving land

11/22

Viterbi Decoding

@ The Viterbi decoding dynamic programming algorithm:
@ Set Mi(z1) = p(zq) for all 21
@ Compute My(z2) for all x5, store argmax of 1 leading to each x5
© Compute M3(x3) for all z3, store argmax of xo leading to each z3
Q ...
© Maximize My(x4) to find value of x4 in a decoding
@ Backtrack to find the value of xz4_1 that led to this x4
@ Backtrack to find the value of x4_» that led to this x4_1
Q ...
© Backtrack to find the value of z; that led to this x>

e For a fixed j, computing all M;(z;) given all M;_1(z;_1) costs O(k?)
o Total cost is only O(dk?) to search over all k¢ paths
e Has numerous applications, like decoding digital TV

12/22

Viterbi Decoding

e What Viterbi decoding data structures might look like (d = 4,k = 3):

0.25 0.25 0.50 /I
0.35 0.15 0.05 1 1 3
M= 0.10 0.05 0.05|’ B= 2 1 1
0.02 0.03 0.05 2 2 1

@ The d x k matrix M stores the values M;(s), while B stores the argmax values

@ From the last row of M and the backtracking matrix B,
the decoding is x1 = 1,20 = 2,23 = 1,24 =3

13/22

Conditional Probabilities in Markov Chains: Easy Case

@ How do we compute conditionals like p(z; = ¢ | 2y = ¢’) in Markov chains?

e Consider conditioning on an earlier time, like computing p(z1¢ | z3):
o We are given the value of z3
o We obtain p(x4 | x3) by looking it up among transition probabilities
o We can compute p(x5 | 23) by adding conditioning to the CK equations,

p(zs | x3) Zp X5, g | X3) (marginalizing)
= ZP (z5 | 24, 23)p(24 | 73) (product rule)
= ZP x5 | x4) p(za | 23) (Markov property)
v./
glVen recurse

o Repeat this to find p(x¢ | 23), then p(a7 | x3), up to p(z10 | 23)

14/22

Conditional Probabilities in Markov Chains with “Forward” Messages

@ How do we condition on a future time, like computing p(x3 | 26)?
o Need to sum over “past” values x; and 3, and over “future” values x4 and x5

plws | x6) < plws,6) = > > > > plwr, w2, T3, T4, T5,)

x5 Ta o xry

= ; ; ; ;p(we | @s)p(@s | wa)p(ea | @a)p(as | w2)p(es | @1)p(ar)
= g:p(;e |2$5)1;P(~T5 | 24)p(z4 | 23) ;P(% | xz);P(ffz | z1)p(z1)
S s [0) S oo | ot | 200" ol | 22)Ma(ea)

- g:p(xg | x5)§m,r,-, | 2)p(zs | 75 u\Z(xg)

= ZP(SUG | 25) M5 (05) = Meg(x)

@ Forward message M;(x;): “everything you need to know up to time j, for this x; value”

@ Value of Mg depends on x3 (for j > 3); to get p(x3 |), normalize by sum for all x3

15/22

Conditional Probabilities in Markov Chains with “Backward” Messages

@ We could exchange order of sums to do computation “backwards” in time:

p(xs | z6) ZZZZP (x1)p(z2 | x1)p(z3 | x2)p(24 | 3)p(T5 | T4)P(T6 | 25)

1 X2 T4 Ts

= p1) > p(xa | x1)p(as | 22) > p(xa | x3)> _ plas | za)p(aes | 25)
=Y (@)Y plas | @)p(es | w2)) plas | w3)Viles)

T4

= ple)) ples | wa)ples | 22)Va(zs)
1 o

S plaa)Viten)
T

@ The V; summarize “everything you need to know after time j for this z; value”

o Sometimes called “cost to go” function, as in “what is the cost for going to z;"
o Sometimes called a value function, as in “what is the future value of being in z;"

16/22

Motivation for Forward-Backward Algorithm

@ Why do care about being able to solve this “forward” or “backward” in time?
o Cost is O(dk?) in both directions to compute conditionals in Markov chains

e Consider computing p(x1 | A), p(za | A),..., p(xzq | A) for some event A

o Need all these conditionals to add features, compute conditionals with neural
networks, or partial observations (as in hidden Markov models, HMMs)

e We could solve this in O(dk?) for each time, giving a total cost of O(d?k?)
o Using forward messages M;(z;) at each time, or backwards messages V;(x;)

o Alternately, the forward-backward algorithm computes all conditionals in O(dk?)
e Does one “forward” pass and one “backward” pass with appropriate messages

17/22

Potential Function Representation of Markov Chains
@ Forward-backward algorithm considers probabilities written in the form

A d
plar, 2, 2a) = - [T | | 1] vz zi-0)
j=1 Jj=2

@ The ¢; and 1); functions are called potential functions
e They can map from a state (¢) or two states (¥) to a non-negative number
o Normalizing constant Z ensures we sum/integrate to 1 (over all 21, za,...,24)

@ We can write Markov chains in this form by using (in this case Z = 1):
] 01(71> :p(l'l) and ¢j(l‘j) =1 when j }é 1
o j(wj—1, ;) = pla; | 2j-1)

@ Why do we need the ¢; functions?
e To condition on z; = ¢, set ¢;(c) =1 and ¢;(¢') =0 for ¢/ # ¢
o For "hidden Markov models” (HMMs), the ¢; will be the “emission probabilities”
o For neural networks, ¢; will be exp(neural network output) (generalizes softmax)
18/22

Forward-Backward Algorithm

e Forward pass in forward-backward algorithm (generalizes CK equations):
o Set each My(z1) = ¢1(21)
e For j=2toj= d, set each Z\/[j(.]?j) = ij71 ¢j(3&‘j)¢j(l‘j,]Jj_l)Mj_l(l‘j_l)

e “Multiply by new terms at time j, summing up over x;_; values”

@ Backward pass in forward-backward algorithm:
o Set each Vy(z4) = dalzq)
o For (d—1)toj =1, seteach Vj(z;) =3, . &;(x;)Yj1(xj41,25)Vis1(2j41)

M (z5)Vj(z;)
¢5(x;5)
e Not obvious; see bonus for how it gives conditional in Markov chain
o We divide by ¢;(z;) since it is included in both the forward and backward messages

@ We then have that p(z;) o

@ You can alternately shift ¢; to earlier/later message to remove division

@ We can also get the normalizing constant as Z = Z]C’“:l My(c)

19/22

Sequential Monte Carlo (Particle Filters) bﬁ"is-(

@ For continuous non-Gaussian Markov chains, we usually need approximate

inference

@ A popular strategy in this setting is sequential Monte Carlo (SMC)

e Importance sampling where proposal g; changes over time from simple to posterior
o AKA sequential importance sampling, annealed importance sampling, particle filter

@ And can be viewed as a special case of genetic algorithms

e “Particle Filter Explained without Equations”:
https://www.youtube.com/watch?v=aUkBalzMKv4

20/22

https://www.youtube.com/watch?v=aUkBa1zMKv4

Forward-Backward for Decoding and Sampling bonus!

@ Viterbi decoding can be generalized to use potentials ¢ and :
o Compute forward messages, but with summation replaced by maximization:

M;(z5) oc maxg,; , ¢ (2;)¢;(25, 2j-1) Mj—1(x;-1).
o Find the largest value of My(z4), then backtrack to find decoding

e Forward-filter backward-sample is a potentials (¢ and 1) variant for sampling

e Forward pass is the same
o Backward pass generates samples (ancestral sampling backwards in time):

Sample x4 from Mg(zq) = p(za).

Sample z4_1 using Mgq_1(zq4—1) and sampled z4
Sample z4_2 using My_o(z4—2) and sampled zq_1
(continue until you have sampled x1)

21/22

Summary

@ Viterbi decoding allow efficient decoding with Markov chains
e A special case of dynamic programming

e Potential representation of Markov chains (more general formulation)
o Non-negative potential ¢ at each time and ¥ for each transition

@ Forward-backward generalizes CK equations for potentials
o Allows computing all marginals in O(dk?)

@ Next time: MCMC, at last

22/22

Computing Markov Chain Conditional using Forward-Backward bﬂ"f-‘

p(z3 | z6) o< Z Z Z Z p(x1,z2, 3, T4, T5,xe) (set up both sums to work “outside in")
T4 T5 Tg @1

=> >3 > p(@a | w3)p(as | za)p(zs | z5)p(23 | @2)p(2 | 21)P(21)

Ty x5 T T

= p(za | 23) Y p(z5 | wa)p(s | @5) D p(zs | 22) D p(22 | 1)p(e1)
xy x5 xo]

= p(ea | 23) > p(w5 | wa)p(z6 | ©5) D p(es | 22) Y p(w2 | 1) M (1)
T4 T

T5 T3
= p(za | 23) Y p(@5 | wa)p(ze | 25) D p(z3 | 22) Ma(2)
xy z5 xo
= p(za | 23) Y p(w5 | wa)p(a6 | ©5)Ms(23)
e

= M3(23) Y plwa | w3) > p(w5 | @4)p(w6 | @5) (take M3 (x3) outside sums)
xy x5

= Mz(23) Y _p(za | 23) > p(es | 24)p(z6 | 25)Ve(26) (Ve(we) = 1)
T2 =5

= Mz(23) Y _p(za | x3) > ples | 24)Vs(2s)
x4 P

= Mz(23) Y p(24 | 3)Va(za)
e

= M3 (z3)V3(xz3) (¢3(x3) = 1 so no division, normalize over x3 values to get final answer)

23/22

	Message Passing
	Appendix

