Mixture distributions

 CPSC 440/550: Advanced Machine Learning

 CPSC 440/550: Advanced Machine Learning}
cs.ubc.ca/~dsuth/440/23w2

University of British Columbia, on unceded Musqueam land

2023-24 Winter Term 2 (Jan-Apr 2024)

Last time: Exponential families

- Have sufficient statistics and canonical parameters
- Maximimum likelihood becomes moment matching; always have conjugate priors
- Can build discriminative models by using canonical parameter $s(x)=w^{\top} x$
- Many things (but not everything!) are exponential families
- Today: some things that aren't

Outline

(1) Mixture of Gaussians
(2) Imputation to learn mixtures
(3) Mixture of Bernoullis
4. Expectation Maximization
(5) Advanced Mixtures
(6) Kernel Density Estimation

1 Gaussian for Multi-Modal Data

- One major drawback of Gaussian is that it is uni-modal - It gives a terrible fit to data like this:

- How can we fit this data?
- Could use an exp. family, but only by harcoding possible mode locations in $s(x)$ - We'll want something more general. . .

2 Gaussians for Multi-Modal Data

- We can fit this data by using two Gaussians

- Half the samples are from Gaussian one, half are from Gaussian two

Mixture of Gaussians

- Our probability density in this example is given by

$$
p\left(x \mid \mu_{1}, \mu_{2}, \Sigma_{1}, \Sigma_{2}\right)=\frac{1}{2} \underbrace{\mathcal{N}\left(x \mid \boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{1}\right)}_{\text {pdf of Gaussian } 1}+\frac{1}{2} \underbrace{\mathcal{N}\left(x \mid \boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}_{2}\right)}_{\text {pdf of Gaussian } 2},
$$

- We need the $\frac{1}{2} \mathrm{~s}$ for it to integrate to 1

Mixture of Gaussians

- If data comes from one Gaussian more often than the other, we could use

$$
p\left(x \mid \mu_{1}, \mu_{2}, \Sigma_{1}, \Sigma_{2}, \pi_{1}, \pi_{2}\right)=\pi_{1} \underbrace{\mathcal{N}\left(x \mid \boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{1}\right)}_{\text {pdf of Gaussian } 1}+\pi_{2} \underbrace{\mathcal{N}\left(x \mid \boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}_{2}\right)}_{\text {pdf of Gaussian } 2},
$$

where π_{1} and π_{2} are non-negative and sum to 1

- π_{1} is "probability that we take a sample from Gaussian 1"

Mixture of Gaussians

- In general we might have a mixture of k Gaussians with different weights

$$
p(x \mid \mu, \Sigma, \pi)=\sum_{c=1}^{k} \pi_{c} \underbrace{\mathcal{N}\left(x \mid \boldsymbol{\mu}_{c}, \boldsymbol{\Sigma}_{c}\right)}_{\text {pdf of Gaussian } c}
$$

- π_{c} are categorical distribution parameters (non-negative and sum to 1).
- If k is large, can model complicated densities with Gaussians (like RBFs)
- "Universal approximator" if $k \rightarrow \infty$
- Can model any continuous density on a compact set

Mixture of Gaussians

- Gaussian vs. mixture of 2 Gaussian densities in 2D:

- Marginals will also be mixtures of Gaussians

Mixture of Gaussians

- Gaussian vs. mixture of 4 Gaussians for 2D multi-modal data:

Mixture of Gaussians

- Gaussian vs. mixture of 5 Gaussians for 2D multi-modal data:

Latent-Variable Representation of Mixtures

- For inference/learning in mixture models, we often introduce variables $z^{(i)}$.
- Each $z^{(i)}$ is a categorical variable in $\{1,2, \ldots, k\}$ when we have k mixtures
- The value $z^{(i)}$ represents "what mixture this example came from"
- We do not observe the $z^{(i)}$ values (called latent variables)
- Why this interpretation of "each x^{i} comes from one Gaussian"?
- Consider a model where $p(z=c)=\pi_{c}$, and $x \mid(z=c) \sim \mathcal{N}\left(\boldsymbol{\mu}_{c}, \boldsymbol{\Sigma}_{c}\right)$
- Now marginalize over the $z^{(i)}$ in this model:

$$
\begin{aligned}
p(x \mid \mu, \Sigma, \pi) & =\sum_{c=1}^{k} p(x, z=c)=\sum_{c=1}^{k} p(z=c) p(x \mid z=c) \\
& =\sum_{c=1}^{k} \pi_{c} \mathcal{N}\left(x \mid \boldsymbol{\mu}_{c}, \boldsymbol{\Sigma}_{c}\right)
\end{aligned}
$$

which is the pdf of the mixture of Gaussians model

Ancestral sampling in mixture of Gaussians

- Generating samples with ancestral sampling in the latent variable representation:
(1) Sample cluster z based on prior probabilities π_{c} (categorical distribution)
(2) Sample example x based on mean μ_{z} and covariance Σ_{z} of Gaussian z

Inference for Gaussian mixtures

- Marginalization and computing conditionals is also easy
- Computing the marginal $p(z \mid x)$, or finding its mode, is easy (next slide)
- Finding the mode for x in Gaussian mixtures is NP-hard
- We usually fit these models with expectation maximization (EM; soon)
- An optimization method that gives closed-form updates for this model
- Choosing k : domain knowledge, test set likelihood, or marginal likelihood.

Inference Task: Computing Responsibilities

- Consider computing probability that example i came from mixture c
- We call this the responsibility of mixture c for example i :

$$
\begin{aligned}
r_{c}^{(i)} & =p\left(z=c \mid x^{(i)}\right) \\
& =\frac{p\left(z=c, x^{(i)}\right)}{p\left(x^{(i)}\right)} \\
& =\frac{p\left(z=c, x^{(i)}\right)}{\sum_{c^{\prime}=1}^{k} p\left(z^{\prime}=c, x^{(i)}\right)} \\
& =\frac{p(z=c) p\left(x^{(i)} \mid z=c\right)}{\sum_{c^{\prime}=1}^{k} p\left(z=c^{\prime}\right) p\left(x^{(i)} \mid z=c^{\prime}\right)} \\
& =\frac{\pi_{c} \mathcal{N}\left(x^{(i)} \mid \boldsymbol{\mu}_{c}, \boldsymbol{\Sigma}_{c}\right)}{\sum_{c^{\prime}=1}^{k} \pi_{c^{\prime}} \mathcal{N}\left(x^{(i)} \mid \boldsymbol{\mu}_{c^{\prime}}, \boldsymbol{\Sigma}_{c^{\prime}}\right)}
\end{aligned}
$$

(we know all these values)

- Avoid underflow in computation with log-space: bonus slides
- Thinking of mixture components as clusters, this is probability of being in cluster c

Notation Alert: π vs. z vs. r (MEMORIZE)

- In mixture models, many people confuse the quantities π, z, and r
- Vector π has k elements in $[0,1]$ and summing up to 1
- Number π_{c} is the "prior" probability that an example is in cluster c
- This is a parameter (we learn it from data)
- Matrix \mathbf{R} is an $n \times k$ matrix, summing to 1 across rows
- Number $r_{c}^{(i)}$ is the "posterior" probability that example i is in cluster c
- Computing these values is an inference task (assumes known parameters)
- Vector \mathbf{z} has n elements in $\{1,2, \ldots, k\}$
- Category $z^{(i)}$ is the actual mixture/cluster that generated example i
- This is a nuisance parameter (unknown variable, not a parameter of the model)

Outline

(1) Mixture of Gaussians
(2) Imputation to learn mixtures

3 Mixture of Bernoullis

4 Expectation Maximization
(5) Advanced Mixtures
(6) Kernel Density Estimation

Learning mixture models with imputation

- Mixture of Gaussian parameters are $\left\{\pi_{c}, \boldsymbol{\mu}_{c}, \boldsymbol{\Sigma}_{c}\right\}_{c=1}^{k}$
- Unfortunately, NLL is non-convex
- Various optimization methods are used in practice
- If we optimize over $z^{(i)}$, we can decrease NLL with alternating optimization:
(1) Given the clusters $z^{(i)}$, find the most likely parameters
- Optimize $p(\mathbf{X} \mid \pi, \mu, \Sigma, \mathbf{z})$ in terms of the $\left\{\pi_{c}, \boldsymbol{\mu}_{c}, \boldsymbol{\Sigma}_{c}\right\}_{c=1}^{k}$
- Set π_{c} based on frequency of seeing $z^{(i)}=c$
- Set $\boldsymbol{\mu}_{c}$ to the mean of examples in cluster c
- Set $\boldsymbol{\Sigma}_{c}$ to the covariance of examples in cluster c
(2) Given the parameters, find the most likely clusters
- For each example i, compute responsibilities $r_{c}^{(i)}=p\left(z^{(i)}=c \mid x^{(i)}, \pi_{c}, \boldsymbol{\mu}_{c}, \boldsymbol{\Sigma}_{c}\right)$
- Set $z^{(i)}$ to the argmax of $r_{c}^{(i)}$ over c
- Connection to Gaussian discriminant analsysis (GDA), using clusters $z^{(i)}$ as labels:
- Step 1 is the learning step in GDA; Step 2 is the prediction step in GDA

Special Case: k-Means

- Algorithm from the previous slide is a generalization of k-means clustering
- Apply the algorithm assuming $\pi_{c}=1 / k$ and $\boldsymbol{\Sigma}_{c}=\mathbf{I}$ for all c :
(1) Given the clusters z^{i}, find the most likely parameters
- Set $\boldsymbol{\mu}_{c}$ to the mean of examples in cluster c
(2) Given the parameters, find the most likely clusters
- Set $z^{(i)}$ to the closest mean of example i
- As with k-means, initialization matters for fitting mixture of Gaussians
- May need to do multiple random restarts, or clever initializations like k-means++
k-Means vs. Mixture of Gaussians
- k-means can be viewed as fitting a Gaussian mixture (all $\pi_{c}=\frac{1}{k}$, same $\boldsymbol{\Sigma}=\sigma^{2} \mathbf{I}$)
- But using a variable $\boldsymbol{\Sigma}_{c}$ allows non-convex clusters

With same covariance, clusters are convex.

k-Means vs. Mixture of Gaussians

- k-means can be viewed as fitting a Gaussian mixture (all $\pi_{c}=\frac{1}{k}$, same $\boldsymbol{\Sigma}=\sigma^{2} \mathbf{I}$)
- But using a variable $\boldsymbol{\Sigma}_{c}$ allows non-convex clusters

With same covariance, clusters are convex.

k-Means vs. Mixture of Gaussians

- k-means can be viewed as fitting a Gaussian mixture (all $\pi_{c}=\frac{1}{k}$, same $\boldsymbol{\Sigma}=\sigma^{2} \mathbf{I}$)
- But using a variable $\boldsymbol{\Sigma}_{c}$ allows non-convex clusters

k-Means vs. Mixture of Gaussians

- k-means can be viewed as fitting a Gaussian mixture (all $\pi_{c}=\frac{1}{k}$, same $\boldsymbol{\Sigma}=\sigma^{2} \mathbf{I}$)
- But using a variable $\boldsymbol{\Sigma}_{c}$ allows non-convex clusters

k-Means vs. Mixture of Gaussians

- k-means can be viewed as fitting a Gaussian mixture (all $\pi_{c}=\frac{1}{k}$, same $\boldsymbol{\Sigma}=\sigma^{2} \mathbf{I}$)
- But using a variable $\boldsymbol{\Sigma}_{c}$ allows non-convex clusters

k-Means vs. Mixture of Gaussians

- k-means can be viewed as fitting a Gaussian mixture (all $\pi_{c}=\frac{1}{k}$, same $\boldsymbol{\Sigma}=\sigma^{2} \mathbf{I}$)
- But using a variable $\boldsymbol{\Sigma}_{c}$ allows non-convex clusters

Original Data

k-Means Clustering

EM Clustering

https://en.wikipedia.org/wiki/K-means_clustering

Digression: MLE does not exist

- For mixture of at least two Gaussians, there is no MLE
- You can make the likelihood arbitrarily large:
- Set $\mu_{c}=x^{(i)}$ for some particular i and c, and make $\boldsymbol{\Sigma}_{c} \rightarrow 0$
- Optimizers often find models with degenerate components
- Also often get empty clusters
- It is common to remove empty clusters and use a regularized update,

$$
\boldsymbol{\Sigma}_{c}=\frac{1}{\sum_{i=1}^{n} r_{c}^{(i)}} \sum_{i=1}^{n} r_{c}^{(i)}\left(x^{(i)}-\mu_{c}\right)\left(x^{(i)}-\mu_{c}\right)^{\top}+\lambda \mathbf{I}
$$

which is MAP estimation with an L1 regularizer on diagonals of the precision

- The MAP estimate exists with this and other usual priors on $\boldsymbol{\Sigma}_{c}$

Outline

(1) Mixture of Gaussians
(2) Imputation to learn mixtures
(3) Mixture of Bernoullis

4 Expectation Maximization
(5) Advanced Mixtures
(6) Kernel Density Estimation

Previously: Product of Bernoullis

- A while ago we covered density estimation with discrete variables,

$$
\mathbf{X}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

using a product of Bernoullis:

$$
p\left(x^{(i)} \mid \theta\right)=\prod_{j=1}^{d} p\left(x_{j}^{(i)} \mid \theta_{j}\right)
$$

- Easy to fit but very strong independence assumption:
- Knowing $x_{j}^{(i)}$ tells you nothing about $x_{k}^{(i)}$
- A more powerful model: mixture of Bernoullis

Mixture of Bernoullis

- Consider a coin flipping scenario where we have two coins:
- Coin 1 has $\theta_{1}=0.5$ (fair) and coin 2 has $\theta_{2}=1$ (biased)
- Half the time we flip coin 1, and otherwise we flip coin 2 :

$$
\begin{aligned}
p\left(x^{(i)}=1 \mid \theta_{1}, \theta_{2}\right) & =\pi_{1} \operatorname{Bern}\left(x^{(i)}=1 \mid \theta_{1}\right)+\pi_{2} \operatorname{Bern}\left(x^{(i)}=1 \mid \theta_{2}\right) \\
& =\frac{1}{2} \theta_{1}+\frac{1}{2} \theta_{2}=\frac{\theta_{1}+\theta_{2}}{2}
\end{aligned}
$$

- With one variable this mixture model is not very interesting
- It's exactly equivalent to flipping one coin with $\theta=0.75$
- But mixture of product of Bernoullis can model dependencies...

Mixture of Independent Bernoullis

- Consider a mixture of a product of Bernoullis:

$$
p\left(x \mid \theta_{1}, \theta_{2}\right)=\frac{1}{2} \underbrace{\prod_{j=1}^{d} \operatorname{Bern}\left(x_{j} \mid \theta_{j \mid 1}\right)}_{\text {first set of Bernoullis }}+\frac{1}{2} \prod_{\text {second set of Bernoullis }}^{\prod_{j=1}^{d} \operatorname{Bern}\left(x_{j} \mid \theta_{j \mid 2}\right)}
$$

- Conceptually, we now have two sets of coins:
- Half the time we throw the first set, half the time we throw the second set
- With $d=4$ we could have $\theta_{\cdot \mid 1}=\left[\begin{array}{llll}0 & 0.7 & 1 & 1\end{array}\right]$ and $\theta_{\cdot \mid 2}=\left[\begin{array}{llll}1 & 0.7 & 0.8 & 0\end{array}\right]$
- Half the time we have $p\left(x_{3}^{(i)}=1\right)=1$, half the time it's 0.8
- Have we gained anything?

Mixture of Independent Bernoullis

- Previous example: $\theta_{\cdot \mid 1}=\left[\begin{array}{llll}0 & 0.7 & 1 & 1\end{array}\right]$ and $\theta_{\cdot \mid 2}=\left[\begin{array}{llll}1 & 0.7 & 0.8 & 0\end{array}\right]$
- Here are some samples from this model:

$$
\mathbf{X}=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

- Unlike product of Bernoullis, features in samples are not independent
- In this example knowing $x_{1}=1$ tells you that $x_{4}=0$
- This model can capture dependencies: $\underbrace{p\left(x_{4}=1 \mid x_{1}=1\right)}_{0} \neq \underbrace{p\left(x_{4}=1\right)}_{0.5}$

Mixture of Independent Bernoullis

- Drawing the mixture of Bernoullis as a directed acyclic graph (DAG):

- If we know z, then each x_{j} is independent
- Since we usually don't, there are dependencies between the x_{j}
- We'll talk a bunch about this kind of reasoning soon ("graphical models")
- This is the same graph as naive Bayes, with cluster z instead of class y
- If you see one spammy word, it makes other spammy words more likely

Mixture of Independent Bernoullis

- General mixture of independent Bernoullis:

$$
p(x \mid \Theta)=\sum_{c=1}^{k} \pi_{c} p(x \mid z=c)=\sum_{c=1}^{k}\left[\pi_{c} \prod_{j=1}^{d} \theta_{j \mid c}\right]
$$

- Here Θ contains all the parameters: k values of π_{c}, and $k \times d$ values of $\theta_{j \mid c}$
- Mixture of Bernoullis can model dependencies between variables
- Individual mixtures act like clusters of the binary data
- Knowing cluster of one variable gives information about other variables
- With k large enough, mixture of Bernoullis can model any binary distribution
- With $k=2^{d}$, we can make all the $\theta_{j \mid c} \in\{0,1\}$, and it becomes a tabular distribution
- Hopefully, we can make a useful model with $k \ll 2^{d}$.

Mixture of Independent Bernoullis

- Plotting parameters θ_{c} with 10 mixtures trained on MNIST digits (with "EM"):
(numbers above images are mixture coefficients π_{c})

- Remember this is unsupervised: it hasn't been told there are ten digits.
- You could use this model to "fill in" missing parts of an image.

Mixture of Bernoullis on Digits with $k>10$

- Parameters of a mixture of Bernoulli model fit to MNIST with $k=10$:

- Samples better than product of Bernoullis (but no within-cluster dependency):
(
(28*
:
为

- You get a better model with $k>10$. First 10 components with $k=50$:

- Samples from the $k=50$ model (can have more than one "type" of a number):

	$\frac{6}{6}$				$\frac{1}{4}$				

Outline

(1) Mixture of Gaussians
(2) Imputation to learn mixtures
(3) Mixture of Bernoullis
(4) Expectation Maximization
(5) Advanced Mixtures
(6) Kernel Density Estimation

Big Picture: Training and Inference

- Many possible mixture model inference tasks:
- Generate samples
- Measure likelihood of test examples \tilde{x}
- To detect outliers, for example
- Compute probability that test example belongs to cluster c
- Compute marginal or conditional probabilities
- "Fill in" missing parts of a test example
- Mixture model training phase:
- Input is a matrix \mathbf{X}, number of clusters k, and form of individual distributions
- Output is mixture proportions π_{c} and parameters of components
- The $\theta_{\cdot \mid c}$ for Bernoulli, and the $\left\{\boldsymbol{\mu}_{c}, \boldsymbol{\Sigma}_{c}\right\}$ for Gaussians
- Also, maybe, the responsibilities $r_{c}^{(i)}$ or cluster assignments $z^{(i)}$

Fitting a Mixture of Bernoullis: Imputation of $z^{(i)}$

- Imputation approach to fitting mixture of Bernoullis, optimizing the $z^{(i)}$:
(1) Find the most likely cluster $z^{(i)}$ for each example $x^{(i)}$,

$$
z^{(i)} \in \underset{c}{\arg \max } p\left(z^{(i)}=c \mid x^{(i)}, \Theta\right)
$$

(2) Update the mixture probabilities as proportion of examples in cluster,

$$
\pi_{c}=\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\left(z^{(i)}=c\right)
$$

(3) Update the product of Bernoullis based on examples in cluster,

$$
\theta_{j \mid c}=\frac{\sum_{i=1}^{n} \mathbb{1}\left(z^{(i)}=c\right) x_{j}^{(i)}}{\sum_{i=1}^{n} \mathbb{1}\left(z^{(i)}=c\right)}
$$

- This picks a particular value for each $z^{(i)}$; sometimes called "hard assignments"

Fitting a Mixture of Bernoullis: Expectation Maximization

- Expectation maximization (EM) approach to fitting mixture of Bernoulli:
(1) Find the responsibility of cluster $z^{(i)}$ for each example $x^{(i)}$

$$
r_{c}^{(i)}=p\left(z^{(i)}=c \mid x^{(i)}, \Theta\right)
$$

(2) Update the mixture probabilities as proportion of examples cluster is responsible for,

$$
\pi_{c}=\frac{1}{n} \sum_{i=1}^{n} r_{c}^{(i)}
$$

(3) Update the product of Bernoullis based on examples cluster is responsible for,

$$
\theta_{j \mid c}=\frac{\sum_{i=1}^{n} r_{c}^{(i)} x_{j}^{(i)}}{\sum_{i=1}^{n} r_{c}^{(i)}}
$$

- This does "soft" (probabilistic) assignment for the $z^{(i)}$ variables

Fitting a Mixture of Gaussians: Expectation Maximization

- Expectation maximization (EM) approach to ftting mixture of Gaussians:
(1) Find the responsibility of cluster $z^{(i)}$ for each example $x^{(i)}$

$$
r_{c}^{(i)}=p\left(z^{(i)}=c \mid x^{(i)}, \Theta\right)
$$

(2) Update the mixture probabilities as proportion of examples cluster is responsible for,

$$
\pi_{c}=\frac{1}{n} \sum_{i=1}^{n} r_{c}^{(i)}
$$

(3) Update the Gaussian based on examples cluster is responsible for,

$$
\boldsymbol{\mu}_{c}=\frac{1}{\sum_{i=1}^{n} r_{c}^{(i)}} \sum_{i=1}^{n} r_{c}^{(i)} x^{(i)}, \quad \boldsymbol{\Sigma}_{c}=\frac{1}{\sum_{i=1}^{n} r_{c}^{(i)}} \sum_{i=1}^{n} r_{c}^{(i)}\left(x^{(i)}-\mu_{c}\right)\left(x^{(i)}-\mu_{c}\right)^{\top}
$$

- Video: https://www.youtube.com/watch?v=B36fzChfyGU

Expectation Maximization vs. Imputation

- The imputation method is optimizing $p\left(x^{(i)}, z^{(i)} \mid \Theta\right)$ in terms of $z^{(i)}$ and Θ
- So we're optimizing $z^{(i)}$ as well as Θ
- $p\left(x^{(i)}, z^{(i)} \mid \Theta\right)$ is called the complete-data likelihood
- Expectation maximization (EM) is optimizing $p\left(x^{(i)} \mid \Theta\right)$ in terms of Θ
- So we're integrating over $z^{(i)}$ values while optimizing Θ
- $p\left(x^{(i)} \mid \Theta\right)$ is the usual likelihood, marginalizing over the $z^{(i)}$
- EM is a general algorithm for parameter learning with missing data
- For mixtures, the "missing" data is the $z^{(i)}$ variables
- But EM can be used for any probabilistic model where we have missing data

Expectation Maximization: General Form

- With data \mathbf{X} and hidden values \mathbf{Z}, general EM uses iterations of the form

$$
\begin{aligned}
\Theta_{t+1} & \in \underset{\Theta}{\arg \max } \sum_{\mathbf{Z}} p\left(\mathbf{Z} \mid \mathbf{X}, \Theta_{t}\right) \log p(\mathbf{X}, \mathbf{Z} \mid \Theta) \\
& =\underset{\Theta}{\arg \max } \underset{\mathbf{Z} \mid \mathbf{X}, \Theta_{t}}{\mathbb{E}}[\log p(\mathbf{X}, \mathbf{Z} \mid \Theta)]
\end{aligned}
$$

- Summing/integrating over all possible hidden values Z may be hard
- But in many cases this simplifies, due to conditional independence assumptions
- For mixture models, the EM iteration simplifies to (see notes on webpage)

$$
\sum_{i=1}^{n} \sum_{z^{(i)}=1}^{k} \underbrace{p\left(z^{(i)} \mid x^{(i)}, \Theta_{t}\right)}_{\text {responsibility }} \underbrace{\log p\left(x^{(i)}, z^{(i)} \mid \Theta\right)}_{\text {complete-data log-lik }}
$$

so summing over k^{n} possible clusterings turns into sum over $n k$ terms

"E-Step" and "M-Step" for Mixture Models

- For mixture models, EM is often written as two steps:
(1) E-step: compute responsibilities $r_{c}^{(i)}$ for all i and c, for current Θ_{t}
(2) M-step: optimize the weighted "complete-data" log-likelihood

$$
\Theta_{t+1} \in \underset{\Theta}{\arg \max } \sum_{i=1}^{n} \sum_{z^{(i)}=1}^{k} r_{c}^{(i)} \log p\left(x^{(i)}, z^{(i)} \mid \Theta\right)
$$

- For other models, there may not be separate "E-steps" and "M-steps"
- EM is most useful when complete-data log-likelihood is easy to optimize
- Most common case: complete-data log-likelihood is in an exponential family
- Mixture of Bernoullis, mixture of Gaussians, etc ewc
- Here the M -step is a weighted combination of the sufficient statistics

Expectation Maximization Algorithm: Properties

- EM monotonically increases likelihood, $p\left(\mathbf{X} \mid \Theta_{t+1}\right) \geq p\left(X \mid \Theta_{t}\right)$
- Useful for debugging: if likelihood decreases, you have a bug
- EM doesn't need a step size, unlike many learning algorithms
- EM tends to satisfy constraints automatically
- Unlike gradient descent, don't need to worry about constraints on π_{c} and Σ_{c}
- Assuming you have a prior to avoid degenerate situations where MLE does not exist
- EM iterations are parameterization-independent
- Get the same performance under any re-parameterization of the problem
- EM is notorious for converging to bad local optima
- Not really the algorithm's fault: we typically apply EM to hard problems

Expectation Maximization Algorithm: Properties

- EM converges to a stationary point, under weak assumptions
- EM is at least as fast as gradient descent (with a constant step size)
- In the worst case, for differentiable problems
- EM can also be used for non-differentiable likelihoods
- EM converges faster as entropy of hidden variables decreases
- If value of hidden variables is "obvious", it converges very fast
- EM can be arbitrarily faster than gradient descent
- Mark has a bunch of more detailed material on the EM algorithm here:
- https://www.cs.ubc.ca/~schmidtm/Courses/440-W22/L34.5.pdf

Expectation Maximization vs. Gradient Descent

- Expectation maximization vs. gradient for fitting mixture of 2 Gaussians:

Outline

(1) Mixture of Gaussians
(2) Imputation to learn mixtures
(3) Mixture of Bernoullis

4 Expectation Maximization
(5) Advanced Mixtures
(6) Kernel Density Estimation

Combining Mixture Models with Other Models

- We can use mixtures in generative classifiers
- Model $p(x \mid y)$ as a mixture instead of simple Gaussian or product of Bernoullis
- VQNB from Assignment 2 fits a mixture of Bernoullis for each class
- We can do mixture of more-complicated distributions:
- Mixture of categoricals (can model arbitrary categorical vectors)
- Mixture of student- t distributions
- Not exponential family, so no simple closed-form update of parameters
- Mixture of Markov chains, DAGs/UGMs (next topics in course)
- We can add features to mixture models for supervised learning:
- Mixture of experts: have k regression/classification models
- Each model can be viewed as a "expert" for a cluster of $x^{(i)}$ values
- GPT-4, Grok, ... are mixtures of Transformers
- These models use conditional weights π_{c}; some are 0 for computational savings

Less-Naive Bayes on Digits

- Naive Bayes θ_{c} values (independent Bernoullis for each class):

- One sample from each class:

- Generative classifier with mixture of 5 Bernoullis for each class (digits 1 and 2):

- One sample from each class:

- Would get less noisy samples and more variation with mixture of graphical models

Dirichlet Process

- Non-parametric Bayesian methods allow us to consider infinite mixture model,

$$
p(x \mid \Theta)=\sum_{c=1}^{\infty} \pi_{c} p_{c}\left(x \mid \Theta_{c}\right)
$$

- Common choice for prior on π values is Dirichlet process:
- Also called "Chinese restaurant process" and "stick-breaking process"
- For finite datasets, only a fixed number of clusters have $\pi_{c} \neq 0$
- But don't need to pick number of clusters; it grows with data size
- Gibbs sampling in Dirichlet process mixture model in action: https://www. youtube.com/watch?v=0Vh7qZY9sPs

Dirichlet Process

- Slides giving more details on Dirichelt process mixture models:
- https://www.cs.ubc.ca/labs/lci/mlrg/slides/NP.pdf
- We could alternately put a prior on number of clusters k :
- Allows more flexibility than Dirichlet process as a prior
- Needs "trans-dimensional" MCMC to sample models of different sizes
- There are a variety of interesting variations on Dirichlet processes
- Beta process ("Indian buffet process")
- Hierarchical Dirichlet process
- Polya trees
- Infinite hidden Markov models

Bayesian Hierarchical Clustering

- Hierarchical clustering of $\{0,2,4\}$ digits using classic and Bayesian method:

Bayesian Hierarchical Clustering

- Hierarchical clustering of newgroups using classic and Bayesian method:

4 Newsgroups Average Linkage Clustering

4 Newsgroups Bayesian Hierarchical Clustering

http:///www2.stat. duke. .ddu/-khel1er//bhnenew.pdf (y-axis represents distance between clusters)

Continuous Mixture Models

- We can also consider mixture models where $z^{(i)}$ is continuous,

$$
p\left(x^{(i)}\right)=\int_{z^{(i)}} p\left(z^{(i)}\right) p\left(x^{(i)} \mid z^{(i)}=c\right) \mathrm{d} z^{(i)}
$$

- Unfortunately, computing the integral might be hard
- Special case is if both probabilities are Gaussian (conjugate)
- Leads to probabilistic PCA and factor analysis (OCEAN model in psychology)
- Mark's old material:
https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/L17.5.pdf
- Another special case is scale mixtures of Gaussians
- $p\left(x^{(i)} \mid z^{(i)}\right)$ is Gaussian, and $p\left(z^{(i)}\right)$ is a gamma prior on variance (conjugate)
- Can represent many distributions in this form, like Laplace and student- t
- Leads to EM algorithms for fitting Laplace and student- t

Outline

(1) Mixture of Gaussians
(2) Imputation to learn mixtures
(3) Mixture of Bernoullis

4 Expectation Maximization
(5) Advanced Mixtures
(6) Kernel Density Estimation

Non-Parametric Mixtures: Kernel Density Estimation

- A common non-parametric mixture model centers one cluster on each example:

$$
p\left(x^{(i)}\right)=\frac{1}{n} \sum_{j=1}^{n} \mathcal{N}\left(x^{(i)} \mid x^{(j)}, \sigma^{2} \mathbf{I}\right)
$$

- This is called kernel density estimation (KDE) or the Parzen window method
- Don't have to use a normal likelihood, though that's a common choice
- Scale σ^{2} is viewed as a hyper-parameter
- By fixing mean/covariance $/ k, \sigma^{2}$ is the only parameter: otherwise immediate from X
- Most inference tasks (except finding the mode) are easy, but slow (depend on n)
- Many variations exist; see bonus slides for generalizations
- Tends to work great in low dimensions, and poorly in high dimensions

Histogram vs. Kernel Density Estimator

- You can think of a kernel density estimate as a continuous histogram:

https://en.wikipedia.org/wiki/Kernel_density_estimation

Kernel Density Estimator for Visualization

- Visualization of people's opinions about what "likely" and other words mean.

http://blog.revolutionanalytics.com/2017/08/probably-more-probably-than-probable.html

Violin Plot: Added KDE to a Boxplot

- Violin plot adds KDE to a boxplot:

https://datavizcatalogue.com/methods/violin_plot.html

Violin Plot: Added KDE to a Boxplot

- Violin plot adds KDE to a boxplot:

KDE vs. Mixture of Gaussian

- Multivariate vs mixture of Gaussians (different EM initializations):

KDE vs. Mixture of Gaussian

- Kernel density estimation vs mixture of Gaussians (different EM initializations):

Mean-Shift Clustering

- Mean-shift clustering uses KDE for clustering:
- Define a KDE on the training examples, and then for test example \hat{x} :
- Run gradient descent to maximize $p(x)$ starting from \hat{x}
- Clusters are points that reach same local minimum
- https://spin.atomicobject.com/2015/05/26/mean-shift-clustering
- Not sensitive to initialization, no need to choose k, can find non-convex clusters
- Similar to density-based clustering from 340
- Doesn't require uniform density within cluster
- Can be used for vector quantization
- "The 5 Clustering Algorithms Data Scientists Need to Know":
- https://towardsdatascience.com/
the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68

Kernel Density Estimation on Digits

- Samples from a KDE model of digits:
- Sample is on the left, right is the closest image from the training set.

- KDE just samples a training example then adds noise
- Usually makes more sense for continuous data that is densely packed
- A variation with a location-specific variance (diagonal Σ instead of $\sigma^{2} \mathbf{I}$):

77	66	为		
				8

Summary

- Mixture of Gaussians writes probability as convex combo of Gaussian densities
- Can model arbitrary continuous densities
- Latent-variable representation of mixutres with cluster variables $z^{(i)}$
- Allows ancestral sampling by sampling cluster than example
- Responsibility is probability that an example belongs to a cluster
- Mixture of Bernoullis can model dependencies between discrete variables
- Unsupervised version of naive Bayes; can model arbitrary binary distributions
- Learning by alternating imputing z^{i} and fitting full model. . . or more commonly,
- Expectation maximization: algorithm for optimization with hidden variables
- Instead of imputation, works with "soft" assignments to nuisance variables
- Maximizes log-likelihood, weighted by all imputations of hidden variables
- Simple and intuitive updates for fitting mixtures models
- Appealing properties as an optimization algorithm, but only finds local optimum
- Kernel density estimation: non-parametric density estimation method
- Center a mixture on each datapoint (smooth variation on histograms)
- Data visualization, low-dimensional density estimation, mean-shift clustering
- Next time: Markov chains

Avoiding Underflow when Computing Responsibilities

- Computing responsibility may underflow for high-dimensional $x^{(i)}$, due to $p\left(x^{(i)} \mid z^{(i)}=c, \Theta^{t}\right)$
- Usual ML solution: do all but last step in log-domain

$$
\begin{aligned}
\log r_{c}^{i} & =\log p\left(x^{i} \mid z^{i}=c, \Theta^{t}\right)+\log p\left(z^{i}=c \mid \Theta^{t}\right) \\
& -\log \left(\sum_{c^{\prime}=1}^{k} p\left(x^{i} \mid z^{i}=c^{\prime}, \Theta^{t}\right) p\left(z^{i}=c^{\prime} \mid \Theta^{t}\right)\right)
\end{aligned}
$$

- To compute last term, use "log-sum-exp" trick
- scipy.special.logsumexp

Log-Sum-Exp Trick

- To compute $\log \left(\sum_{i} \exp \left(v_{i}\right)\right)$, set $\beta=\max _{i}\left\{v_{i}\right\}$ and use:

$$
\begin{aligned}
\log \left(\sum_{c} \exp \left(v_{i}\right)\right) & =\log \left(\sum_{i} \exp \left(v_{i}-\beta+\beta\right)\right) \\
& =\log \left(\sum_{i} \exp \left(v_{i}-\beta\right) \exp (\beta)\right) \\
& \left.=\log (\exp (\beta)) \sum_{i} \exp \left(v_{i}-\beta\right)\right) \\
& =\log (\exp (\beta))+\log \left(\sum_{i} \exp \left(v_{i}-\beta\right)\right) \\
& =\beta+\log (\sum_{i} \underbrace{\exp \left(v_{i}-\beta\right)}_{\leq 1})
\end{aligned}
$$

- Avoids overflows in to computing exp operator
- Mean parameters of a mixture of Gaussians with $k=10$:

- Samples:

- 10 components with $k=50$ (might need a better initialization):

- Samples:

EM for MAP Estimation

- We can also use EM for MAP estimation. With a prior on Θ our objective is:

$$
\underbrace{\log p(X \mid \Theta)+\log p(\Theta)}_{\text {what we optimize in MAP }}=\log \left(\sum_{Z} p(X, Z \mid \Theta)\right)+\log p(\Theta) .
$$

- EM iterations take the form of a regularized weighted "complete" NLL,

$$
\Theta^{t+1} \in \underset{\Theta}{\arg \max }\{\underbrace{\sum_{Z} p\left(Z \mid X, \Theta^{t}\right) \log p(X, Z \mid \Theta)}+\log p(\Theta)\},
$$

- Now guarantees monotonic improvement in MAP objective.
- Has a closed-form solution for mixture of exponential families with conjugate priors.
- For mixture of Gaussians with $-\log p\left(\Theta_{c}\right)=\lambda \operatorname{Tr}\left(\Theta_{c}\right)$ for precision matrices Θ_{c} :
- Closed-form solution that satisfies positive-definite constraint (no $\log |\Theta|$ needed).

Generative Mixture Models and Mixture of Experts

- Classic generative model for supervised learning uses

$$
p\left(y^{i} \mid x^{i}\right) \propto p\left(x^{i} \mid y^{i}\right) p\left(y^{i}\right)
$$

and typically $p\left(x^{i} \mid y^{i}\right)$ is assumed Gaussian (LDA) or independent (naive Bayes).

- But we could allow more flexibility by using a mixture model,

$$
p\left(x^{i} \mid y^{i}\right)=\sum_{c=1}^{k} p\left(z^{i}=c \mid y^{i}\right) p\left(x^{i} \mid z^{i}=c, y^{i}\right)
$$

- Another variation is a mixture of disciminative models (like logistic regression),

$$
p\left(y^{i} \mid x^{i}\right)=\sum_{c=1}^{k} p\left(z^{i}=c \mid x^{i}\right) p\left(y^{i} \mid z^{i}=c, x^{i}\right)
$$

- Called a "mixture of experts" model:
- Each regression model becomes an "expert" for certain values of x^{i}.

Mixtures as Proposals in Metropolis-Hastings

- Suppose we want to sample from a multi-modal distribution:

http://www.cs.ubc.ca/~arnaud/stat535/slides10.pdf
- With random walk proposals, we stay in one mode for a long time.
- We could instead use mixture model as a proposal in Metropolis-Hastings.
- Proposal could be a mixture between random walk and "mode jumping".

General Kernel Density Estimation

- The 1D kernel density estimation (KDE) model uses

$$
p\left(x^{i}\right)=\frac{1}{n} \sum_{j=1}^{n} k_{\sigma} \underbrace{\left(x^{i}-x^{j}\right.}_{r}),
$$

where the PDF k is called the "kernel" and parameter σ is the "bandwidth".

- In the previous slide we used the (normalized) Gaussian kernel,

$$
k_{1}(r)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{r^{2}}{2}\right), \quad k_{\sigma}(r)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{r^{2}}{2 \sigma^{2}}\right) .
$$

- Note that we can add a "bandwith" (standard deviation) σ to any PDF k_{1}, using

$$
k_{\sigma}(r)=\frac{1}{\sigma} k_{1}\left(\frac{r}{\sigma}\right),
$$

from the change of variables formula for probabilities $\left(\left|\frac{d}{d r}\left[\frac{r}{\sigma}\right]\right|=\frac{1}{\sigma}\right)$.

- Under common choices of kernels, KDEs can model any continuous density.

Efficient Kernel Density Estimation

- KDE with the Gaussian kernel is slow at test time:
- We need to compute distance of test point to every training point.
- A common alternative is the Epanechnikov kernel,

$$
k_{1}(r)=\frac{3}{4}\left(1-r^{2}\right) \mathcal{I}[|r| \leq 1] .
$$

- This kernel has two nice properties:
- Epanechnikov showed that it is asymptotically optimal in terms of squared error.
- It can be much faster to use since it only depends on nearby points.
- You can use hashing to quickly find neighbours in training data.
- It is non-smooth at the boundaries but many smooth approximations exist.
- Quartic, triweight, tricube, cosine, etc.
- For low-dimensional spaces, we can also use the fast multipole method.

Visualization of Common Kernel Functions

Histogram vs. Gaussian vs. Epanechnikov vs. tricube:

Multivariate Kernel Density Estimation

- The multivariate kernel density estimation (KDE) model uses

$$
p\left(x^{i}\right)=\frac{1}{n} \sum_{j=1}^{n} k_{A}(\underbrace{x^{i}-x^{j}}_{r}),
$$

- The most common kernel is a product of independent Gaussians,

$$
k_{I}(r)=\frac{1}{(2 \pi)^{\frac{d}{2}}} \exp \left(-\frac{\|r\|^{2}}{2}\right) .
$$

- We can add a bandwith matrix A to any kernel using

$$
\left.k_{A}(r)=\frac{1}{|A|} k_{1}\left(A^{-1} r\right) \quad \text { (generalizes } k_{\sigma}(r)=\frac{1}{\sigma} k_{1}\left(\frac{r}{\sigma}\right)\right)
$$

and in Gaussian case we get a multivariate Gaussian with $\Sigma=A A^{T}$.

- To reduce number of parameters, we typically:
- Use a product of independent distributions and use $A=\sigma I$ for some σ.

