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Last time: Exponential families

Have sufficient statistics and canonical parameters

Maximimum likelihood becomes moment matching; always have conjugate priors

Can build discriminative models by using canonical parameter s(x) = wTx

Many things (but not everything!) are exponential families

Today: some things that aren’t
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1 Gaussian for Multi-Modal Data
One major drawback of Gaussian is that it is uni-modal

It gives a terrible fit to data like this:

How can we fit this data?
Could use an exp. family, but only by harcoding possible mode locations in s(x)
We’ll want something more general. . .
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2 Gaussians for Multi-Modal Data

We can fit this data by using two Gaussians

Half the samples are from Gaussian one, half are from Gaussian two
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Mixture of Gaussians
Our probability density in this example is given by

p(x | µ1, µ2,Σ1,Σ2) =
1

2
N (x | µ1,Σ1)︸ ︷︷ ︸
pdf of Gaussian 1

+
1

2
N (x | µ2,Σ2)︸ ︷︷ ︸
pdf of Gaussian 2

,

We need the 1
2 s for it to integrate to 1
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Mixture of Gaussians
If data comes from one Gaussian more often than the other, we could use

p(x | µ1, µ2,Σ1,Σ2, π1, π2) = π1N (x | µ1,Σ1)︸ ︷︷ ︸
pdf of Gaussian 1

+π2N (x | µ2,Σ2)︸ ︷︷ ︸
pdf of Gaussian 2

,

where π1 and π2 are non-negative and sum to 1
π1 is “probability that we take a sample from Gaussian 1”
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Mixture of Gaussians

In general we might have a mixture of k Gaussians with different weights

p(x | µ,Σ, π) =
k∑

c=1

πc N (x | µc,Σc)︸ ︷︷ ︸
pdf of Gaussian c

πc are categorical distribution parameters (non-negative and sum to 1).
If k is large, can model complicated densities with Gaussians (like RBFs)
“Universal approximator” if k → ∞

Can model any continuous density on a compact set
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Mixture of Gaussians

Gaussian vs. mixture of 2 Gaussian densities in 2D:

Marginals will also be mixtures of Gaussians
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Mixture of Gaussians

Gaussian vs. mixture of 4 Gaussians for 2D multi-modal data:
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Mixture of Gaussians

Gaussian vs. mixture of 5 Gaussians for 2D multi-modal data:
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Latent-Variable Representation of Mixtures

For inference/learning in mixture models, we often introduce variables z(i).

Each z(i) is a categorical variable in {1, 2, . . . , k} when we have k mixtures
The value z(i) represents “what mixture this example came from”
We do not observe the z(i) values (called latent variables)

Why this interpretation of “each xi comes from one Gaussian”?

Consider a model where p(z = c) = πc, and x | (z = c) ∼ N (µc,Σc)
Now marginalize over the z(i) in this model:

p(x | µ,Σ, π) =
k∑

c=1

p(x, z = c) =

k∑
c=1

p(z = c)p(x | z = c)

=

k∑
c=1

πc N (x | µc,Σc)

which is the pdf of the mixture of Gaussians model
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Ancestral sampling in mixture of Gaussians

Generating samples with ancestral sampling in the latent variable representation:
1 Sample cluster z based on prior probabilities πc (categorical distribution)
2 Sample example x based on mean µz and covariance Σz of Gaussian z
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Inference for Gaussian mixtures

Marginalization and computing conditionals is also easy

Computing the marginal p(z | x), or finding its mode, is easy (next slide)

Finding the mode for x in Gaussian mixtures is NP-hard

We usually fit these models with expectation maximization (EM; soon)

An optimization method that gives closed-form updates for this model

Choosing k: domain knowledge, test set likelihood, or marginal likelihood.
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Inference Task: Computing Responsibilities
Consider computing probability that example i came from mixture c

We call this the responsibility of mixture c for example i:

r(i)c = p(z = c | x(i))

=
p(z = c, x(i))

p(x(i))

=
p(z = c, x(i))∑k

c′=1 p(z
′ = c, x(i))

=
p(z = c) p(x(i) | z = c)∑k

c′=1 p(z = c′) p(x(i) | z = c′)

=
πc N (x(i) | µc,Σc)∑k

c′=1 πc′ N (x(i) | µc′ ,Σc′)
(we know all these values)

Avoid underflow in computation with log-space: bonus slides

Thinking of mixture components as clusters, this is probability of being in cluster c
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Notation Alert: π vs. z vs. r (MEMORIZE)

In mixture models, many people confuse the quantities π, z, and r

Vector π has k elements in [0, 1] and summing up to 1

Number πc is the “prior” probability that an example is in cluster c
This is a parameter (we learn it from data)

Matrix R is an n× k matrix, summing to 1 across rows

Number r
(i)
c is the “posterior” probability that example i is in cluster c

Computing these values is an inference task (assumes known parameters)

Vector z has n elements in {1, 2, . . . , k}
Category z(i) is the actual mixture/cluster that generated example i
This is a nuisance parameter (unknown variable, not a parameter of the model)
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Learning mixture models with imputation
Mixture of Gaussian parameters are {πc,µc,Σc}kc=1

Unfortunately, NLL is non-convex
Various optimization methods are used in practice

If we optimize over z(i), we can decrease NLL with alternating optimization:
1 Given the clusters z(i), find the most likely parameters

Optimize p(X | π, µ,Σ, z) in terms of the {πc,µc,Σc}kc=1

Set πc based on frequency of seeing z(i) = c
Set µc to the mean of examples in cluster c
Set Σc to the covariance of examples in cluster c

2 Given the parameters, find the most likely clusters

For each example i, compute responsibilities r
(i)
c = p(z(i) = c | x(i), πc,µc,Σc)

Set z(i) to the argmax of r
(i)
c over c

Connection to Gaussian discriminant analsysis (GDA), using clusters z(i) as labels:

Step 1 is the learning step in GDA; Step 2 is the prediction step in GDA
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Special Case: k-Means

Algorithm from the previous slide is a generalization of k-means clustering

Apply the algorithm assuming πc = 1/k and Σc = I for all c:
1 Given the clusters zi, find the most likely parameters

Set µc to the mean of examples in cluster c

2 Given the parameters, find the most likely clusters

Set z(i) to the closest mean of example i

As with k-means, initialization matters for fitting mixture of Gaussians

May need to do multiple random restarts, or clever initializations like k-means++
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k-Means vs. Mixture of Gaussians

k-means can be viewed as fitting a Gaussian mixture (all πc =
1
k , same Σ = σ2I)

But using a variable Σc allows non-convex clusters
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k-Means vs. Mixture of Gaussians

k-means can be viewed as fitting a Gaussian mixture (all πc =
1
k , same Σ = σ2I)

But using a variable Σc allows non-convex clusters

https://en.wikipedia.org/wiki/K-means_clustering
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Digression: MLE does not exist

For mixture of at least two Gaussians, there is no MLE

You can make the likelihood arbitrarily large:

Set µc = x(i) for some particular i and c, and make Σc → 0
Optimizers often find models with degenerate components
Also often get empty clusters

It is common to remove empty clusters and use a regularized update,

Σc =
1∑n

i=1 r
(i)
c

n∑
i=1

r(i)c (x(i) − µc)(x
(i) − µc)

T + λI

which is MAP estimation with an L1 regularizer on diagonals of the precision

The MAP estimate exists with this and other usual priors on Σc
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Previously: Product of Bernoullis
A while ago we covered density estimation with discrete variables,

X =


1 0 0 0
0 1 0 0
1 1 0 1
1 0 0 0


using a product of Bernoullis:

p(x(i) | θ) =
d∏

j=1

p(x
(i)
j | θj)

Easy to fit but very strong independence assumption:

Knowing x
(i)
j tells you nothing about x

(i)
k

A more powerful model: mixture of Bernoullis
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Mixture of Bernoullis

Consider a coin flipping scenario where we have two coins:

Coin 1 has θ1 = 0.5 (fair) and coin 2 has θ2 = 1 (biased)

Half the time we flip coin 1, and otherwise we flip coin 2:

p(x(i) = 1 | θ1, θ2) = π1 Bern(x(i) = 1 | θ1) + π2 Bern(x(i) = 1 | θ2)

=
1

2
θ1 +

1

2
θ2 =

θ1 + θ2
2

With one variable this mixture model is not very interesting

It’s exactly equivalent to flipping one coin with θ = 0.75

But mixture of product of Bernoullis can model dependencies. . .
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Mixture of Independent Bernoullis

Consider a mixture of a product of Bernoullis:

p(x | θ1, θ2) =
1

2

d∏
j=1

Bern(xj | θj|1)︸ ︷︷ ︸
first set of Bernoullis

+
1

2

d∏
j=1

Bern(xj | θj|2)︸ ︷︷ ︸
second set of Bernoullis

Conceptually, we now have two sets of coins:

Half the time we throw the first set, half the time we throw the second set

With d = 4 we could have θ·|1 =
[
0 0.7 1 1

]
and θ·|2 =

[
1 0.7 0.8 0

]
Half the time we have p(x

(i)
3 = 1) = 1, half the time it’s 0.8

Have we gained anything?
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Mixture of Independent Bernoullis

Previous example: θ·|1 =
[
0 0.7 1 1

]
and θ·|2 =

[
1 0.7 0.8 0

]
Here are some samples from this model:

X =



0 1 1 1
1 1 1 0
1 0 0 0
0 1 1 1
1 1 1 0
0 1 0 1


Unlike product of Bernoullis, features in samples are not independent

In this example knowing x1 = 1 tells you that x4 = 0

This model can capture dependencies: p(x4 = 1 | x1 = 1)︸ ︷︷ ︸
0

̸= p(x4 = 1)︸ ︷︷ ︸
0.5
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Mixture of Independent Bernoullis

Drawing the mixture of Bernoullis as a directed acyclic graph (DAG):

If we know z, then each xj is independent

Since we usually don’t, there are dependencies between the xj
We’ll talk a bunch about this kind of reasoning soon (“graphical models”)

This is the same graph as naive Bayes, with cluster z instead of class y

If you see one spammy word, it makes other spammy words more likely
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Mixture of Independent Bernoullis

General mixture of independent Bernoullis:

p(x | Θ) =

k∑
c=1

πc p(x | z = c) =

k∑
c=1

[
πc

d∏
j=1

θj|c

]

Here Θ contains all the parameters: k values of πc, and k × d values of θj|c

Mixture of Bernoullis can model dependencies between variables

Individual mixtures act like clusters of the binary data
Knowing cluster of one variable gives information about other variables

With k large enough, mixture of Bernoullis can model any binary distribution

With k = 2d, we can make all the θj|c ∈ {0, 1}, and it becomes a tabular distribution

Hopefully, we can make a useful model with k ≪ 2d. . .
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Mixture of Independent Bernoullis
Plotting parameters θc with 10 mixtures trained on MNIST digits (with “EM”):

(numbers above images are mixture coefficients πc)

http:

//pmtk3.googlecode.com/svn/trunk/docs/demoOutput/bookDemos/%2811%29-Mixture_models_and_the_EM_algorithm/mixBerMnistEM.html

Remember this is unsupervised: it hasn’t been told there are ten digits.
You could use this model to “fill in” missing parts of an image.
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Mixture of Bernoullis on Digits with k > 10

Parameters of a mixture of Bernoulli model fit to MNIST with k = 10:

Samples better than product of Bernoullis (but no within-cluster dependency):

You get a better model with k > 10. First 10 components with k = 50:

Samples from the k = 50 model (can have more than one “type” of a number):
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Big Picture: Training and Inference

Many possible mixture model inference tasks:

Generate samples
Measure likelihood of test examples x̃

To detect outliers, for example

Compute probability that test example belongs to cluster c
Compute marginal or conditional probabilities
“Fill in” missing parts of a test example

Mixture model training phase:

Input is a matrix X, number of clusters k, and form of individual distributions
Output is mixture proportions πc and parameters of components

The θ·|c for Bernoulli, and the {µc,Σc} for Gaussians

Also, maybe, the responsibilities r
(i)
c or cluster assignments z(i)
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Fitting a Mixture of Bernoullis: Imputation of z(i)

Imputation approach to fitting mixture of Bernoullis, optimizing the z(i):
1 Find the most likely cluster z(i) for each example x(i),

z(i) ∈ argmax
c

p(z(i) = c | x(i),Θ)

2 Update the mixture probabilities as proportion of examples in cluster,

πc =
1

n

n∑
i=1

1(z(i) = c)

3 Update the product of Bernoullis based on examples in cluster,

θj|c =

∑n
i=1 1(z

(i) = c)x
(i)
j∑n

i=1 1(z
(i) = c)

This picks a particular value for each z(i); sometimes called “hard assignments”
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Fitting a Mixture of Bernoullis: Expectation Maximization

Expectation maximization (EM) approach to fitting mixture of Bernoulli:
1 Find the responsibility of cluster z(i) for each example x(i)

r(i)c = p(z(i) = c | x(i),Θ)

2 Update the mixture probabilities as proportion of examples cluster is responsible for,

πc =
1

n

n∑
i=1

r(i)c

3 Update the product of Bernoullis based on examples cluster is responsible for,

θj|c =

∑n
i=1 r

(i)
c x

(i)
j∑n

i=1 r
(i)
c

This does “soft” (probabilistic) assignment for the z(i) variables
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Fitting a Mixture of Gaussians: Expectation Maximization

Expectation maximization (EM) approach to ftting mixture of Gaussians:
1 Find the responsibility of cluster z(i) for each example x(i)

r(i)c = p(z(i) = c | x(i),Θ)

2 Update the mixture probabilities as proportion of examples cluster is responsible for,

πc =
1

n

n∑
i=1

r(i)c

3 Update the Gaussian based on examples cluster is responsible for,

µc =
1∑n

i=1 r
(i)
c

n∑
i=1

r(i)c x(i), Σc =
1∑n

i=1 r
(i)
c

n∑
i=1

r(i)c

(
x(i) − µc

)(
x(i) − µc

)T
Video: https://www.youtube.com/watch?v=B36fzChfyGU
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Expectation Maximization vs. Imputation

The imputation method is optimizing p(x(i), z(i) | Θ) in terms of z(i) and Θ

So we’re optimizing z(i) as well as Θ

p(x(i), z(i) | Θ) is called the complete-data likelihood

Expectation maximization (EM) is optimizing p(x(i) | Θ) in terms of Θ

So we’re integrating over z(i) values while optimizing Θ

p(x(i) | Θ) is the usual likelihood, marginalizing over the z(i)

EM is a general algorithm for parameter learning with missing data

For mixtures, the “missing” data is the z(i) variables
But EM can be used for any probabilistic model where we have missing data
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Expectation Maximization: General Form
With data X and hidden values Z, general EM uses iterations of the form

Θt+1 ∈ argmax
Θ

∑
Z

p(Z | X,Θt) log p(X,Z | Θ)

= argmax
Θ

E
Z|X,Θt

[log p(X,Z | Θ)]

Summing/integrating over all possible hidden values Z may be hard
But in many cases this simplifies, due to conditional independence assumptions

For mixture models, the EM iteration simplifies to (see notes on webpage)

n∑
i=1

k∑
z(i)=1

p(z(i) | x(i),Θt)︸ ︷︷ ︸
responsibility

log p(x(i), z(i) | Θ)︸ ︷︷ ︸
complete-data log-lik

so summing over kn possible clusterings turns into sum over nk terms
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“E-Step” and “M-Step” for Mixture Models

For mixture models, EM is often written as two steps:

1 E-step: compute responsibilities r
(i)
c for all i and c, for current Θt

2 M-step: optimize the weighted “complete-data” log-likelihood

Θt+1 ∈ argmax
Θ

n∑
i=1

k∑
z(i)=1

r(i)c log p(x(i), z(i) | Θ)

For other models, there may not be separate “E-steps” and “M-steps”

EM is most useful when complete-data log-likelihood is easy to optimize

Most common case: complete-data log-likelihood is in an exponential family

Mixture of Bernoullis, mixture of Gaussians, etc ewc
Here the M-step is a weighted combination of the sufficient statistics
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Expectation Maximization Algorithm: Properties

EM monotonically increases likelihood, p(X | Θt+1) ≥ p(X | Θt)

Useful for debugging: if likelihood decreases, you have a bug

EM doesn’t need a step size, unlike many learning algorithms

EM tends to satisfy constraints automatically
Unlike gradient descent, don’t need to worry about constraints on πc and Σc

Assuming you have a prior to avoid degenerate situations where MLE does not exist

EM iterations are parameterization-independent

Get the same performance under any re-parameterization of the problem

EM is notorious for converging to bad local optima

Not really the algorithm’s fault: we typically apply EM to hard problems
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Expectation Maximization Algorithm: Properties

EM converges to a stationary point, under weak assumptions

EM is at least as fast as gradient descent (with a constant step size)

In the worst case, for differentiable problems
EM can also be used for non-differentiable likelihoods

EM converges faster as entropy of hidden variables decreases

If value of hidden variables is “obvious”, it converges very fast

EM can be arbitrarily faster than gradient descent

Mark has a bunch of more detailed material on the EM algorithm here:

https://www.cs.ubc.ca/~schmidtm/Courses/440-W22/L34.5.pdf
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Expectation Maximization vs. Gradient Descent

Expectation maximization vs. gradient for fitting mixture of 2 Gaussians:
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Combining Mixture Models with Other Models

We can use mixtures in generative classifiers
Model p(x | y) as a mixture instead of simple Gaussian or product of Bernoullis

VQNB from Assignment 2 fits a mixture of Bernoullis for each class

We can do mixture of more-complicated distributions:

Mixture of categoricals (can model arbitrary categorical vectors)
Mixture of student-t distributions

Not exponential family, so no simple closed-form update of parameters

Mixture of Markov chains, DAGs/UGMs (next topics in course)

We can add features to mixture models for supervised learning:
Mixture of experts: have k regression/classification models

Each model can be viewed as a “expert” for a cluster of x(i) values
GPT-4, Grok, . . . are mixtures of Transformers
These models use conditional weights πc; some are 0 for computational savings
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Less-Naive Bayes on Digits
Naive Bayes θc values (independent Bernoullis for each class):

One sample from each class:

Generative classifier with mixture of 5 Bernoullis for each class (digits 1 and 2):

One sample from each class:

Would get less noisy samples and more variation with mixture of graphical models
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Dirichlet Process

Non-parametric Bayesian methods allow us to consider infinite mixture model,

p(x | Θ) =

∞∑
c=1

πc pc(x | Θc)

Common choice for prior on π values is Dirichlet process:

Also called “Chinese restaurant process” and “stick-breaking process”
For finite datasets, only a fixed number of clusters have πc ̸= 0
But don’t need to pick number of clusters; it grows with data size

Gibbs sampling in Dirichlet process mixture model in action:
https://www.youtube.com/watch?v=0Vh7qZY9sPs
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Dirichlet Process

Slides giving more details on Dirichelt process mixture models:

https://www.cs.ubc.ca/labs/lci/mlrg/slides/NP.pdf

We could alternately put a prior on number of clusters k:

Allows more flexibility than Dirichlet process as a prior
Needs “trans-dimensional” MCMC to sample models of different sizes

There are a variety of interesting variations on Dirichlet processes

Beta process (“Indian buffet process”)
Hierarchical Dirichlet process
Polya trees
Infinite hidden Markov models
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Bayesian Hierarchical Clustering

Hierarchical clustering of {0, 2, 4} digits using classic and Bayesian method:

http://www2.stat.duke.edu/~kheller/bhcnew.pdf (y-axis represents distance between clusters)
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Bayesian Hierarchical Clustering

Hierarchical clustering of newgroups using classic and Bayesian method:

http://www2.stat.duke.edu/~kheller/bhcnew.pdf (y-axis represents distance between clusters)
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Continuous Mixture Models

We can also consider mixture models where z(i) is continuous,

p(x(i)) =

∫
z(i)

p(z(i))p(x(i) | z(i) = c)dz(i)

Unfortunately, computing the integral might be hard

Special case is if both probabilities are Gaussian (conjugate)

Leads to probabilistic PCA and factor analysis (OCEAN model in psychology)
Mark’s old material:
https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/L17.5.pdf

Another special case is scale mixtures of Gaussians

p(x(i) | z(i)) is Gaussian, and p(z(i)) is a gamma prior on variance (conjugate)
Can represent many distributions in this form, like Laplace and student-t
Leads to EM algorithms for fitting Laplace and student-t
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Non-Parametric Mixtures: Kernel Density Estimation

A common non-parametric mixture model centers one cluster on each example:

p(x(i)) =
1

n

n∑
j=1

N (x(i) | x(j), σ2I)

This is called kernel density estimation (KDE) or the Parzen window method

Don’t have to use a normal likelihood, though that’s a common choice
Scale σ2 is viewed as a hyper-parameter

By fixing mean/covariance/k, σ2 is the only parameter: otherwise immediate from
X

Most inference tasks (except finding the mode) are easy, but slow (depend on n)
Many variations exist; see bonus slides for generalizations

Tends to work great in low dimensions, and poorly in high dimensions
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Histogram vs. Kernel Density Estimator

You can think of a kernel density estimate as a continuous histogram:

https://en.wikipedia.org/wiki/Kernel_density_estimation

52 / 60

https://en.wikipedia.org/wiki/Kernel_density_estimation


Kernel Density Estimator for Visualization

Visualization of people’s opinions about what “likely” and other words mean.

http://blog.revolutionanalytics.com/2017/08/probably-more-probably-than-probable.html
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Violin Plot: Added KDE to a Boxplot

Violin plot adds KDE to a boxplot:

https://datavizcatalogue.com/methods/violin_plot.html
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Violin Plot: Added KDE to a Boxplot

Violin plot adds KDE to a boxplot:

https://seaborn.pydata.org/generated/seaborn.violinplot.html
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KDE vs. Mixture of Gaussian
Multivariate vs mixture of Gaussians (different EM initializations):
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KDE vs. Mixture of Gaussian
Kernel density estimation vs mixture of Gaussians (different EM initializations):
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Mean-Shift Clustering

Mean-shift clustering uses KDE for clustering:
Define a KDE on the training examples, and then for test example x̂:

Run gradient descent to maximize p(x) starting from x̂

Clusters are points that reach same local minimum

https://spin.atomicobject.com/2015/05/26/mean-shift-clustering

Not sensitive to initialization, no need to choose k, can find non-convex clusters

Similar to density-based clustering from 340
Doesn’t require uniform density within cluster
Can be used for vector quantization

“The 5 Clustering Algorithms Data Scientists Need to Know”:
https://towardsdatascience.com/

the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68
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Kernel Density Estimation on Digits

Samples from a KDE model of digits:

Sample is on the left, right is the closest image from the training set.

KDE just samples a training example then adds noise

Usually makes more sense for continuous data that is densely packed

A variation with a location-specific variance (diagonal Σ instead of σ2I):
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Summary
Mixture of Gaussians writes probability as convex combo of Gaussian densities

Can model arbitrary continuous densities

Latent-variable representation of mixutres with cluster variables z(i)

Allows ancestral sampling by sampling cluster than example
Responsibility is probability that an example belongs to a cluster

Mixture of Bernoullis can model dependencies between discrete variables
Unsupervised version of naive Bayes; can model arbitrary binary distributions

Learning by alternating imputing zi and fitting full model. . . or more commonly,
Expectation maximization: algorithm for optimization with hidden variables

Instead of imputation, works with “soft” assignments to nuisance variables
Maximizes log-likelihood, weighted by all imputations of hidden variables
Simple and intuitive updates for fitting mixtures models
Appealing properties as an optimization algorithm, but only finds local optimum

Kernel density estimation: non-parametric density estimation method
Center a mixture on each datapoint (smooth variation on histograms)
Data visualization, low-dimensional density estimation, mean-shift clustering

Next time: Markov chains
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Avoiding Underflow when Computing Responsibilities

Computing responsibility may underflow for high-dimensional x(i), due to
p(x(i) | z(i) = c,Θt)

Usual ML solution: do all but last step in log-domain

log ric = log p(xi | zi = c,Θt) + log p(zi = c | Θt)

− log

(
k∑

c′=1

p(xi | zi = c′,Θt)p(zi = c′ | Θt)

)
.

To compute last term, use “log-sum-exp” trick

scipy.special.logsumexp
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Log-Sum-Exp Trick

To compute log(
∑

i exp(vi)), set β = maxi{vi} and use:

log(
∑
c

exp(vi)) = log(
∑
i

exp(vi − β + β))

= log(
∑
i

exp(vi − β) exp(β))

= log(exp(β))
∑
i

exp(vi − β))

= log(exp(β)) + log(
∑
i

exp(vi − β))

= β + log(
∑
i

exp(vi − β)︸ ︷︷ ︸
≤1

).

Avoids overflows in to computing exp operator
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Mixture of Gaussians on Digits

Mean parameters of a mixture of Gaussians with k = 10:

Samples:

10 components with k = 50 (might need a better initialization):

Samples:
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EM for MAP Estimation

We can also use EM for MAP estimation. With a prior on Θ our objective is:

log p(X | Θ) + log p(Θ)︸ ︷︷ ︸
what we optimize in MAP

= log

(∑
Z

p(X,Z | Θ)

)
+ log p(Θ).

EM iterations take the form of a regularized weighted “complete” NLL,

Θ
t+1 ∈ argmax

Θ


∑
Z

p(Z | X,Θ
t
) log p(X,Z | Θ)

︸ ︷︷ ︸
+log p(Θ)

 ,

Now guarantees monotonic improvement in MAP objective.
Has a closed-form solution for mixture of exponential families with conjugate priors.

For mixture of Gaussians with − log p(Θc) = λTr(Θc) for precision matrices Θc:
Closed-form solution that satisfies positive-definite constraint (no log |Θ| needed).
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Generative Mixture Models and Mixture of Experts

Classic generative model for supervised learning uses

p(yi | xi) ∝ p(xi | yi)p(yi),

and typically p(xi | yi) is assumed Gaussian (LDA) or independent (naive Bayes).

But we could allow more flexibility by using a mixture model,

p(xi | yi) =
k∑

c=1

p(zi = c | yi)p(xi | zi = c, yi).

Another variation is a mixture of disciminative models (like logistic regression),

p(yi | xi) =
k∑

c=1

p(zi = c | xi)p(yi | zi = c, xi).

Called a “mixture of experts” model:
Each regression model becomes an “expert” for certain values of xi.
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Mixtures as Proposals in Metropolis-Hastings

Suppose we want to sample from a multi-modal distribution:

http://www.cs.ubc.ca/~arnaud/stat535/slides10.pdf

With random walk proposals, we stay in one mode for a long time.

We could instead use mixture model as a proposal in Metropolis-Hastings.
Proposal could be a mixture between random walk and “mode jumping”.
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General Kernel Density Estimation

The 1D kernel density estimation (KDE) model uses

p(xi) =
1

n

n∑
j=1

kσ (x
i − xj︸ ︷︷ ︸
r

),

where the PDF k is called the “kernel” and parameter σ is the “bandwidth”.

In the previous slide we used the (normalized) Gaussian kernel,

k1(r) =
1√
2π

exp

(
−r2

2

)
, kσ(r) =

1

σ
√
2π

exp

(
− r2

2σ2

)
.

Note that we can add a “bandwith” (standard deviation) σ to any PDF k1, using

kσ(r) =
1

σ
k1

( r
σ

)
,

from the change of variables formula for probabilities (| ddr
[
r
σ

]
| = 1

σ ).

Under common choices of kernels, KDEs can model any continuous density.
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Efficient Kernel Density Estimation

KDE with the Gaussian kernel is slow at test time:
We need to compute distance of test point to every training point.

A common alternative is the Epanechnikov kernel,

k1(r) =
3

4

(
1− r2

)
I [|r| ≤ 1] .

This kernel has two nice properties:
Epanechnikov showed that it is asymptotically optimal in terms of squared error.
It can be much faster to use since it only depends on nearby points.

You can use hashing to quickly find neighbours in training data.

It is non-smooth at the boundaries but many smooth approximations exist.
Quartic, triweight, tricube, cosine, etc.

For low-dimensional spaces, we can also use the fast multipole method.
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Visualization of Common Kernel Functions
Histogram vs. Gaussian vs. Epanechnikov vs. tricube:

https://en.wikipedia.org/wiki/Kernel_%28statistics%29 69 / 60
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Multivariate Kernel Density Estimation

The multivariate kernel density estimation (KDE) model uses

p(xi) =
1

n

n∑
j=1

kA(x
i − xj︸ ︷︷ ︸

r

),

The most common kernel is a product of independent Gaussians,

kI(r) =
1

(2π)
d
2

exp

(
−∥r∥2

2

)
.

We can add a bandwith matrix A to any kernel using

kA(r) =
1

|A|
k1(A

−1r) (generalizes kσ(r) =
1

σ
k1

( r
σ

)
),

and in Gaussian case we get a multivariate Gaussian with Σ = AAT .

To reduce number of parameters, we typically:
Use a product of independent distributions and use A = σI for some σ.
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