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Last time: Approximate inference

@ Laplace approximation: simple way to find a Gaussian approximation to posterior
e Fast and easy, but not always accurate

@ Rejection sampling: generate exact samples from complicated distributions
e Tends to reject too many samples in high dimensions

@ Importance sampling: re-weights samples from the wrong distribution
e Tends to have high variance in high dimensions
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Previously: Density Estimation with Categorical /Gaussian Distributions

@ We have discussed density estimation with categorical and Gaussian distribution
o Bernoulli is a special case of categorical (up to notation changes)

@ These distributions have a lot of nice properties for learning/inference

o NLL is convex, and MLE has closed-form (statistics in training data)
e A conjugate prior exists, so posterior is prior with “updated hyper-parameters”

@ But these distributions make restrictive assumptions:

o Categorical assumes categories are unordered, non-hierarchical, and finite
o Gaussian assumes symmetry, full support, no outliers, uni-modal

e Many alternatives to categorical/Gaussian exist (examples later)
o Alternatives that are in the exponential family maintain nice properties
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Exponential Family: Definition

@ General form of exponential family likelihood for data = with parameters 8 is

h(@) exp(n(6) "s(x))
Z(0)

p(x|0) =

The value s(z) is the vector of sufficient statistics
o s(x) tells us everything that is relevant to # about the data point

@ The parameter function 7 controls how parameters 6 interact with the statistics
o We'll focus on n(#) = 6, which is called the canonical form

The support function h contains terms that don't depend on 6
e Also called the base measure

The normalizing constant Z ensures it sums/integrates to 1 over z
e Also called the partition function
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Bernoulli as Exponential Family

@ Is Bernoulli in the exponential family for some parameters w?

? T ) ex T T
pla | 0) = 6°(1 - )" 1(x € {0,1}) £ M) ?2$>F(»

e To get an exponential, take log of exp (cancelling operations),

pla | 6) = (1 — )~ 1(x € {0,1}) = exp(log(6"(1 — 0)")) 1(x € {0,1})
=exp(xlogh + (1 —x)log(l —0)) L(z € {0,1})

_(l—Gﬁmp<xbg<130)>]Nxe{ulb

The sufficient statistic is s(z) = x; normalizing constant is Z(6) = 1/(1 — 6)
The parameter function is 7(0) = log(6/(1 — 0)) (the log odds)
e Not in canonical form. Canonical form would use log odds directly as the parameter

The support function is h(x) = 1(z € {0,1}) — says if we're “in the support”

There are also other ways to write Bernoulli as an exponential family
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Gaussian as Exponential Family

@ Writing univariate Gaussian as an exponential family:

1

p(x | p,o%) = Tore
1

V2o
exp (—u2 /202 o2 T T
(o)

e The sufficient statistics are = and z?, and parameters are ;1/0? and —1/20?

exp (—( — 1)?/20?)

exp (—2%/20% + px/o® — p?/20?)

e The normalizing constant is o exp(p?/202), and support is 1/v/27

@ Again, there is more than one way to represent as an exponential family
o If 02 is fixed, then /0 is the sufficient statistic and y is canonical
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Learning with Exponential Families

@ With n IID examples and canonical parameters 6, the likelihood is

p(X | 0) = ﬁh(x(i))w

i=1 Z(e)
= Z(;)" exp <9T Z S(l’(i))> H h(z?)
i=1 j=1

_ exp H

with sufficient statistics s(X) = Y1 | s(z?)
@ s(X) contains everything relevant for learning — can throw away the actual data
o For Gaussians, only knowledge of data we need is 3", 2() and 37 (2(¥)?
e No point in using SGD: just compute s on each example once
o Exponential families are the only class of distributions with a finite sufficient statistic
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Learning with Exponential Families
o With iid data and canonical 6, NLL is f(8) = —0"s(X) + nlog Z(6) + const
@ The gradient divided by n (average NLL) for a feature j is
1 1

Evejf(e) = _ES (X) Z(G) V@ Z(Q)
1 1 T .
=5 (X)) + Z(O) /h(x) exp (9 s(m)) dz (use Z for discrete x)
exp(0Ts
= —%sj(X) —|—/xh($)p(§(9)()())8j(X) dz (w/ conditions)

— 25X+ [ pla | 0)s;()da

=— E [s;(X)]+ E s;(X
deata[ ]( )] X ~model pg[ ]( )]
@ The stationary points where V f(6) = 0 correspond to moment matching:
o Set parameters  so that expected sufficient statistics equal to statistics in data
o This is the source of the simple/intuitive closed-form MLEs we've seen so far
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Convexity and Entropy in Exponential Families bonus!

o If you take the second derivative of the NLL you get
V2£(6) = Cov[s(X)],

the covariance of the sufficient statistics

o Covariances are positive semi-definite, Cov[s(X)] = 0, so NLL is convex
o This is why “setting the gradient to zero and solve for 6" gives MLE

@ Higher-order derivatives give higher-order moments
o We call log(Z) the cumulant function

@ Can show MLE maximizes entropy over all distributions that match moments

o Entropy is a measure of “how random” a distribution is
e So Gaussian is “most random” distribution that fits means and covariance of data

e Or you can think of this as Gaussian makes “least assumptions”

o Details for special case of h(z) =1 in bonus slides
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Conjugate Priors in Exponential Family

@ Exponential families in canonical form are guaranteed to have conjugate priors
@ For example, we could choose a prior like
T
exp(6'a)
p(0 ] a) oc — o=

Z(0)F

e «is "pseudo-counts” for the sufficient statistics
e k modifies the stength of the prior (Z above is normalizer for the likelihood)
o For fixed k, itself an exp. family in 6: s(6) = 6, parameter o, base measure Z()~*

Then the posterior has the same form,

exp(9" (s(X) + a))
Z(@)n+k

p(f | X, a) o
@ Prior's normalizing constant (some (x(«), not Z(0)) useful for Bayesian inference:

o e.g. can derive, like before, that p(X | a) = (i (s(z) + ) /Ce(a) - [Ti=, h(z?)
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Discriminative Models and the Exponential Family

@ Going from an exponential family to a discriminative supervised learning:
o Set canonical parameter to w'x

o Gives a convex NLL, where MLE tries to match data/model’s conditional statistics
o Called generalized linear model (GLM) — see Stat 538A, Generalized Linear Models :)

@ For example, consider Gaussian with fixed variance for y
o Canonical parameter is y, and we know setting 1 = w'z gives least squares

o If we start with Bernoulli for y, we get logistic regression

o Canonical parmaeter is log-odds
o Setting w'z = log(y/(1 — y)) and solving for y gives the sigmoid function
o Gives a reason (sort of) for using the logistic sigmoid

@ You can obtain regression models for other settings using this kind of approach

e Set canonical parameters to fy(x), the output of a neural network
o Use a different exponential family to handle a different type of data
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Examples of Exponential Families bonus!

Bernoulli: distribution on {0,1}

Categorical: distribution on {1,2,...,k}
Multivariate Gaussian: distribution on R?

Beta: distribution on [0, 1] (including uniform)
Dirichlet: distribution on discrete probabilities
Wishart: distribution on positive-definite matrices
Poisson: distribution on non-negative integers
Gamma: distribution on positive real numbers

Many, many others: Wikipedia has a big table

® 6 6 6 66 6 o o o o

...can even have infinite-dimensional statistics via kernel exponential families
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Non-Examples of Exponential Families bonus!

@ Laplace and student ¢ distribution are not exponential families.

o “Heavy-tailed”: have larger probability that data is far from mean
e More robust to outliers than Gaussian

o Ordinal logistic regression is not in exponential family
e Can be used for categorical variables where ordering matters
@ In these cases, we may not have nice properties:

e MLE may not be intuitive or closed-form, NLL may not be convex
e May not have conjugate prior, so need Monte Carlo or variational methods
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Summary

@ Exponential families:

e Have sufficient statistics and canonical parameters

o Maximimum likelihood becomes moment matching; always have conjugate priors
o Can build discriminative models by using canonical parameter s(x) = w'x

o Many things (but not everything!) are exponential families

@ Next time: mixing things up
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Convex Conjugate and Entropy bonus!

@ The convex conjugate of a function A is given by

Al = sao {1"w — A(w)}.

e E.g., if we consider for logistic regression
A(w) = log(1 + exp(w)),

we have that A*(u) satisfies w = log(u)/log(1 — w).
e When 0 < it < 1 we have

A*(p) = plog(p) + (1 — ) log(1 — p)
= _H(p#)a

negative entropy of binary distribution with mean p.
o If 1 does not satisfy boundary constraint, sup is co.
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Convex Conjugate and Entropy bonus!

@ More generally, if A(w) =log(Z(w)) for an exponential family then
A*(p) = —H(py),

subject to boundary constraints on @ and constraint:
1= VA(w) = E[s(X)].
o Convex set satisfying these is called marginal polytope M.

o If Ais convex (and LSC), A** = A. So we have

A(w) = sup{wp — A*(u)}.
neU

and when A(w) = log(Z(w)) we have
log(Z(w)) = sup {w" p+ H(py)}.
neM

@ This can be used to derive variational methods, since we have

written computing log(Z) as a convex optimization problem.
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Maximum Likelihood and Maximum Entropy

maximum likelihood parameters w in exponential family satisfy:

uI}I;él —w's(D) + log(Z(w))

@ The

= min —w's(D) + sup {w'u+ H(p,)} (convex conjugate)
weRY PEM
= min sup {—w's(D)+w'pu+ H(p,)}
weRY HEM
= sup {min —w's(D) +w'pu+ H(p,)} (convex/concave)
UEM weR?

= p (e.g., maximum likelihood w), so we have
— 1
i Ts(D) + log(Z(w))

— H
= Mg (Pu),

which is —oo unless s(D)

subject to s(D) = p.
@ Maximum likelihood = maximum entropy + moment constraints.

bonus,(
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