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Last time: Empirical Bayes

@ MLE can do weird things
e Might pick highly “unlikely” model that exactly fits training data

@ MAP helps by adding a prior, but still commits to one parameter

@ Bayesian inference makes optimal decisions if your likelihood/prior are “correct”
o "Right thing to do" if the model (prior + likelihood) is good
e Computation can be tough: today's topic!
e Empirical Bayes uses data to find a good prior, arg max,, p(X | «)
e Tends to be less sensitive to overfitting than normal MLE
e Compared to cross-validation: can be easier to compute, no data splitting
e Can still overfit; it's just MLE in a “less sensitive” model!
@ But maybe we should use a hyper-prior to pick good hyper-parametets. ..

e Computation can be really tough
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Overview of Bayesian Inference Tasks

@ Bayesian inference requires computing expectations with respect to posterior,

/f p(0 | z)d

o If f(6) =6, we get posterior mean of

o If f(8) =p(Z|0), we get posterior predictive

o If f(0) =1(0 € S) we get probability of S (e.g., marginals or conditionals)

o If f(#) =1 and we use p(0 | ) instead of p(f | =), we get marginal likelihood

@ But posterior often doesn’'t have a closed-form expression
o Bayesian linear regression — w ~ N (m,v); y | z,w ~ N(w'z,0?) - does
o Bayesian logistic regression — change to p(y | z,w) = m — doesn't
e More complex models almost never do

@ Our two main tools for approximate inference:
@ Monte Carlo methods
@ Variational methods

o Classic ideas from statistical physics that revolutionized Bayesian stats 3/20



Approximate Inference

Two main strategies for approximate inference:
© Monte Carlo methods:
e Approximate p with empirical distribution over samples,

n

1 .
~ o () —
pla) = > 1l =)
i=1
e Turns inference into sampling
@ Variational methods:
e Approximate p with “closest” distribution ¢ from a tractable family,

o Gaussian, product of Bernoulli, any other model with easy inference. . ..

e Turns inference into optimization
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Outline

@ Laplace approximation
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Variational Inference lllustration

@ Approximate non-Gaussian p by a Gaussian ¢:

@ Variational methods try to find simple distribution ¢ that is closest to target p
@ Unlike Monte Carlo, does not converge to true solution

e A Gaussian may not be able to perfectly model posterior
@ Variational methods quickly give an approximate solution

e Sometimes all we need
e Sometimes, approximation is better than any reasonable amount of Monte Carlo!
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Laplace Approximation

@ The classic, simplest variational method is the Laplace approximation
© Find an z that maximizes p(z),

x* € argmin{—logp(z)}

@ Compute second-order Taylor expansion of f(x) = —logp(x) at a*

—logp(x) ~ f(a*) + Vf(z*) (@ = 2*) + S (@ — a") T V* f(a") (x — &7)
0

© Use distribution ¢ that has this —log g(x) everywhere:

~loga(z) = F(a*) + 3 (& — =) F @) (& - 2°)

This means the distribution ¢ is exactly N'(x*, [V2f(z*)] 1)

@ Same approximation as used by Newton's method in optimization
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Laplace Approximation

@ Laplace approximation replaces a complicated p with a Gaussian ¢
o Centered at the mode, and agrees with 1st/2nd-derivatives of log-likelihood there:

q(x)
% p(x)

e In the n — oo limit, “nicely behaved” posteriors are asymptotically normal
o Bernstein-von Mises theorem

@ Now you only need to compute Gaussian integrals (linear algebra for many f)
o Very fast: just maximize + find one Hessian (compared to super-slow Monte Carlo)
e Bad approximation if posterior is heavy-tailed, multi-modal, skewed, etc

@ It might not even give you the “best” Gaussian approximation:

_—

e We'll discuss fancier variational methods later in the course
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Outline

© Rejection sampling
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Motivating problem: Bayesian Logistic Regression

@ A classic way to fit a binary classifier is L2-regularized logistic loss,

. ; ; A
w e argmaleog(l + exp(—y D wTz®)) + §Hw|]2

w i=1

@ This corresponds to using a sigmoid likelihood and Gaussian prior,

1 1

5 = > ~ N O, I
ply |z, w) = 5 s pu S 3
@ In Bayesian logistic regression, we'd work with the posterior

o But the posterior isn't Gaussian: so this isn't a conjugate prior
o We don't have a nice expression for the posterior predictive or marginal likelihood

o Laplace approximation would use N (iwmap, [V2f(2*)]™1)
o Not the correct distribution for finite n; will give a (somewhat) wrong answer
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Motivation: Monte Carlo for Bayesian Logistic Regression
@ Posterior predictive in Bayesian logistic regression has the form

p@ws,x,y,m:/p(gu:,w>p<wwx,y,A>dw

=E[p(7 | 7,w) | X,y, ]

Given w, we can compute p(y | Z,w) =1/ (1 + exp (—g wTﬁ:)) just fine
If we could sample from the posterior for w, we could estimate with Monte Carlo!
e But we don’t know how to generate |ID samples from this posterior

Soon, we'll cover MCMC, which is a standard method in scenarios like this

But we'll start simpler: rejection sampling and importance sampling
These methods assume you can generate from a simple distribution ¢
o for example, a Gaussian
but you really want to solve an integral for a complicated distribution p
o for example, the posterior for Bayesian logistic regression
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Rejection Sampling for Conditionals

@ We already mentioned rejection sampling for conditional sampling:
e Example: sampling from a Gaussian conditional on knowing = € [—1,1]

/ /

+

o Generate Gaussian samples, throw out (“reject”) the ones that aren’t in [—1, 1]
e The remaining samples will follow the conditional distribution

@ Can be used to generate |ID samples from conditional distributions
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General Rejection Sampling Algorithm
@ General rejection sampling algorithm tries to “sample area under the graph”:

Wan?" 1o S*Mr/f
’_’______é_.—-—'rrof\n CoMf}ifﬂfll’zj

+a"‘j :‘1L j?,’ (x‘)
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General Rejection Sampling Algorithm

@ Ingredients of the general rejection sampling algorithm:

@ Ability to evaluate an unnormalized p(x), so that p(z) = p(x)/Z
@ A distribution ¢ that we can sample from
© An upper bound M on p(x)/q(x)

@ Rejection sampling algorithm:

@ Sample x from ¢(x)
@ Keep the sample with probability p(z)/(Mq(z)):
e Sample u from Unif([0, 1]), keep the sample if u < p(x) / (Mq(z))

@ The accepted samples will be from p(x), as long as M is a valid upper bound
@ Then can use the accepted samples in Monte Carlo:
1 m

~ (4) (4)
xIEpf(x) >ity 1 (accepted 2(V) < 1 <accepted v ) / (x >
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General Rejection Sampling Algorithm

@ For Bayesian logistic regression, we could propose samples from the prior:

p(w | X,y) =p(y | X,w) p(w) q(w) = p(w)
p(wq(usj; X) _p(y| i;;l)})p(w) oy [ Xow) < 1

o Recall y is discrete here, so p(y | X,w) < 1: we can use M =1
e w sampled from prior would tend to be kept if they explain the data well

@ Drawbacks of rejection sampling:
e You need to know a bound M on p(x)/q(x) (may be hard/impossible to find)
o If x is unbounded and p has heavier tails than ¢, no M exists
e You may reject a large number of samples
@ Most samples are rejected for high-dimensional complex distributions, or if ¢ is bad
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Outline

© Importance sampling
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Alternate approach: importance sampling
@ Instead of rejection, importance sampling re-weights ¢ samples to look like p
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Alternate approach: importance sampling

@ Instead of rejection, importance sampling re-weights ¢ samples to look like p
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Alternate approach: importance sampling

@ Instead of rejection, importance sampling re-weights ¢ samples to look like p
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Alternate approach: importance sampling

@ Instead of rejection, importance sampling re-weights ¢ samples to look like p

@ Derivation:

E (@)= [ po)f(@)do
= x@ x)dx
[ a@2 S paya
_g [P@ ] 1) )
“E {q(x) <>] = )

using a Monte Carlo approximation with [ID samples from ¢
e Replace integral with a sum for discrete distributions

@ We can sample from ¢, but reweight by p(x)/q(x) to compute expectation

@ Only assumption is that for all z with nonzero p, ¢ is also nonzero
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Self-Normalized Importance Sampling
e What if we only have p, with p(z) = p(x)/Z7?

Bl = [s@i@dr = a0 e
_ Eun, Wf( >} | Eoq [B8/@)]  Eony [E35(@)
T (i) B fq(x)ggg dz Egnyg g’g”

@ Can use Monte Carlo estimator based on m samples from g:

m x() i
iR 1;’@@9 ()

T~p 1 m p( z(z))

o Weighted mean, normallzed by p(z®)/q(x®)
o Biased estimator: IE > L for non-constant distributions (Jensen’s inequality)
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Importance Sampling

@ Importance sampling is only efficient if ¢ is close to p
@ Otherwise, weights will be huge for a small number of samples
e Even though unbiased, variance can be huge

@ Can be problematic if ¢ has lighter “tails” than p:
e You rarely sample the tails, so those samples get huge weights

A /)ny%‘\/

@ As with rejection sampling, does not tend to work well in high dimensions
e There's room, though, to cleverly design ¢

o e.g. “alternate between sampling two Gaussians with different variances”
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Summary

Laplace approximation: simple way to find a Gaussian approximation to posterior
e Fast and easy, but not always accurate

Rejection sampling: generate exact samples from complicated distributions
e Tends to reject too many samples in high dimensions

(]

Importance sampling: re-weights samples from the wrong distribution
e Tends to have high variance in high dimensions

@ Next time: all in the (exponential) family
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