
Approximate inference (part one); Exponential families
CPSC 440/550: Advanced Machine Learning

cs.ubc.ca/~dsuth/440/23w2

University of British Columbia, on unceded Musqueam land

2023-24 Winter Term 2 (Jan–Apr 2024)

1 / 20

https://cs.ubc.ca/~dsuth/440/23w2

Last time: Empirical Bayes

MLE can do weird things

Might pick highly “unlikely” model that exactly fits training data

MAP helps by adding a prior, but still commits to one parameter

Bayesian inference makes optimal decisions if your likelihood/prior are “correct”

“Right thing to do” if the model (prior + likelihood) is good
Computation can be tough: today’s topic!

Empirical Bayes uses data to find a good prior, argmaxα p(X | α)
Tends to be less sensitive to overfitting than normal MLE
Compared to cross-validation: can be easier to compute, no data splitting
Can still overfit; it’s just MLE in a “less sensitive” model!

But maybe we should use a hyper-prior to pick good hyper-parameters. . .

Computation can be really tough

2 / 20

Overview of Bayesian Inference Tasks
Bayesian inference requires computing expectations with respect to posterior,

E[f(θ)] =
∫
θ
f(θ) p(θ | x)dθ

If f(θ) = θ, we get posterior mean of θ
If f(θ) = p(x̃ | θ), we get posterior predictive
If f(θ) = 1(θ ∈ S) we get probability of S (e.g., marginals or conditionals)
If f(θ) = 1 and we use p̃(θ | x) instead of p(θ | x), we get marginal likelihood

But posterior often doesn’t have a closed-form expression
Bayesian linear regression – w ∼ N (m, v); y | x,w ∼ N (wTx, σ2) – does
Bayesian logistic regression – change to p(y | x,w) = 1

1+exp(−y wTx)
– doesn’t

More complex models almost never do

Our two main tools for approximate inference:
1 Monte Carlo methods
2 Variational methods

Classic ideas from statistical physics that revolutionized Bayesian stats 3 / 20

Approximate Inference

Two main strategies for approximate inference:
1 Monte Carlo methods:

Approximate p with empirical distribution over samples,

p(x) ≈ 1

n

n∑
i=1

1(x(i) = x)

Turns inference into sampling

2 Variational methods:

Approximate p with “closest” distribution q from a tractable family,

p(x) ≈ q(x)

Gaussian, product of Bernoulli, any other model with easy inference. . . .

Turns inference into optimization

4 / 20

Outline

1 Laplace approximation

2 Rejection sampling

3 Importance sampling

5 / 20

Variational Inference Illustration

Approximate non-Gaussian p by a Gaussian q:

Variational methods try to find simple distribution q that is closest to target p

Unlike Monte Carlo, does not converge to true solution

A Gaussian may not be able to perfectly model posterior

Variational methods quickly give an approximate solution

Sometimes all we need
Sometimes, approximation is better than any reasonable amount of Monte Carlo!

6 / 20

Laplace Approximation

The classic, simplest variational method is the Laplace approximation
1 Find an x that maximizes p(x),

x∗ ∈ argmin
x

{− log p(x)}

2 Compute second-order Taylor expansion of f(x) = − log p(x) at x∗

− log p(x) ≈ f(x∗) +∇f(x∗)︸ ︷︷ ︸
0

T
(x− x∗) + 1

2 (x− x∗)T ∇2f(x∗) (x− x∗)

3 Use distribution q that has this − log q(x) everywhere:

− log q(x) = f(x∗) +
1

2
(x− x∗)∇2f(x∗)(x− x∗)

This means the distribution q is exactly N (x∗, [∇2f(x∗)]−1)

Same approximation as used by Newton’s method in optimization

7 / 20

Laplace Approximation
Laplace approximation replaces a complicated p with a Gaussian q

Centered at the mode, and agrees with 1st/2nd-derivatives of log-likelihood there:

In the n → ∞ limit, “nicely behaved” posteriors are asymptotically normal
Bernstein-von Mises theorem

Now you only need to compute Gaussian integrals (linear algebra for many f)
Very fast: just maximize + find one Hessian (compared to super-slow Monte Carlo)
Bad approximation if posterior is heavy-tailed, multi-modal, skewed, etc

It might not even give you the “best” Gaussian approximation:

We’ll discuss fancier variational methods later in the course
8 / 20

https://en.wikipedia.org/wiki/Bernstein-von_Mises_theorem

Outline

1 Laplace approximation

2 Rejection sampling

3 Importance sampling

9 / 20

Motivating problem: Bayesian Logistic Regression

A classic way to fit a binary classifier is L2-regularized logistic loss,

ŵ ∈ argmax
w

n∑
i=1

log(1 + exp(−y(i)wTx(i))) +
λ

2
∥w∥2

This corresponds to using a sigmoid likelihood and Gaussian prior,

p(y | x,w) = 1

1 + exp(−y wTx)
, w ∼ N

(
0,

1

λ
I

)
In Bayesian logistic regression, we’d work with the posterior

But the posterior isn’t Gaussian: so this isn’t a conjugate prior
We don’t have a nice expression for the posterior predictive or marginal likelihood

Laplace approximation would use N (ŵMAP, [∇2f(x∗)]−1)

Not the correct distribution for finite n; will give a (somewhat) wrong answer

10 / 20

Motivation: Monte Carlo for Bayesian Logistic Regression
Posterior predictive in Bayesian logistic regression has the form

p(ỹ | x̃,X,y, λ) =

∫
w
p(ỹ | x̃, w) p(w | X,y, λ) dw

= E
w

[
p(ỹ | x̃, w) | X,y, λ

]
Given w, we can compute p(ỹ | x̃, w) = 1/

(
1 + exp

(
−ỹ wTx̃

))
just fine

If we could sample from the posterior for w, we could estimate with Monte Carlo!
But we don’t know how to generate IID samples from this posterior

Soon, we’ll cover MCMC, which is a standard method in scenarios like this

But we’ll start simpler: rejection sampling and importance sampling
These methods assume you can generate from a simple distribution q

for example, a Gaussian
but you really want to solve an integral for a complicated distribution p

for example, the posterior for Bayesian logistic regression
11 / 20

Rejection Sampling for Conditionals

We already mentioned rejection sampling for conditional sampling:

Example: sampling from a Gaussian conditional on knowing x ∈ [−1, 1]

Generate Gaussian samples, throw out (“reject”) the ones that aren’t in [−1, 1]
The remaining samples will follow the conditional distribution

Can be used to generate IID samples from conditional distributions

12 / 20

General Rejection Sampling Algorithm
General rejection sampling algorithm tries to “sample area under the graph”:

13 / 20

General Rejection Sampling Algorithm
General rejection sampling algorithm tries to “sample area under the graph”:

13 / 20

General Rejection Sampling Algorithm
General rejection sampling algorithm tries to “sample area under the graph”:

13 / 20

General Rejection Sampling Algorithm
General rejection sampling algorithm tries to “sample area under the graph”:

13 / 20

General Rejection Sampling Algorithm
General rejection sampling algorithm tries to “sample area under the graph”:

13 / 20

General Rejection Sampling Algorithm
General rejection sampling algorithm tries to “sample area under the graph”:

13 / 20

General Rejection Sampling Algorithm
General rejection sampling algorithm tries to “sample area under the graph”:

13 / 20

General Rejection Sampling Algorithm
General rejection sampling algorithm tries to “sample area under the graph”:

13 / 20

General Rejection Sampling Algorithm
Ingredients of the general rejection sampling algorithm:

1 Ability to evaluate an unnormalized p̃(x), so that p(x) = p̃(x)/Z
2 A distribution q that we can sample from
3 An upper bound M on p̃(x)/q(x)

Rejection sampling algorithm:
1 Sample x from q(x)
2 Keep the sample with probability p̃(x)/(Mq(x)):

Sample u from Unif([0, 1]), keep the sample if u ≤ p̃(x) / (Mq(x))

The accepted samples will be from p(x), as long as M is a valid upper bound

Then can use the accepted samples in Monte Carlo:

E
x∼p

f(x) ≈ 1∑m
i=1 1

(
accepted x(i)

) m∑
i=1

1
(
accepted x(i)

)
f
(
x(i)

)
14 / 20

General Rejection Sampling Algorithm

For Bayesian logistic regression, we could propose samples from the prior:

p̃(w | X,y) = p(y | X, w) p(w) q(w) = p(w)

p̃(w | y,X)

q(w)
=

p(y | X, w)p(w)

p(w)
= p(y | X, w) ≤ 1

Recall y is discrete here, so p(y | X, w) ≤ 1: we can use M = 1
w sampled from prior would tend to be kept if they explain the data well

Drawbacks of rejection sampling:
You need to know a bound M on p̃(x)/q(x) (may be hard/impossible to find)

If x is unbounded and p has heavier tails than q, no M exists

You may reject a large number of samples

Most samples are rejected for high-dimensional complex distributions, or if q is bad

15 / 20

Outline

1 Laplace approximation

2 Rejection sampling

3 Importance sampling

16 / 20

Alternate approach: importance sampling
Instead of rejection, importance sampling re-weights q samples to look like p

Derivation:

E
x∼p

[f(x)] =

∫
p(x)f(x) dx

=

∫
q(x)

p(x)

q(x)
f(x) dx

= E
x∼q

[
p(x)

q(x)
f(x)

]
≈ 1

n

n∑
i=1

p(x(i))

q(x(i))
f(x(i)),

using a Monte Carlo approximation with IID samples from q
Replace integral with a sum for discrete distributions

We can sample from q, but reweight by p(x)/q(x) to compute expectation
Only assumption is that for all x with nonzero p, q is also nonzero

17 / 20

Alternate approach: importance sampling
Instead of rejection, importance sampling re-weights q samples to look like p

Derivation:

E
x∼p

[f(x)] =

∫
p(x)f(x) dx

=

∫
q(x)

p(x)

q(x)
f(x) dx

= E
x∼q

[
p(x)

q(x)
f(x)

]
≈ 1

n

n∑
i=1

p(x(i))

q(x(i))
f(x(i)),

using a Monte Carlo approximation with IID samples from q
Replace integral with a sum for discrete distributions

We can sample from q, but reweight by p(x)/q(x) to compute expectation
Only assumption is that for all x with nonzero p, q is also nonzero

17 / 20

Alternate approach: importance sampling
Instead of rejection, importance sampling re-weights q samples to look like p

Derivation:

E
x∼p

[f(x)] =

∫
p(x)f(x) dx

=

∫
q(x)

p(x)

q(x)
f(x) dx

= E
x∼q

[
p(x)

q(x)
f(x)

]
≈ 1

n

n∑
i=1

p(x(i))

q(x(i))
f(x(i)),

using a Monte Carlo approximation with IID samples from q
Replace integral with a sum for discrete distributions

We can sample from q, but reweight by p(x)/q(x) to compute expectation
Only assumption is that for all x with nonzero p, q is also nonzero

17 / 20

Alternate approach: importance sampling
Instead of rejection, importance sampling re-weights q samples to look like p

Derivation:

E
x∼p

[f(x)] =

∫
p(x)f(x) dx

=

∫
q(x)

p(x)

q(x)
f(x) dx

= E
x∼q

[
p(x)

q(x)
f(x)

]
≈ 1

n

n∑
i=1

p(x(i))

q(x(i))
f(x(i)),

using a Monte Carlo approximation with IID samples from q
Replace integral with a sum for discrete distributions

We can sample from q, but reweight by p(x)/q(x) to compute expectation
Only assumption is that for all x with nonzero p, q is also nonzero

17 / 20

Alternate approach: importance sampling

Instead of rejection, importance sampling re-weights q samples to look like p

Derivation:

E
x∼p

[f(x)] =

∫
p(x)f(x) dx

=

∫
q(x)

p(x)

q(x)
f(x) dx

= E
x∼q

[
p(x)

q(x)
f(x)

]
≈ 1

n

n∑
i=1

p(x(i))

q(x(i))
f(x(i)),

using a Monte Carlo approximation with IID samples from q

Replace integral with a sum for discrete distributions

We can sample from q, but reweight by p(x)/q(x) to compute expectation

Only assumption is that for all x with nonzero p, q is also nonzero

17 / 20

Self-Normalized Importance Sampling
What if we only have p̃, with p(x) = p̃(x)/Z?

E
x∼p

[f(x)] =

∫
p(x)f(x) dx =

1

Z

∫
q(x)

p̃(x)

q(x)
f(x) dx

=
Ex∼q

[
p̃(x)
q(x)f(x)

]
∫
p̃(x) dx

=
Ex∼q

[
p̃(x)
q(x)f(x)

]
∫
q(x) p̃(x)q(x) dx

=
Ex∼q

[
p̃(x)
q(x)f(x)

]
Ex∼q

[
p̃(x)
q(x)

]
Can use Monte Carlo estimator based on m samples from q:

E
x∼p

[f(x)] ≈
1
n

∑m
i=1

p̃(x(i))

q(x(i))
f(x(i))

1
m

∑m
i=1

p̃(x(i))

q(x(i))

Weighted mean, normalized by p̃(x(i))/q(x(i))
Biased estimator: E 1

Ẑ
> 1

Z for non-constant distributions (Jensen’s inequality)

18 / 20

Importance Sampling

Importance sampling is only efficient if q is close to p

Otherwise, weights will be huge for a small number of samples

Even though unbiased, variance can be huge

Can be problematic if q has lighter “tails” than p:

You rarely sample the tails, so those samples get huge weights

As with rejection sampling, does not tend to work well in high dimensions
There’s room, though, to cleverly design q

e.g. “alternate between sampling two Gaussians with different variances”

19 / 20

Summary

Laplace approximation: simple way to find a Gaussian approximation to posterior

Fast and easy, but not always accurate

Rejection sampling: generate exact samples from complicated distributions

Tends to reject too many samples in high dimensions

Importance sampling: re-weights samples from the wrong distribution

Tends to have high variance in high dimensions

Next time: all in the (exponential) family

20 / 20

	Laplace approximation
	Rejection sampling
	Importance sampling

