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Last time: Multivariate Gaussians

o Fitting multivariate Gaussians:

o MLE is again sample mean / covariance

e Conjugate prior for the mean with known covariance: Gaussian
e Non-conjugate MAP estimate for the covariance: 34+ AL

o Conjugate prior exists (normal-Wishart)

@ Generative classifiers with Gaussians: LDA, QDA

@ Bayesian linear regression

e Basic form: same probabilistic model where ridge regression is the MAP
o Bayesian learning gives a posterior distribution over w | X,y
e and a corresponding posterior predictive distribution for § | Z, X,y
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Outline

@ Empirical Bayes (in general)
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Setting hyperparameters

o Bayesian linear regression has hyperparameters o2, A
o If choosing feature transform / kernel function, potentially many more

@ The usual validation set approach to choosing them:

e Split into a training and validation set
o For each hyperparameter value (in a grid, selected randomly, ...):

o Compute some measure of test error, e.g. negative log-likelihood

@ Choose the hyperparameter setting with the lowest error

o Advantage: directly tries to achieve good performance on new data

@ Disadvantages:
e Can easily overfit to the validation set if model is flexible enough
e Slow; many possible hyperparameter settings to try
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Learning the prior from data?

@ An alternative approach to fitting hyperparameters: empirical Bayes
@ Maximizes the training likelihood given the hyperparameters

& € argmaxp(X | a) = arg max/p(X |0)p(0|a)do

o Note: «a could be any number of hyperparameters, @ any number of parameters

e p(X | «) is called the “marginal likelihood” or “evidence”
e It's the denominator when we do MAP: p(0 | X) = %
@ Can think of as MLE for the hyper-parameters
o Empirical Bayes also called “type Il maximum likelihood” or “evidence maximization”
@ Advantages:
o Often fast! Sometimes closed-form, sometimes gradient descent (if conjugate prior)
o Doesn't require a separate validation set
@ Disadvantages:

o It doesn't look at the fit on new data, just on training data

e Can overfit the marginal likelihood
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Marginal likelihood with conjugate priors

@ Marginal likelihood has a nice closed form when using conjugate priors
o When z | § ~ Bern(f), 8 ~ Beta(a, ), let Z(a, B) = [, §*"1(1 — §)~'d6:

p<X\a,m:/p(xw)p(e\a,ﬁ)de

a—1/1 _ p\B—1
_ /0”1(1 gy Oy
1

Z(o, )

_ (m+a)—1(1 _ gy(no+B)—1
Z(a,ﬁ)/e (1-0) a6
Z(n1 + a,ng + B)

B Z(o, 3)

@ This result is generally true up to a multiplicative constant for conjugate priors
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Learning principles

@ Maximum likelihood:
0 e arg max p(X|0)  usep(i|0h)
e Maximum a posteriori (MAP):
0 e arg;naxp(@ | X, @) use p(Z | 0)
@ Bayesian with fixed prior:
use (] X.0) = [ p(6] X.a)p(@ | 0)d8
@ Empirical Bayes:
& € argmax p(X | a); use p(z | X, &) = /p(@ | X, &)p(z | 0)do

(%
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Bayesian hierarchy

@ MLE can do weird things
e Can give zero probability for events not in training
e "I flipped a coin twice and it was heads both times, it must always be heads”
o Generally, might pick highly “unlikely” model that exactly fits training data

@ MAP helps by adding a prior, but still commits to one parameter

@ Bayesian inference makes optimal decisions if your likelihood/prior are “correct”

e No “optimization bias” because there's no optimization
e Predictions exactly follow rules of probability
e Only works if the model (prior + likelihood) is good

@ Empirical Bayes uses data to find a good prior

e Tends to be less sensitive to overfitting than normal MLE
e Can still overfit; it's just MLE in a “less sensitive” model!
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Bayesian hierarchy

@ Empirical Bayes can overfit in its choice of the hyper-parameter «
@ So, maybe we should put a hyper-prior on « (with hyper-hyper-parameters)

@ But we're still uncertain about the choice of a,
so really maybe we should marginalize over all possible choices of «
e Can do Bayesian inference over parameters and hyper-parameters together
o Helps avoid overfitting
e Usually don't have a convenient “conjugate hyper-prior” to work with

@ This process depends on having a good hyper-prior

@ Maybe we should fit it from data by maximizing the
marginal likelihood. . .

@ And maybe we should use a hyper-hyper-prior to
make a good choice. ..

@ In practice, model tends to be less sensitive at each
level, so don't need to go forever

Wikipedia: “Turtles all the way down” 9/18



Outline

© Empirical Bayes for Bayesian linear regression
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Setting Hyper-Parameters with Empirical Bayes

@ To set hyper-parameters like 2 and )\, we could use a validation set
o (Can do efficient leave-one-out cross-validation at least for ridge regression)

@ But could also use empirical Bayes and optimize the marginal likelihood,

2\ € argmax p(y | X, 02, \)

o2\
@ The marginal likelihood integrates over the parameters w,

p(Y!X,02,A)=/p(y,w!X,UZ,A)de/p(y!X,w,JQ)p(w\A)dw (w L X)

w w

@ This is the marginal in a product of Gaussians, which is (with some work):

(W2 (ov2m) "
\/det (LXTX + AL

1 A
py [ X.0% ) = = (- 52 1umse = ¥I7 = 3 fusel?)

e You could run gradient descent on the negative log of this to set hyper-parameters
@ You could do “projected” gradient or reparameterize to handle constraints
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Setting Hyper-Parameters with Empirical Bayes
o Consider having a hyper-parameter \; for each wj,
y~N@w'z,o?), w;~N(0, /\j_l)

@ Too expensive for cross-validation, but can still do empirical Bayes
e You can do projected gradient descent to optimize the A;

@ Weird fact: this yields sparse solutions

o It can send some A\; — 00, concentrating posterior for w; at exactly 0
o This is L2-regularization, but empirical Bayes naturally encourages sparsity

o “Automatic relevance determination” (ARD)

@ Non-convex, theory not really well understood

@ Tends to yield much sparser solutions than L1 regularization
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Setting Hyper-Parameters with Empirical Bayes

e Consider also having a hyper-parameter o) for each 1,
: . N\ 2
OB (wTM, (o) > Ly~ N0
@ You can also use empirical Bayes to optimize these hyper-parameters

@ The “automatic relevance determination” selects training examples (o; — )
o This is like the support vectors in SVMs, but tends to be much more sparse

@ Empirical Bayes can also be used to learn kernel parameters like RBF variance
e Do gradient descent on the lengthscales in the Gaussian kernel

@ Bonus slides: Bayesian feature selection gives probability that w; is non-zero
e Posterior can be more informative than standard sparse MAP methods
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Choosing Polynomial Degree with Empirical Bayes
@ Using empirical Bayes to choose degree hyper-parameter with polynomial basis:
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http://krasserm.github.i0/2019/02/23/bayesian-linear-regression
e Marginal likelihood (“evidence") is highest for degree 3
“Bayesian Occam'’s Razor": prefers simpler models that fit data well
p(y | X,02%, )\, k) is smaller for degree 4 polynomials since they can fit more datasets
It's non-monotonic: it prefers degree 1 and 3 over degree 2
Model selection criteria like BIC approximate marginal likelihood as n — oo
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Choosing Polynomial Degree with Empirical Bayes

@ Why is the marginal likelihood higher for degree 3 than 77

e Marginal likelihood for degree 3 (ignoring conditioning on hyper-parameters):

mwm3&AAJ3WMMWMMw

e Marginal likelihood for degree 7:

MWFLLLLLLLAWWMWWM

@ Higher-degree integrates over high-dimensional volume:

e A non-trivial proportion of degree 3 functions fit the data really well
e There are many degree 7 functions that fit the data even better,
but they are a much smaller proportion of all degree 7 functions
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Choosing Between Bases with Empirical Bayes

@ We could compare marginal likelihood between different non-linear transforms:

p(y | X, polynomial basis) > p(y | X, Gaussian RBF as basis)?

@ This is the idea behind Bayes factors for hypothesis testing (see bonus slides)
e Alternative to classic hypothesis tests like t-tests

@ Usual warning: empirical Bayes can sometimes become degenerate
e May need a non-vague prior on the hyper-parameters

@ But we could have a hyper-prior over possible non-linear transformations
e Use empirical Bayes in this hierarchical model to learn basis and parameters
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Application: Automatic Statistician

@ Can be viewed as an automatic statistician:
http://www.automaticstatistician.com/examples

An automatic report for the dataset : 01-airline
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Summary

@ Empirical Bayes for linear regression

o Can use marginal likelihood to noise variance(s) and regularization parameters(s)
o Can also select which non-linear transforms to use

@ Bayesian Occam’s razor: can encourage sparsity and simplicity
@ Bayesian logistic regression
e Gaussian prior is not conjugate so need approximations

@ Next time: how to approximate for non-conjugate priors
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Gradient of Validation/Cross-Validation Error bonus!

@ It's also possible to do gradient descent on A to optimize
validation/cross-validation error of model fit on the training data

o For L2-regularized least squares, define w(\) = (XTX + XI)~1XTy

@ You can use chain rule to get derivative of validation error E,,jiq with respect to \:

%Evalid(UJ()\)) = \I/alid(w()\))’w/()\)

@ For more complicated models, you can use total derivative to get gradient with
respect to A in terms of gradient/Hessian with respect to w
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Bayesian Feature Selection bonus!

@ Classic feature selection methods don't work when d >> n:
e AIC, BIC, Mallow's, adjusted-R?, and L1-regularization return very different results.

@ Here maybe all we can hope for is posterior probability of w; = 0.
o Consider all models, and weight by posterior the ones where w; = 0.

o If we fix A and use L1-regularization, posterior is not sparse.

e Probability that a variable is exactly 0 is zero.
o L1-regularization only leads to sparse MAP, not sparse posterior.
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Bayesian Feature Selection bonus!

@ Type Il MLE gives sparsity because posterior variance goes to zero.
o But this doesn't give probability of individual w; values being 0.

@ We can encourage sparsity in Bayesian models using a spike and slab prior:

J e S —
0

e Mixture of Dirac delta function at 0 and another prior with non-zero variance.
o Places non-zero posterior weight at exactly 0.
e Posterior is still non-sparse, but answers the question:

o “What is the probability that variable is non-zero"?
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Bayesian Feature Selection bonus!

@ Monte Carlo samples of w; for 18 features when classifying 2" vs. ‘3"
o Requires “trans-dimensional” MCMC since dimension of w is changing.
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o "Positive” variables had w; > 0 when fit with L1-regularization.
o “Negative” variables had w; < 0 when fit with L1-regularization.
o “Neutral’ variables had w; = 0 when fit with L1-regularization.
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Bayes Factors for Bayesian Hypothesis Testing bonus!

@ Suppose we want to compare hypotheses:
e E.g., “this data is best fit with linear model” vs. a degree-2 polynomial.
@ Bayes factor is ratio of marginal likelihoods,

p(y | X, degree 2)
p(y | X, degree 1)

o If very large then data is much more consistent with degree 2.
e A common variation also puts prior on degree.

@ A more direct method of hypothesis testing:

e No need for null hypothesis, “power” of test, p-values, and so on.
e As usual only says which model is more likely, not whether any are correct.
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. . _ bonus!
American Statistical Assocation: —

e “Statement on Statistical Significance and P-Values”.
@ http://amstat.tandfonline.com/doi/pdf/10.1080/00031305.2016.1154108

“Hack Your Way To Scientific Glory":

@ https://fivethirtyeight.com/features/science-isnt-broken

“Replicability crisis” in social psychology and many other fields:
@ https://en.wikipedia.org/wiki/Replication_crisis

@ http://www.nature.com/news/big-names-in-statistics-want-to-shake-up-much-maligned-p-value-1.22375

“T—TeStS Al’en't MonotoniC”: https://www.naftaliharris.com/blog/t-test-non-monotonic

Bayes factors don't solve problems with p-values and multiple testing.
o But they give an alternative view, are more intuitive, and make assumptions clear.

Some notes on various issues associated with Bayes factors:

@ http://www.aarondefazio.com/adefazio-bayesfactor-guide.pdf
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