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Last time: Multivariate Gaussians

Fitting multivariate Gaussians:

MLE is again sample mean / covariance
Conjugate prior for the mean with known covariance: Gaussian
Non-conjugate MAP estimate for the covariance: Σ̂+ λI
Conjugate prior exists (normal-Wishart)

Generative classifiers with Gaussians: LDA, QDA

Bayesian linear regression

Basic form: same probabilistic model where ridge regression is the MAP
Bayesian learning gives a posterior distribution over w | X,y
and a corresponding posterior predictive distribution for ỹ | x̃,X,y
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Outline

1 Empirical Bayes (in general)

2 Empirical Bayes for Bayesian linear regression
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Setting hyperparameters

Bayesian linear regression has hyperparameters σ2, λ

If choosing feature transform / kernel function, potentially many more

The usual validation set approach to choosing them:

Split into a training and validation set
For each hyperparameter value (in a grid, selected randomly, . . . ):

Compute some measure of test error, e.g. negative log-likelihood

Choose the hyperparameter setting with the lowest error

Advantage: directly tries to achieve good performance on new data

Disadvantages:

Can easily overfit to the validation set if model is flexible enough
Slow; many possible hyperparameter settings to try
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Learning the prior from data?
An alternative approach to fitting hyperparameters: empirical Bayes
Maximizes the training likelihood given the hyperparameters

α̂ ∈ argmax
α

p(X | α) = argmax
α

∫
p(X | θ) p(θ | α) dθ

Note: α could be any number of hyperparameters, θ any number of parameters

p(X | α) is called the “marginal likelihood” or “evidence”

It’s the denominator when we do MAP: p(θ | X) = p(X|θ)p(θ|α)
p(X|α)

Can think of as MLE for the hyper-parameters
Empirical Bayes also called “type II maximum likelihood” or “evidence maximization”

Advantages:
Often fast! Sometimes closed-form, sometimes gradient descent (if conjugate prior)
Doesn’t require a separate validation set

Disadvantages:
It doesn’t look at the fit on new data, just on training data
Can overfit the marginal likelihood
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Marginal likelihood with conjugate priors

Marginal likelihood has a nice closed form when using conjugate priors

When x | θ ∼ Bern(θ), θ ∼ Beta(α, β), let Z(α, β) =
∫ 1
0 θα−1(1− θ)β−1dθ:

p(X | α, β) =
∫

p(X | θ) p(θ | α, β) dθ

=

∫
θn1(1− θ)n0

θα−1(1− θ)β−1

Z(α, β)
dθ

=
1

Z(α, β)

∫
θ(n1+α)−1(1− θ)(n0+β)−1dθ

=
Z(n1 + α, n0 + β)

Z(α, β)

This result is generally true up to a multiplicative constant for conjugate priors
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Learning principles
Maximum likelihood:

θ̂ ∈ argmax
θ

p(X | θ) use p(x̃ | θ̂)

Maximum a posteriori (MAP):

θ̂ ∈ argmax
θ

p(θ | X, α) use p(x̃ | θ̂)

Bayesian with fixed prior:

use p(x̃ | X, α) =

∫
p(θ | X, α)p(x̃ | θ)dθ

Empirical Bayes:

α̂ ∈ argmax
α

p(X | α); use p(x̃ | X, α̂) =

∫
p(θ | X, α̂)p(x̃ | θ)dθ
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Bayesian hierarchy

MLE can do weird things
Can give zero probability for events not in training

“I flipped a coin twice and it was heads both times, it must always be heads”

Generally, might pick highly “unlikely” model that exactly fits training data

MAP helps by adding a prior, but still commits to one parameter

Bayesian inference makes optimal decisions if your likelihood/prior are “correct”

No “optimization bias” because there’s no optimization
Predictions exactly follow rules of probability
Only works if the model (prior + likelihood) is good

Empirical Bayes uses data to find a good prior

Tends to be less sensitive to overfitting than normal MLE
Can still overfit; it’s just MLE in a “less sensitive” model!
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Bayesian hierarchy
Empirical Bayes can overfit in its choice of the hyper-parameter α
So, maybe we should put a hyper-prior on α (with hyper-hyper-parameters)
But we’re still uncertain about the choice of α,
so really maybe we should marginalize over all possible choices of α

Can do Bayesian inference over parameters and hyper-parameters together
Helps avoid overfitting
Usually don’t have a convenient “conjugate hyper-prior” to work with

This process depends on having a good hyper-prior

Maybe we should fit it from data by maximizing the
marginal likelihood. . .

And maybe we should use a hyper-hyper-prior to
make a good choice. . .

In practice, model tends to be less sensitive at each
level, so don’t need to go forever

Wikipedia: “Turtles all the way down” 9 / 18



Outline

1 Empirical Bayes (in general)

2 Empirical Bayes for Bayesian linear regression
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Setting Hyper-Parameters with Empirical Bayes
To set hyper-parameters like σ2 and λ, we could use a validation set

(Can do efficient leave-one-out cross-validation at least for ridge regression)

But could also use empirical Bayes and optimize the marginal likelihood,

σ̂2, λ̂ ∈ argmax
σ2,λ

p(y | X, σ2, λ)

The marginal likelihood integrates over the parameters w,

p(y | X, σ2, λ) =

∫
w
p(y, w | X, σ2, λ)dw =

∫
w
p(y | X, w, σ2)p(w | λ)dw (w ⊥⊥ X)

This is the marginal in a product of Gaussians, which is (with some work):

p(y | X, σ2, λ) =
(λ)d/2(σ

√
2π)−n√

det
(

1
σ2XTX+ λI

) exp(− 1

2σ2
∥XwMAP − y∥2 − λ

2
∥wMAP∥2

)

You could run gradient descent on the negative log of this to set hyper-parameters
You could do “projected” gradient or reparameterize to handle constraints
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Setting Hyper-Parameters with Empirical Bayes

Consider having a hyper-parameter λj for each wj ,

y ∼ N (wTx, σ2), wj ∼ N (0, λ−1
j )

Too expensive for cross-validation, but can still do empirical Bayes

You can do projected gradient descent to optimize the λj

Weird fact: this yields sparse solutions

It can send some λj → ∞, concentrating posterior for wj at exactly 0
This is L2-regularization, but empirical Bayes naturally encourages sparsity

“Automatic relevance determination” (ARD)

Non-convex, theory not really well understood

Tends to yield much sparser solutions than L1 regularization
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Setting Hyper-Parameters with Empirical Bayes

Consider also having a hyper-parameter σ(i) for each i,

y(i) ∼ N
(
wTx(i),

(
σ(i)

)2
)
, wj ∼ N (0, λ−1

j )

You can also use empirical Bayes to optimize these hyper-parameters

The “automatic relevance determination” selects training examples (σi → ∞)

This is like the support vectors in SVMs, but tends to be much more sparse

Empirical Bayes can also be used to learn kernel parameters like RBF variance

Do gradient descent on the lengthscales in the Gaussian kernel

Bonus slides: Bayesian feature selection gives probability that wj is non-zero

Posterior can be more informative than standard sparse MAP methods
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Choosing Polynomial Degree with Empirical Bayes
Using empirical Bayes to choose degree hyper-parameter with polynomial basis:

http://krasserm.github.io/2019/02/23/bayesian-linear-regression

Marginal likelihood (“evidence”) is highest for degree 3
“Bayesian Occam’s Razor”: prefers simpler models that fit data well
p(y | X,σ2, λ, k) is smaller for degree 4 polynomials since they can fit more datasets
It’s non-monotonic: it prefers degree 1 and 3 over degree 2
Model selection criteria like BIC approximate marginal likelihood as n → ∞
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Choosing Polynomial Degree with Empirical Bayes

Why is the marginal likelihood higher for degree 3 than 7?

Marginal likelihood for degree 3 (ignoring conditioning on hyper-parameters):

p(y | X) =

∫
w0

∫
w1

∫
w2

∫
w3

p(y | X, w)p(w | λ)dw

Marginal likelihood for degree 7:

p(y | X) =

∫
w0

∫
w1

∫
w2

∫
w3

∫
w4

∫
w5

∫
w6

∫
w7

p(y | X, w)p(w | λ)dw

Higher-degree integrates over high-dimensional volume:

A non-trivial proportion of degree 3 functions fit the data really well
There are many degree 7 functions that fit the data even better,
but they are a much smaller proportion of all degree 7 functions

15 / 18



Choosing Between Bases with Empirical Bayes

We could compare marginal likelihood between different non-linear transforms:

p(y | X, polynomial basis) > p(y | X,Gaussian RBF as basis)?

This is the idea behind Bayes factors for hypothesis testing (see bonus slides)

Alternative to classic hypothesis tests like t-tests

Usual warning: empirical Bayes can sometimes become degenerate

May need a non-vague prior on the hyper-parameters

But we could have a hyper-prior over possible non-linear transformations

Use empirical Bayes in this hierarchical model to learn basis and parameters
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Application: Automatic Statistician

Can be viewed as an automatic statistician:
http://www.automaticstatistician.com/examples
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Summary

Empirical Bayes for linear regression

Can use marginal likelihood to noise variance(s) and regularization parameters(s)
Can also select which non-linear transforms to use

Bayesian Occam’s razor: can encourage sparsity and simplicity

Bayesian logistic regression

Gaussian prior is not conjugate so need approximations

Next time: how to approximate for non-conjugate priors
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Gradient of Validation/Cross-Validation Error

It’s also possible to do gradient descent on λ to optimize
validation/cross-validation error of model fit on the training data

For L2-regularized least squares, define w(λ) = (XTX + λI)−1XT y

You can use chain rule to get derivative of validation error Evalid with respect to λ:

d

dλ
Evalid(w(λ)) = E′

valid(w(λ))w
′(λ)

For more complicated models, you can use total derivative to get gradient with
respect to λ in terms of gradient/Hessian with respect to w
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Bayesian Feature Selection

Classic feature selection methods don’t work when d >> n:

AIC, BIC, Mallow’s, adjusted-R2, and L1-regularization return very different results.

Here maybe all we can hope for is posterior probability of wj = 0.

Consider all models, and weight by posterior the ones where wj = 0.

If we fix λ and use L1-regularization, posterior is not sparse.

Probability that a variable is exactly 0 is zero.
L1-regularization only leads to sparse MAP, not sparse posterior.
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Bayesian Feature Selection

Type II MLE gives sparsity because posterior variance goes to zero.

But this doesn’t give probability of individual wj values being 0.

We can encourage sparsity in Bayesian models using a spike and slab prior:

Mixture of Dirac delta function at 0 and another prior with non-zero variance.
Places non-zero posterior weight at exactly 0.
Posterior is still non-sparse, but answers the question:

“What is the probability that variable is non-zero”?
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Bayesian Feature Selection

Monte Carlo samples of wj for 18 features when classifying ‘2’ vs. ‘3’:
Requires “trans-dimensional” MCMC since dimension of w is changing.

“Positive” variables had wj > 0 when fit with L1-regularization.
“Negative” variables had wj < 0 when fit with L1-regularization.
“Neutral’ variables had wj = 0 when fit with L1-regularization.
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Bayes Factors for Bayesian Hypothesis Testing

Suppose we want to compare hypotheses:

E.g., “this data is best fit with linear model” vs. a degree-2 polynomial.

Bayes factor is ratio of marginal likelihoods,

p(y | X, degree 2)

p(y | X, degree 1)
.

If very large then data is much more consistent with degree 2.
A common variation also puts prior on degree.

A more direct method of hypothesis testing:

No need for null hypothesis, “power” of test, p-values, and so on.
As usual only says which model is more likely, not whether any are correct.
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American Statistical Assocation:
“Statement on Statistical Significance and P-Values”.
http://amstat.tandfonline.com/doi/pdf/10.1080/00031305.2016.1154108

“Hack Your Way To Scientific Glory”:
https://fivethirtyeight.com/features/science-isnt-broken

“Replicability crisis” in social psychology and many other fields:
https://en.wikipedia.org/wiki/Replication_crisis

http://www.nature.com/news/big-names-in-statistics-want-to-shake-up-much-maligned-p-value-1.22375

“T-Tests Aren’t Monotonic”: https://www.naftaliharris.com/blog/t-test-non-monotonic

Bayes factors don’t solve problems with p-values and multiple testing.
But they give an alternative view, are more intuitive, and make assumptions clear.

Some notes on various issues associated with Bayes factors:
http://www.aarondefazio.com/adefazio-bayesfactor-guide.pdf
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