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Admin

Project guidelines finally available

Brief proposal due March 29th

10% of project grade, “lightly graded”: mostly checking scope of project
If you hand in earlier, we’ll give you scope feedback earlier

Actual project due last day of finals (Saturday, April 27)

6-page writeup, plus possible appendices/code supplement
Details on format to come
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Last time: Multivariate Gaussians

Continuous density estimation, d > 1 with the multivariate Gaussian distribution

x ∼ N (µ,Σ) means p(x | µ,Σ) =
1

(2π)
d
2 |Σ|

1
2

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
If Σ is a diagonal matrix, product of univariate normals

µj is E[xj ]; Σjj′ gives Cov(xj , xj′)

If Cov(xj , xj′) = 0, then xj ⊥⊥ xj′ (for jointly-Gaussian variables)

If Σ is singular, “degenerate” Gaussian: vTx takes a constant value for some v

Ax+ b ∼ N (Aµ+ b, AΣAT

Lets us sample based on z ∼ N (0, I)
Marginalizing: still normal, just ignore the other variables in µ, Σ
Conditioning: x | z ∼ N

(
µx +ΣxzΣ

−1
z (z − µz),Σx −ΣxzΣ

−1
z ΣT

xz

)
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Outline

1 Learning multivariate Gaussians

2 Generative classifiers with Gaussians

3 Bayesian Linear Regression

4 / 27



MLE for the mean of a multivariate Gaussian
If x(i)

iid∼ N (µ,Σ) for Σ ≻ 0, we have

p
(
x(i) | µ,Σ

)
=

1

(2π)
d
2 |Σ|

1
2

exp

(
−1

2

(
x(i) − µ

)T
Σ−1

(
x(i) − µ

))
,

so up to a constant our negative log-likelihood for n examples is

1

2

n∑
i=1

(
x(i) − µ

)T
Σ−1

(
x(i) − µ

)
+

n

2
log |Σ|

This is a convex quadratic in µ; setting gradient to zero gives

µ̂ =
1

n

n∑
i=1

x(i)

Mean along each dimension; it doesn’t depend on Σ

5 / 27



MLE for the covariance of a multivariate Gaussian
To get MLE for Σ we can re-parameterize in terms of precision matrix Θ = Σ−1,

1

2

n∑
i=1

(
x(i) − µ̂

)T
Σ−1

(
x(i) − µ̂

)
+

n

2
log |Σ|

=
1

2

n∑
i=1

(
x(i) − µ̂

)T
Θ
(
x(i) − µ̂

)
+

n

2
log
∣∣Θ−1

∣∣
After some work (bonus slides), we get that this is equal to

f(Θ) =
n

2
Tr(SΘ)− n

2
log |Θ|, with S =

1

n

n∑
i=1

(
x(i) − µ̂

)(
x(i) − µ̂

)T
S is the sample covariance: if X̃ = X− 1nµ̂

T is centred data, S = 1
nX̃

TX̃
Trace operator Tr(A) is the sum of the diagonal elements of A
Tr(ATB) =

∑
j(A

TB)jj =
∑

j

∑
i(A

T)jiBij =
∑

ij AijBij , i.e. (A * B).sum()
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MLE for the covariance of a multivariate Gaussian
Gradient matrix of NLL with respect to Θ is (not obvious, see bonus slides)

∇f(Θ) =
n

2

(
S−Θ−1

)
for S =

1

n

n∑
i=1

(
x(i) − µ̂

)(
x(i) − µ̂

)T
The MLE for a given µ is obtained by setting the gradient matrix to zero, giving

Θ = S−1 or Σ =
1

n

n∑
i=1

(
x(i) − µ̂

)(
x(i) − µ̂

)T
To have Σ ≻ 0, we need a positive-definite sample covariance, S ≻ 0

If S is not positive definite, NLL is unbounded below, and MLE doesn’t exist
Like requiring “not all values are the same” in univariate Gaussian
In d dimensions, you need d linearly independent x(i) values (no “multi-collinearity”)
This is only possible if n ≥ d! (But might not be true even if it is)

Note: most distributions’ MLEs don’t correspond with “moment matching”
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Example: Multivariate Gaussians on MNIST

Let’s try continuous density estimation on (binary) handwritten digits
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Product of Gaussian densities

This property will be helpful in deriving MAP/Bayesian estimation:

Consider a variable x whose pdf is written as product of two Gaussians,

p(x) ∝ N (x | µ1, I)︸ ︷︷ ︸
density of N (µ1, I) at x

N (x | µ2, I)

This product of Gaussian pdfs is a Gaussian with µ = 1
2(µ1 + µ2) and Σ = 1

2I
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Product of Gaussian densities
If p(x) ∝ N (x | µ1,Σ1)N (µ2,Σ2),
then x is Gaussian with (see PML2 2.2.7.6 – complete the square in the exponent)

covariance Σ = (Σ−1
1 +Σ−1

2 )−1

mean µ = ΣΣ−1
1 µ1 +ΣΣ−1

2 µ2

Consider x(i) ∼ N (µ,Σ) for fixed Σ and µ ∼ N (µ0,Σ0):

p(µ | X,Σ,µ0,Σ0) ∝ p(µ | µ0,Σ0)

n∏
i=1

p
(
x(i) | µ,Σ

)
(Bayes rule)

= p(µ | µ0,Σ0)

n∏
i=1

p(µ | x(i),Σ) (symmetry of x(i) and µ)

= (product of (n+ 1) Gaussians)

So, working it out gives. . .
10 / 27



MAP estimation for mean
For fixed Σ, conjugate prior for mean is a Gaussian:

x(i) ∼ N (µ,Σ) µ ∼ N (µ0,Σ0) implies µ | X,Σ ∼ N (µ+,Σ+),

where

Σ+ = (nΣ−1 +Σ−1
0 )−1,

µ+ = Σ+(nΣ−1µMLE +Σ−1
0 µ0) MAP estimate of µ

In special case of Σ = σ2I and Σ0 =
1
λI, we get

Σ+ =
( n

σ2
I+ λI

)−1
=

1
n
σ2 + λ

I,

µ+ = Σ+
( n

σ2
µMLE + λµ0

)
Posterior predictive is N (µ+,Σ+Σ+) – take product of (n+2) then marginalize

Many Bayesian inference tasks have closed form; if not, Monte Carlo is easy
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MAP Estimation in Multivariate Gaussian (Trace Regularization)

A common MAP estimate for Σ is

Σ̂ = S+ λI,

where S is the covariance of the data

Key advantage: Σ̂ is strictly positive definite (eigenvalues are at least λ)

This corresponds to L1 regularization of precision diagonals (see bonus)

f(Θ) = Tr(SΘ)− log |Θ|︸ ︷︷ ︸
NLL times 2/n

+ λ

d∑
j=1

|Θjj |

Note this doesn’t set Θjj values to exactly zero

Log-determinant term becomes arbitrarily steep as the Θjj approach 0
It’s not really the case that “L1 gives sparsity”; it’s “L2 + L1 gives sparsity”
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Conjugate Priors for Covariance

Trace regularization (or Graphical LASSO, later): not a conjugate prior

Conjugate prior for Θ with known mean is Wishart distribution
A multi-dimensional generalization of the gamma distribution

Gamma is a distribution over positive scalars
Wishart is a distribution over positive-definite matrices

Posterior predictive is a student t distribution
Conjugate prior for Σ is inverse-Wishart (equivalent posterior)

If both µ and Θ are variables, conjugate prior is normal-Wishart
Normal times Wishart, with a particular dependency among parameters
Posterior predictive is again a student t distribution

Wikipedia has already done a lot of possible homework questions for you:
https://en.wikipedia.org/wiki/Conjugate_prior
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Outline

1 Learning multivariate Gaussians

2 Generative classifiers with Gaussians

3 Bayesian Linear Regression
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Generative Classification with Gaussians

Consider a generative classifier with continuous features:

p(y | x) ∝ p(x, y) = p(x | y)︸ ︷︷ ︸
continuous

p(y)︸︷︷︸
discrete

Model y as a categorical distribution (classification task)

Previously handled p(x | y) with the naive Bayes assumption, xi ⊥⊥ xj | y
Strong, usually unrealistic assumption

In Gaussian discriminant analysis (GDA) we assume x | y is Gaussian

Classifier asks “which Gaussian makes this x(i) most likely?”
This can model pairwise correlations within each class

Doesn’t need the naive Bayes assumption
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Gaussian Discriminant Analysis (GDA)

In Gaussian discriminant analysis we assume x | y is Gaussian

p(x, y = c) = p(y) p(x | y = c)︸ ︷︷ ︸
product rule

= πc︸︷︷︸
Pr(y=c)

p(x | µc,Σc)︸ ︷︷ ︸
Gaussian pdf

Classify based on

argmax
c

p(y = c | x) = argmax
c

log p(y = c, x)

= argmax
c

log πc −
1

2
log |Σc| −

1

2
(x− µc)

TΣ−1
c (x− µc)

With general choices for µc and Σc, we’re taking the max of k quadratics

Means that the decision boundary will be zeros of a quadratic (“quadric surface”)
Leads to the equivalent name quadratic discriminant analysis (QDA)

Fitting GDA=QDA: fit πc as categorical, fit Gaussian for each subset with y(i) = c
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GDA=QDA example

https://web.stanford.edu/~hastie/Papers/ESLII.pdf 17 / 27
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Special case: Linear Discriminant Analysis (LDA)
A common special case: constrain Σc = Σ for all c

Means that we classify as

argmax
c

p(y = c | x) = argmax
c

log πc − 1
2 log |Σ| − 1

2 (x− µc)
TΣ−1 (x− µc)

= argmax
c

log πc − 1
2x

TΣ−1x+ µT
cΣ

−1x− 1
2µ

T
cΣ

−1µc

= argmax
c

(Σ−1µc)︸ ︷︷ ︸
wc

Tx+ log πc − 1
2µ

T
cΣ

−1µc︸ ︷︷ ︸
bc

so this is a linear classifier!
Behaves (asymptotically) optimally if the assumptions are true: x | y ∼ N (µy,Σ)
May be terrible if these assumptions aren’t true

MLE in this model is simple: µc is mean of the points with y(i) = c,

Σ is
1

n

n∑
i=1

(
x(i) − µy(i)

)(
x(i) − µy(i)

)T
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LDA example
Example of fitting linear discriminant analysis (LDA) to a 3-class problem:

https://web.stanford.edu/~hastie/Papers/ESLII.pdf
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LDA and nearest neighbour

We classify according to

argmax
c

(Σ− 1
2µc)

T(Σ− 1
2x)− 1

2(Σ
− 1

2µc)
T(Σ− 1

2µc) + log πc

= argmax
c

−1
2∥Σ

− 1
2x∥2 + (Σ− 1

2µc)
T(Σ− 1

2x)− 1
2∥Σ

− 1
2µc∥2 + log πc

= argmin
c

∥Σ− 1
2 (x− µc)∥2 − 2 log πc

If πc are constant (all 1
k ) and Σ = σ2 I, this picks the closest class mean

With constant πc but general Σ, picks closest class mean in Mahalanobis distance
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Outline
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3 Bayesian Linear Regression

21 / 27



Regression with Gaussians
In regression, y is continuous

https://en.wikipedia.org/wiki/Regression_analysis

It’s possible to use generative regression models (bonus slide)
For example, we could model p(x, y) as a multivariate Gaussian

Then use that the conditional p(y | x) is Gaussian for prediction

But we usually treat features as fixed (as in discriminative classification models)

Now ready to return to Bayesian linear regression
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Bayesian Linear Regression
Linear regression with Gaussian likelihood and prior,

y | x ∼ N (wTx, σ2), w ∼ N (0, λ−1I)

MAP estimate is ridge regression (L2-regularized least squares)
Can use Gaussian identities to work out that the posterior has the form

w | (X,y) ∼ N

(
wMAP,

(
1

σ2
XTX+ λI

)−1
)
,

which is a multivariate Gaussian centred at wMAP =
(
XTX+ λ

σ2 Id
)−1

XTy
The variance tells us how much variation we have around the MAP estimate

In other models, the posterior mode (MAP) is usually not the posterior mean

By more Gaussian identities, the posterior predictive has the form

ỹ | (X,y, x̃) ∼ N

(
wT
MAPx̃, σ

2 + x̃T
(

1

σ2
XTX+ λI

)−1

x̃

)
Posterior predictive mode=mean again the MAP prediction in this model

Working with the full posterior predictive gives us variance of predictions 23 / 27



Bayesian Linear Regression

Bayesian perspective gives us variability in w and predictions:

http://krasserm.github.io/2019/02/23/bayesian-linear-regression
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Bayesian Linear Regression

Bayesian linear regression with Gaussian RBFs as features:

http://krasserm.github.io/2019/02/23/bayesian-linear-regression

We have not only a prediction, but Bayesian inference gives “error bars”

Gives an idea of “where model is confident” and where it is not
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Digression: Gaussian Processes

In CPSC 340 you saw the kernel trick:
Rewrites L2-regularized least squares linear/prediction in terms of inner products
Allows us to efficiently use some exponential-sized or infinite-sized feature sets

We can use kernel trick on posterior in Gaussian likelihood/prior model
Allows us to efficiently use some large or infinite-sized feature sets
Posterior in this case can be written as a Gaussian process (GP)

Notation: a stochastic process is an infinite collection of random variables
In a Gaussian process, any finite subcollection is jointly Gaussian

Defined in terms of a mean function and a covariance function
The set of possible covariance functions is the set of possible kernel functions

A popular book on this topic if you want to read more:
Rasmussen/Williams, Gaussian Processes for Machine Learning

We’ll assume we have explicit features, but you could use kernels/GPs instead
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Summary

Gaussian discriminant analysis and special case linear discriminant analysis

Generative classifier where x | y is multivariate normal

Bayesian Linear Regression

Gaussian conditional likelihood and Gaussian prior gives Gaussian posterior
Posterior predictive is also Gaussian (“regression with error bars”)

Next time: choosing priors, sampling from complex posteriors
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MLE for the covariance of a multivariate Gaussian

To get MLE for Σ we re-parameterize in terms of precision matrix Θ = Σ−1,

1

2

n∑
i=1

(x(i) − µ)TΣ−1(xi − µ) +
n

2
log |Σ|

=
1

2

n∑
i=1

(x(i) − µ)TΘ(xi − µ) +
n

2
log |Θ−1| (okay because Σ is invertible)

=
1

2

n∑
i=1

Tr
(
(x(i) − µ)TΘ(xi − µ)

)
+

n

2
log |Θ|−1 (scalar yTAy = Tr(yTAy))

=
1

2

n∑
i=1

Tr((x(i) − µ)(xi − µ)TΘ)− n

2
log |Θ| (Tr(ABC) = Tr(CAB))∣∣A−1

∣∣ = 1/ |A| (can see e.g. from eigenvalues)
The trace is the sum of the diagonal elements: Tr(A) =

∑
iAii

Tr(AB) = Tr(BA) when dimensions match: called trace rotation or cyclic property
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MLE for the covariance of a multivariate Gaussian

From the last slide,

p(X | µ,Σ) =
1

2

n∑
i=1

Tr

((
x(i) − µ̂

)(
x(i) − µ̂

)T
Θ

)
− n

2
log |Θ|

We can exchange the sum and trace (trace is a linear operator) to get,

=
1

2
Tr

(
n∑

i=1

(x(i) − µ̂)(xi − µ̂)TΘ

)
− n

2
log |Θ|

∑
i

Tr(AiB) = Tr

(∑
i

AiB

)

=
n

2
Tr


 1

n

n∑
i=1

(xi − µ̂)(xi − µ̂)T︸ ︷︷ ︸
sample covariance, S

Θ

− n

2
log |Θ|

(∑
i

AiB

)
=

(∑
i

Ai

)
B
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MLE for the covariance of a multivariate Gaussian

So the NLL in terms of the precision matrix Θ and sample covariance S is

f(Θ) =
n

2
Tr(SΘ)− n

2
log |Θ|, with S =

1

n

n∑
i=1

(
x(i) − µ̂

)(
x(i) − µ̂

)T
Weird-looking but has nice properties:

Tr(SΘ) is linear function of Θ, with ∇Θ Tr(SΘ) = S
(it’s the matrix version of an inner product sTθ; called “Frobenius inner product”)

Negative log-determinant is strictly convex, and ∇Θ log |Θ| = Θ−1

(generalizes ∇ log |x| = 1/x for for x > 0)

Using these two properties the gradient matrix has a simple form:

∇f(Θ) =
n

2
(S −Θ−1)

which is what we use to get the MLE
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Generative Regression

With continuous features, we could model p(x, y) as a multivariate Gaussian

4 2 0 2 4
x

2

0

2

z

Training could use the closed-form MLE/MAP for multivariate Gaussian

We obtain a univariate Gaussian p(y | x) using conditioning formula,

y | x ∼ N
(
µy +ΣyxΣ

−1
x (x− µx), σ

2
y −ΣyxΣ

−1
x ΣT

yx

)
The conditional mean is a linear function, wTx+ b

Could extend to multiple outputs, with correlations given based on Σy
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