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Admin admin

@ Project guidelines finally available
@ Brief proposal due March 29th

o 10% of project grade, “lightly graded”: mostly checking scope of project
o If you hand in earlier, we'll give you scope feedback earlier

@ Actual project due last day of finals (Saturday, April 27)

o 6-page writeup, plus possible appendices/code supplement
o Details on format to come
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Last time: Multivariate Gaussians

@ Continuous density estimation, d > 1 with the multivariate Gaussian distribution

o N ) means oo B) = 3o (50w - )
eoimE N 2

If 3 is a diagonal matrix, product of univariate normals

pjis Elz;]; 355 gives Cov(xj, z;)

o If Cov(zj,zj) =0, then z; 1L ;s (for jointly-Gaussian variables)
If ¥ is singular, “degenerate” Gaussian: v'x takes a constant value for some v
Az + b~ N(Ap+b, AZAT

o Lets us sample based on z ~ N (0,I)

e Marginalizing: still normal, just ignore the other variables in p, 3
o Conditioning: = | z ~ N (pty + 02371z — p2), By — B0 7120
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Outline

@ Learning multivariate Gaussians
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MLE for the mean of a multivariate Gaussian
o If 2 % N/(1, =) for £ = 0, we have

p (x(i) | 1, 2) = (277)§ll|2]§exp (—; (x(i) — u)T >t (:c(i) — u)) ,

so up to a constant our negative log-likelihood for n examples is

LS (59— ) B (a0 )+ Dlog [
=1

@ This is a convex quadratic in u; setting gradient to zero gives

e Mean along each dimension; it doesn't depend on X
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MLE for the covariance of a multivariate Gaussian

o To get MLE for ¥ we can re-parameterize in terms of precision matrix © = ¥ 71,

L5 ()5 () e

=1

n
1=

-3 (o) 0 (a0 ) + Jrosle!

1=

o After some work (bonus slides), we get that this is equal to

f(©®) = gTr(S@) — glog|®\, with S = lzn: (g;m _ ﬂ) (x@ _ [L)T

n “
=1

o S is the sample covariance: if X = X — 1,47 is centred data, S = %XTX
o Trace operator Tr(A) is the sum of the diagonal elements of A
o Tr(ATB) =3 ;(ATB)j; = 3, 32i(AT);iBi; = 3;; AijBij, ie. (A x B) .sun()
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MLE for the covariance of a multivariate Gaussian

e Gradient matrix of NLL with respect to © is (not obvious, see bonus slides)

Vo) = g(S o) forSzii(ﬂ”—ﬂ) (w(i)—ﬂ>T

1=

@ The MLE for a given p is obtained by setting the gradient matrix to zero, giving

6= o x- }lz (s9 - ) (s - )"

1=

@ To have ¥ > 0, we need a positive-definite sample covariance, S = 0

If S is not positive definite, NLL is unbounded below, and MLE doesn’t exist

Like requiring “not all values are the same” in univariate Gaussian

In d dimensions, you need d linearly independent z(*) values (no “multi-collinearity”)
This is only possible if n > d! (But might not be true even if it is)

@ Note: most distributions’ MLEs don't correspond with “moment matching”
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Example: Multivariate Gaussians on MNIST

@ Let's try continuous density estimation on (binary) handwritten digits

Xi: vel é

Diagonal X:

General X:
i is the
same (!)
¥ is big
(784 by 784)

8/27



Product of Gaussian densities

@ This property will be helpful in deriving MAP /Bayesian estimation:

o Consider a variable x whose pdf is written as product of two Gaussians,

p(x)oc  N(z|p,I)  N(z|p,I)
—_———

density of N (p1,I) at z

@ This product of Gaussian pdfs is a Gaussian with g = %(Hl + p2) and ¥ = %I
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Product of Gaussian densities

o If p(z) oc N'(x | pr, B1) N (2, o),
then x is Gaussian with (see PML2 2.2.7.6 — complete the square in the exponent)

covariance ¥ = (1 + 317!
mean pu =% Eflul + X Eglug
o Consider z() ~ N (1, X) for fixed X and p ~ N (110, 2o):

n
p( | X, 2, o, o) < ppa | o, Zo) [T o (2 | , 2) (Bayes rule)
=1

— p(p1 | 10, B0) [[ (e |+, %) (symmetry of ) and )
=1

= (product of (n + 1) Gaussians)

@ So, working it out gives. . .
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MAP estimation for mean
@ For fixed X, conjugate prior for mean is a Gaussian:
e~ N (1, 2) o~ N(po,Bo) implies p | X, ~N(uh, =),
where
St=mzt+3,h)7h,
pt =S (= ume + 25 o) MAP estimate of 1
@ In special case of ¥ = ¢?I and ¥y = %I, we get
s _ (%IJFAI)_I _ :21+A1,
pt=x" <%,UMLE + )\NO>

@ Posterior predictive is N'(u™, 3 + XT) — take product of (n+ 2) then marginalize
e Many Bayesian inference tasks have closed form; if not, Monte Carlo is easy
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MAP Estimation in Multivariate Gaussian (Trace Regularization)

@ A common MAP estimate for X is
Y =S+,

where S'is the covariance of the data
o Key advantage: S is strictly positive definite (eigenvalues are at least \)

@ This corresponds to L1 regularization of precision diagonals (see bonus)

d
f(©) =Tx(S®) —log |©] + 1) [0}
j=1

NLL times 2/n

o Note this doesn't set ©,; values to exactly zero

o Log-determinant term becomes arbitrarily steep as the ©;; approach 0
e It's not really the case that “L1 gives sparsity”; it's “L2 + L1 gives sparsity”
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Conjugate Priors for Covariance bonus!

@ Trace regularization (or Graphical LASSO, later): not a conjugate prior

o Conjugate prior for © with known mean is Wishart distribution
e A multi-dimensional generalization of the gamma distribution

e Gamma is a distribution over positive scalars
o Wishart is a distribution over positive-definite matrices

e Posterior predictive is a student ¢ distribution
o Conjugate prior for X is inverse-Wishart (equivalent posterior)

o If both p and © are variables, conjugate prior is normal-Wishart
o Normal times Wishart, with a particular dependency among parameters
e Posterior predictive is again a student ¢ distribution

@ Wikipedia has already done a lot of possible homework questions for you:
e https://en.wikipedia.org/wiki/Conjugate_prior
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Outline

© Generative classifiers with Gaussians
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Generative Classification with Gaussians

Consider a generative classifier with continuous features:

ply | =) < p(z,y) = p(z | y) p(y)
~—

continuous discrete

Model y as a categorical distribution (classification task)

Previously handled p(x | y) with the naive Bayes assumption, z; L z; | y
e Strong, usually unrealistic assumption

In Gaussian discriminant analysis (GDA) we assume z | y is Gaussian

o Classifier asks “which Gaussian makes this 2(*) most likely?”
e This can model pairwise correlations within each class

@ Doesn’t need the naive Bayes assumption
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Gaussian Discriminant Analysis (GDA)

@ In Gaussian discriminant analysis we assume z | y is Gaussian

v

p,y=c)=py)plx|y=c)= 7 p@|pe Xc)
product rule Pr(y=c) Gaussian pdf

@ Classify based on

argmax p(y = ¢ | x) = argmaxlogp(y = ¢, )
(& C

= argmax log . — glog [Ee| = 5 (= - PJC)T Ec_1 (T — pe)
c

2
@ With general choices for pe and 3., we're taking the max of k quadratics

e Means that the decision boundary will be zeros of a quadratic (“quadric surface™)
o Leads to the equivalent name quadratic discriminant analysis (QDA)

o Fitting GDA=QDA: fit 7. as categorical, fit Gaussian for each subset with y(i) =c
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GDA=QDA example

https://web.stanford.edu/~hastie/Papers/ESLII.pdf 17/27


https://web.stanford.edu/~hastie/Papers/ESLII.pdf

Special case: Linear Discriminant Analysis (LDA)

@ A common special case: constrain X, = X for all ¢

@ Means that we classify as
argmax p(y = c | z) = argmax logm, — 5 log |2 — 1 (2 — pe) " 7 (2 — pe)
(& (&

= argmax logm, — %J"TZ x —|—ch) T — fuCE He
C

=argmax (X pe) Tz + log e — ZucE He
c ~—

We bc

so this is a linear classifier!

o Behaves (asymptotically) optimally if the assumptions are true: z | y ~ N(py, )
e May be terrible if these assumptions aren’t true

@ MLE in this model is simple: pte is mean of the points with y(® = ¢,
1 i i T
Xis Z <$() - Myu)) <$() - Myu))
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LDA example

e Example of fitting linear discriminant analysis (LDA) to a 3-class problem:

https://web.stanford.edu/~hastie/Papers/ESLII.pdf
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LDA and nearest neighbour bonus!

@ We classify according to

arg max (X 2p.) (X 22) — %(Efé,uc)T(Zféuc) + log .

Cc

_1 _1 _1
= g —HB 2 + (377 )T (B722) — S22 + log e

= argmm > (:c — peo)||? = 2log 7.

e If m. are constant (all %) and X = 0?1, this picks the closest class mean

@ With constant 7. but general X, picks closest class mean in Mahalanobis distance
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Outline

© Bayesian Linear Regression
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Regression with Gaussians

@ In regression, y is continuous

10 20 30 40 50 60

https://en.wikipedia.org/wiki/Regression_analysis

@ It's possible to use generative regression models (bonus slide)
o For example, we could model p(z,y) as a multivariate Gaussian
@ Then use that the conditional p(y | ) is Gaussian for prediction

e But we usually treat features as fixed (as in discriminative classification models)
@ Now ready to return to Bayesian linear regression
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Bayesian Linear Regression

@ Linear regression with Gaussian likelihood and prior,
ylz~Nw'z o), w~N(ONI)

@ MAP estimate is ridge regression (L2-regularized least squares)
@ Can use Gaussian identities to work out that the posterior has the form

1 —1
wl|(X,y)~N (wMAP7 <02XTX + AI) > ,

L . . -1
which is a multivariate Gaussian centred at wyap = (XTX + %Id) XTy
o The variance tells us how much variation we have around the MAP estimate

@ In other models, the posterior mode (MAP) is usually not the posterior mean

@ By more Gaussian identities, the posterior predictive has the form
1 -1
7| (X, y,&) ~N (w{,,AP:z, ol + il <2XTX + ,\I> x)
o

@ Posterior predictive mode=mean again the MAP prediction in this model

o Working with the full posterior predictive gives us variance of predictions 2327



Bayesian Linear Regression

@ Bayesian perspective gives us variability in w and predictions:

1o Posterior density (N =1}
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http://krasserm.github.i0/2019/02/23/bayesian-1linear-regression
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Bayesian Linear Regression

@ Bayesian linear regression with Gaussian RBFs as features:
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http://krasserm.github.i0/2019/02/23/bayesian-1linear-regression
@ We have not only a prediction, but Bayesian inference gives “error bars”
o Gives an idea of “where model is confident” and where it is not
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Digression: Gaussian Processes bonus!

o

@ In CPSC 340 you saw the kernel trick:
o Rewrites L2-regularized least squares linear/prediction in terms of inner products
o Allows us to efficiently use some exponential-sized or infinite-sized feature sets

@ We can use kernel trick on posterior in Gaussian likelihood/prior model
e Allows us to efficiently use some large or infinite-sized feature sets
o Posterior in this case can be written as a Gaussian process (GP)

@ Notation: a stochastic process is an infinite collection of random variables
@ In a Gaussian process, any finite subcollection is jointly Gaussian
o Defined in terms of a mean function and a covariance function
@ The set of possible covariance functions is the set of possible kernel functions
e A popular book on this topic if you want to read more:
Rasmussen /Williams, Gaussian Processes for Machine Learning

e We'll assume we have explicit features, but you could use kernels/GPs instead
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Summary

@ Gaussian discriminant analysis and special case linear discriminant analysis
o Generative classifier where z | y is multivariate normal
@ Bayesian Linear Regression

e Gaussian conditional likelihood and Gaussian prior gives Gaussian posterior
o Posterior predictive is also Gaussian ( “regression with error bars")

@ Next time: choosing priors, sampling from complex posteriors
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MLE for the covariance of a multivariate Gaussian bonus!

o To get MLE for ¥ we re-parameterize in terms of precision matrix © = ¥ ~1,

n

% (@@ — ) T2 (2 — ) + glog =]

i=1

:% 3 (29 — )Tz — p) + glog (Sl (okay because X is invertible)
i=1

:% iTr ((aj(i) —w)'e@E - ,u)) + glog [l (scalar yT Ay = Tr(y" Ay))
i=1

:% 3 Tx((@® — (e — )7O) -  tog 0] (Tr(ABC) = Tx(CAB))
i=1

o |A7Y| =1/|A| (can see e.g. from eigenvalues)
@ The trace is the sum of the diagonal elements: Tr(A4) = )", Aj
o Tr(AB) = Tr(BA) when dimensions match: called trace rotation or cyclic property
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MLE for the covariance of a multivariate Gaussian bonus!

@ From the last slide,

p(X | p,X) = ;zn:Tr <<$(i) — [1,) <:1:(i) — /:L)T@> - glog\(-)\
i=1

@ We can exchange the sum and trace (trace is a linear operator) to get,

:% Tr (Z(;,;(i) — )zt — ﬂ)T@> - glog [€] ZTr(AiB) =Tr <Z AiB>

i=ll %

:g Tr Z(xl _ Ij)(xl _ ﬂ)T ol - glog‘@‘ <Z AiB> = (Z Ai) B
i=1 i

)

S|

sample covariance, S
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MLE for the covariance of a multivariate Gaussian bonus!

@ So the NLL in terms of the precision matrix © and sample covariance S is

1(8) = £ Tx(56) — 2 log|©], with 5 = iz; (a9 - ) (a9 - ﬂ)T

@ Weird-looking but has nice properties:
e Tr(SO) is linear function of ©, with Vg Tr(S©) =S

(it's the matrix version of an inner product s'6; called “Frobenius inner product”)
o Negative log-determinant is strictly convex, and Vg log |0 = ©71
(generalizes Vlog |z| = 1/z for for z > 0)

@ Using these two properties the gradient matrix has a simple form:
n -1
Vi©)=3(5-67)

which is what we use to get the MLE
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Generative Regression bonus!

With continuous features, we could model p(x,y) as a multivariate Gaussian

|
ES

|
~N
o
~
-

Training could use the closed-form MLE/MAP for multivariate Gaussian

We obtain a univariate Gaussian p(y | «) using conditioning formula,
ylo~ N (py+ 2257 (@ - ), 0% — 2,515

The conditional mean is a linear function, w'z + b

Could extend to multiple outputs, with correlations given based on X,
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