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Last time: Univariate Gaussians, Bayesian learning

Continuous density estimation with the Gaussian=normal distribution

x ∼ N (µ, σ2) means p(x | µ, σ2) =
1√
2π σ

exp

(
− 1

2σ2
(x− µ)2

)
Cumulative distribution function (cdf) F (t)

Inverse probability sampling: F−1(U) for U ∼ Unif([0, 1])

MLE: sample mean, sample variance (with the 1/n)

With fixed variance: conjugate prior for the mean is Gaussian

Gaussian likelihood gives linear regression/square loss; MAP gives ridge regression

Bayesian learning integrates over model uncertainty

Posterior predictive: p(ỹ | x̃,X,y) =
∫
p(ỹ | w)p(w | X,y) dw

Beta-Bernoulli model: use posterior Beta(n1 + α, n0 + β)
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Bayesian learning in the Categorical-Dirichlet model
If X | θ ∼ Cat(θ) and θ | α ∼ Dir(α), we saw before that

p(θ | X,α) ∝ p(X | θ)p(θ | α) ∝ θn1
1 · · · θnk

k θα1−1
1 · · · θnk−1

1

= θ
(n1+α1)−1
1 · · · θ(nk+αk)−1

k

θ | X,α ∼ Dir(n+α) where n ∈ Rd, nj =

n∑
i=1

1
(
x(i) = j

)

MAP: θ̂ = argmax
θ

p(θ | X) ∝ n+α− 1

Bayesian learning uses the posterior predictive distribution,

p(x = c | X,α) =

∫
θ
p(x = c | θ) p(θ | X,α) dθ

=

∫
θ
θc p(θ | X,α) dθ = E

θ∼Dir(n+α)
[θc] ∝ n+α
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Multivariate Gaussian

To handle Bayesian linear regression, we’re going to need one more tool:
multivariate Gaussians

(Also useful much more broadly . . . )
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Motivating problem: Measuring building air quality

Want to measure “air quality” across rooms in a building

Measure pollutant concentrations (PM10, CO, O3, . . . ) in each room over time:

We can model this data to identify patterns/problems:

Some rooms usually have worse air than others
Some rooms’ quality may be correlated with others’ (adjacent, shared air. . . )
Also temporal correlations, which we won’t handle yet
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Start: product of Gaussians
Like before, simplest thing to do is to make different dimensions independent

xj ∼ N (µj , σ
2
j )

Gives joint density

p(x | µ,σ2) =

d∏
j=1

p(xj | µj , σ
2
j ) ∝

d∏
j=1

exp

(
−(xj − µj)

2

2σ2
j

)

= exp

−1

2

d∑
j=1

(xj − µj)
2

σ2
j

 = exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)

where Σ =


σ2
1 0 . . . 0
0 σ2

2 . . . 0

0 0
. . .

...
0 0 . . . σ2

j


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Multivariate Gaussians
General multivariate Gaussian: Σ doesn’t have to be diagonal

x ∼ N (µ,Σ) means p(x | µ,Σ) =
1

(2π)
d
2 |Σ|

1
2

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
|Σ| is the determinant (product of eigenvalues)

Many nice properties, like univariate
case

Closed-form, intuitive MLE
Conjugate priors
Many nice analytic properties
Multivariate central limit theorem
. . .

personal.kenyon.edu/hartlaub/MellonProject/Bivariate2.html

Off-diagonal covariance entries give covariance: Cov(xj , xj′) = Σjj′

“Adjacent rooms have similar air qualities”
Correlation is Cov(xj , xj′)/

√
Var(xj)Var(xj′) = Σjj′/

√
ΣjjΣj′j′
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Covariance matrices
The d× d matrix Σ is called the covariance matrix, Cov(x)

Also called “variance-covariance matrix”; sometimes written Var(x)

For any continuous distribution, Var(x) > 0. What about multivariate dists?

Consider the univariate random variable vTx. We have

Var(vTx) = Var

 d∑
j=1

vjxj

 =

d∑
j=1

d∑
j′=1

Cov
(
vjxj , vj′xj′

)
=

d∑
j=1

d∑
j′=1

vj Cov
(
xj , xj′

)
vj′ = vTΣv

A continuous multivariate random variable requires vTΣv > 0 for all v

This is exactly the condition that Σ is strictly positive-definite

Equivalent condition (see notes on website): all eigenvalues are positive

Equivalent condition: there is some (full-rank) A ∈ Rn×n such that Σ = AAT
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Kinds of covariances

If Σ = σ2I, level sets of the density are circles

One parameter
The xj ∼ N (0, σ2) are mutually independent, because

p(x | σ2) = p(x1 | σ2) · · · p(xd | σ2)

If Σ = diag(σ2
1, . . . , σ

2
d) is diagonal: axis-aligned ellipses

d parameters
Each xj ∼ N (0, σ2

j ) is still independent

For general Σ, might not be axis-aligned

d(d+ 1)/2 parameters – not d2 since Σ is symmetric
xj can now be correlated
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Degenerate Gaussians
If Σ ⪰ 0 but not ≻ 0 – it has some zero eigenvalues – we call it degenerate

Means that there’s some direction v where vTΣv = 0, i.e. vTx is constant

Standard density function doesn’t exist (no inverse, i.e. divide-by-zero error)

For d = 1, N (µ, 0) is a point mass: every sample is exactly µ

For d = 2, can be a point mass, or all samples can live along a line

In general, has support on a subspace of dimension rankΣ
Has a Gaussian density with respect to that subspace
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Affine transformations
For any random vector x, we have that

E[Ax+ µ] = AE[x] + µ

Cov(Ax+ µ) = ACov(x)AT

Fact (won’t prove here; straightforward if you use characteristic functions):
affine transformations of multivariate normals are multivariate normal

So, if X ∼ N (µ,Σ), then Ax+ b ∼ N (Aµ+ b, AΣAT)
Even if x is non-degenerate, AΣAT might be singular!

Examples: A = 0, or if x is one-dimensional and A is 5× 1 . . .

This immediately gives us a nice sampling algorithm:
Sample d independent standard normals, zj ∼ N (0, 1)
Return AZ + µ ∼ N (µ, AAT)

Need to find an A such that AAT = Σ
Can use Cholesky factorization (np.linalg.cholesky) to find a (lower-triangular) A

Or (a little slower), eigendecompose Σ and use A
1
2 =

∑
j

√
λjvjv

T
j
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Marginalizing Gaussians
If we have a joint distribution over x = (x1, . . . , xd), might care about just xj
p(xj) =

∫
· · ·
∫
p(x | µ,Σ) dx1 · · · dxj−1dxj+1 · · · dxd

. . . but we can skip that nasty integral by just thinking a little bit!

Let’s partition our variables into block matrices,

[
X
Z

]
∼ N

([
µx

µz

]
,

[
Σx Σxz

ΣT
xz Σz

])
For example, 

x1
x2
z1
z2
z3

 ∼ N




0.6
−1.3
9.8
0.1

−3

 ,


1.3 −0.1 −0.2 0.4 0

−0.1 3.6 0.1 0.3 −0.5
−0.2 0.1 8.1 −0.2 1.4
0.4 0.3 −0.2 1.8 −0.7
0 −0.5 1.4 −0.7 2.3




Notice that x =
[
I 0

] [x
z

]
, so

X ∼ N
([

I 0
] [µx

µz

]
,
[
I 0

] [Σx Σxz

ΣT
xz Σz

] [
I 0

]T)
X ∼ N (µx,Σx)
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Marginalizing Gaussians

If

[
x
z

]
∼ N

([
µx

µz

]
,

[
Σx Σxz

ΣT
xz Σz

])
, then x ∼ N (µx,Σx):

we can just ignore a subset of the variables

4 2 0 2 4
x

2

0

2

z
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Independence structure in Gaussians
For bivariate Gaussians, if Σ12 = 0 then Σ is diagonal, and so x1 ⊥⊥ x2
So, in multivariate Gaussians, xj ⊥⊥ xj′ iff Σjj′ = 0

If Σjj′ ̸= 0, xj and xj′ are correlated: can have all pairs correlated

Multivariate Gaussians don’t have any nonlinear or “higher-order” interactions

Example:

x ∼ N (0, 1)

y ∼ Unif({−1, 1})
z = xy

x ⊥⊥ y, Cov(x, z) = 0, y ⊥⊥ z

x ∼ N (0, 1), z ∼ N (0, 1)

But they’re not jointly normal
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Conditioning in Gaussians

If

[
x
z

]
∼ N

([
µx

µz

]
,

[
Σx Σxz

ΣT
xz Σz

])
, then what’s x | z?

By doing a bunch of linear algebra (see PML1 7.3.5), you get

x | z ∼ N (µx|z,Σx|z)

µx|z = µx +ΣxzΣ
−1
z (z − µz)

Σx|z = Σx −ΣxzΣ
−1
z ΣT

xz

If you know the value of z, the distribution of x is a different Gaussian

If σxz = 0, then x | z ∼ N (µx,Σx); another way to see x ⊥⊥ z

Notice that while µx|z depends on the value of z, Σx|z doesn’t!

This property is occasionally surprisingly important
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Outline

1 Multivariate Gaussians

2 Learning multivariate Gaussians
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MLE for the mean of a multivariate Gaussian
If x(i)

iid∼ N (µ,Σ) for Σ ≻ 0, we have

p
(
x(i) | µ,Σ

)
=

1

(2π)
d
2 |Σ|

1
2

exp

(
−1

2

(
x(i) − µ

)T
Σ−1

(
x(i) − µ

))
,

so up to a constant our negative log-likelihood for n examples is

1

2

n∑
i=1

(
x(i) − µ

)T
Σ−1

(
x(i) − µ

)
+

n

2
log |Σ|

This is a convex quadratic in µ; setting gradient to zero gives

µ̂ =
1

n

n∑
i=1

x(i)

Mean along each dimension; it doesn’t depend on Σ
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MLE for the covariance of a multivariate Gaussian
To get MLE for Σ we can re-parameterize in terms of precision matrix Θ = Σ−1,

1

2

n∑
i=1

(
x(i) − µ

)T
Σ−1

(
x(i) − µ

)
+

n

2
log |Σ|

=
1

2

n∑
i=1

(
x(i) − µ

)T
Θ
(
x(i) − µ

)
+

n

2
log
∣∣Θ−1

∣∣
After some work (bonus slides), we get that this is equal to

f(Θ) =
n

2
Tr(SΘ)− n

2
log |Θ|, with S =

1

n

n∑
i=1

(
x(i) − µ

)(
x(i) − µ

)T
S is the sample covariance: if X̃ = X− 1nµ

T is centred data, S = (1/n)X̃TX̃
Trace operator Tr(A) is the sum of the diagonal elements of A
Tr(ATB) =

∑
j(A

TB)jj =
∑

j

∑
i(A

T)jiBij =
∑

ij AijBij , i.e. (A * B).sum()
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MLE for the covariance of a multivariate Gaussian
Gradient matrix of NLL with respect to Θ is (not obvious, see bonus slides)

∇f(Θ) =
n

2

(
S−Θ−1

)
for S =

1

n

n∑
i=1

(
x(i) − µ

)(
x(i) − µ

)T
The MLE for a given µ is obtained by setting the gradient matrix to zero, giving

Θ = S−1 or Σ =
1

n

n∑
i=1

(xi − µ)(xi − µ)T

To have Σ ≻ 0, we need a positive-definite sample covariance, S ≻ 0
If S is not positive definite, NLL is unbounded below, and MLE doesn’t exist
Like requiring “not all values are the same” in univariate Gaussian
In d-dimensions, you need d linearly independent x(i) values (no “multi-collinearity”)
This is only possible if n ≥ d! (But might not be true even if it is)

Note: most distributions’ MLEs don’t correspond with “moment matching”
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Example: Multivariate Gaussians on MNIST

Let’s try continuous density estimation on (binary) handwritten digits
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Product of Gaussian densities

This property will be helpful in deriving MAP/Bayesian estimation:

Consider a variable x whose pdf is written as product of two Gaussians,

p(x) ∝ N (x | µ1, I)︸ ︷︷ ︸
density of N (µ1, I) at x

N (x | µ2, I)

This product of Gaussian pdfs is a Gaussian with µ = 1
2(µ1 + µ2) and Σ = 1

2I
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Product of Gaussian densities
If p(x) ∝ N (x | µ1,Σ1)N (µ2,Σ2),
then x is Gaussian with (see PML2 2.2.7.6 – complete the square in the exponent)

covariance Σ = (Σ−1
1 +Σ−1

2 )−1

mean µ = ΣΣ−1
1 µ1 +ΣΣ−1

2 µ2

Consider x(i) ∼ N (µ,Σ) for fixed Σ and µ ∼ N (µ0,Σ0):

p(µ | X,Σ,µ0,Σ0) ∝ p(µ | µ0,Σ0)

n∏
i=1

p
(
x(i) | µ,Σ

)
(Bayes rule)

= p(µ | µ0,Σ0)

n∏
i=1

p(µ | x(i),Σ) (symmetry of x(i) and µ)

= (product of (n+ 1) Gaussians)

So, working it out gives. . .
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MAP estimation for mean
For fixed Σ, conjugate prior for mean is a Gaussian:

x(i) ∼ N (µ,Σ) µ ∼ N (µ0,Σ0) implies µ | X,Σ ∼ N (µ+,Σ+),

where

Σ+ = (nΣ−1 +Σ−1
0 )−1,

µ+ = Σ+(nΣ−1µMLE +Σ−1
0 µ0) MAP estimate of µ

In special case of Σ = σ2I and Σ0 =
1
λI, we get

Σ+ =
( n

σ2
I+ λI

)−1
=

1
n
σ2 + 1

λ

I,

µ+ = Σ+
( n

σ2
µMLE + λµ0

)
Posterior predictive is N (µ+,Σ+Σ+) – take product of (n+2) then marginalize

Many Bayesian inference tasks have closed form; if not, Monte Carlo is easy
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MAP Estimation in Multivariate Gaussian (Trace Regularization)

A common MAP estimate for Σ is

Σ̂ = S+ λI,

where S is the covariance of the data.

Key advantage: Σ̂ is positive-definite (eigenvalues are at least λ)

This corresponds to L1 regularization of precision diagonals (see bonus)

f(Θ) = Tr(SΘ)− log |Θ|︸ ︷︷ ︸
NLL times 2/n

+ λ

d∑
j=1

|Θjj |

Note this doesn’t set Θjj values to exactly zero

Log-determinant term becomes arbitrarily steep as the Θjj approach 0
It’s not really the case that “L1 gives sparsity”; it’s “L2 + L1 gives sparsity”
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Trace Regularization

For MNIST, MAP estimate of precision Θ with regularizer 1
n Tr(Θ)

Sparsity pattern using this “L1-regularization of the trace”:

Doesn’t yield a sparse matrix (only zeroes are with pixels near the boundary)
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Summary

Multivariate Gaussians: random vectors, which allow correlations

Affine transformations of Gaussians are Gaussian

Can use that to sample

Marginals, conditionals are also Gaussian
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MLE for the covariance of a multivariate Gaussian

To get MLE for Σ we re-parameterize in terms of precision matrix Θ = Σ−1,

1

2

n∑
i=1

(x(i) − µ)TΣ−1(xi − µ) +
n

2
log |Σ|

=
1

2

n∑
i=1

(x(i) − µ)TΘ(xi − µ) +
n

2
log |Θ−1| (okay because Σ is invertible)

=
1

2

n∑
i=1

Tr
(
(x(i) − µ)TΘ(xi − µ)

)
+

n

2
log |Θ|−1 (scalar yTAy = Tr(yTAy))

=
1

2

n∑
i=1

Tr((x(i) − µ)(xi − µ)TΘ)− n

2
log |Θ| (Tr(ABC) = Tr(CAB))∣∣A−1

∣∣ = 1/ |A| (can see e.g. from eigenvalues)
The trace is the sum of the diagonal elements: Tr(A) =

∑
iAii

Tr(AB) = Tr(BA) when dimensions match: called trace rotation or cyclic property
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MLE for the covariance of a multivariate Gaussian

From the last slide,

p(X | µ,Σ) =
1

2

n∑
i=1

Tr

((
x(i) − µ

)(
x(i) − µ

)T
Θ

)
− n

2
log |Θ|

We can exchange the sum and trace (trace is a linear operator) to get,

=
1

2
Tr

(
n∑

i=1

(x(i) − µ)(xi − µ)TΘ

)
− n

2
log |Θ|

∑
i

Tr(AiB) = Tr

(∑
i

AiB

)

=
n

2
Tr


 1

n

n∑
i=1

(xi − µ)(xi − µ)T︸ ︷︷ ︸
sample covariance, S

Θ

− n

2
log |Θ|

(∑
i

AiB

)
=

(∑
i

Ai

)
B
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MLE for the covariance of a multivariate Gaussian

So the NLL in terms of the precision matrix Θ and sample covariance S is

f(Θ) =
n

2
Tr(SΘ)− n

2
log |Θ|, with S =

1

n

n∑
i=1

(
x(i) − µ

)(
x(i) − µ

)T
Weird-looking but has nice properties:

Tr(SΘ) is linear function of Θ, with ∇Θ Tr(SΘ) = S
(it’s the matrix version of an inner product sTθ; called “Frobenius inner product”)

Negative log-determinant is strictly convex, and ∇Θ log |Θ| = Θ−1

(generalizes ∇ log |x| = 1/x for for x > 0)

Using these two properties the gradient matrix has a simple form:

∇f(Θ) =
n

2
(S −Θ−1)

which is what we use to get the MLE
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