Multivariate Gaussians

 CPSC 440/550: Advanced Machine Learning

 CPSC 440/550: Advanced Machine Learning}

> cs.ubc.ca/~dsuth/440/23w2

University of British Columbia, on unceded Musqueam land

$$
\text { 2023-24 Winter Term } 2 \text { (Jan-Apr 2024) }
$$

Last time: Univariate Gaussians, Bayesian learning

- Continuous density estimation with the Gaussian=normal distribution

$$
x \sim \mathcal{N}\left(\mu, \sigma^{2}\right) \quad \text { means } \quad p\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right)
$$

- Cumulative distribution function (cdf) $F(t)$
- Inverse probability sampling: $F^{-1}(U)$ for $U \sim \operatorname{Unif}([0,1])$
- MLE: sample mean, sample variance (with the $1 / n$)
- With fixed variance: conjugate prior for the mean is Gaussian
- Gaussian likelihood gives linear regression/square loss; MAP gives ridge regression
- Bayesian learning integrates over model uncertainty
- Posterior predictive: $p(\tilde{y} \mid \tilde{x}, \mathbf{X}, \mathbf{y})=\int p(\tilde{y} \mid w) p(w \mid \mathbf{X}, \mathbf{y}) \mathrm{d} w$
- Beta-Bernoulli model: use posterior $\operatorname{Beta}\left(n_{1}+\alpha, n_{0}+\beta\right)$

Bayesian learning in the Categorical-Dirichlet model

- If $X \mid \boldsymbol{\theta} \sim \operatorname{Cat}(\boldsymbol{\theta})$ and $\boldsymbol{\theta} \mid \boldsymbol{\alpha} \sim \operatorname{Dir}(\boldsymbol{\alpha})$, we saw before that

$$
\begin{aligned}
p(\boldsymbol{\theta} \mid \mathbf{X}, \boldsymbol{\alpha}) & \propto p(\mathbf{X} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta} \mid \boldsymbol{\alpha}) \propto \theta_{1}^{n_{1}} \cdots \theta_{k}^{n_{k}} \theta_{1}^{\alpha_{1}-1} \cdots \theta_{1}^{n_{k}-1} \\
& =\theta_{1}^{\left(n_{1}+\alpha_{1}\right)-1} \cdots \theta_{k}^{\left(n_{k}+\alpha_{k}\right)-1}
\end{aligned}
$$

$$
\boldsymbol{\theta} \mid \mathbf{X}, \boldsymbol{\alpha} \sim \operatorname{Dir}(\mathbf{n}+\boldsymbol{\alpha}) \quad \text { where } \mathbf{n} \in \mathbb{R}^{d}, n_{j}=\sum_{i=1}^{n} \mathbb{1}\left(x^{(i)}=j\right)
$$

- MAP:

$$
\hat{\boldsymbol{\theta}}=\underset{\boldsymbol{\theta}}{\arg \max } p(\theta \mid \mathbf{X}) \propto \mathbf{n}+\boldsymbol{\alpha}-1
$$

- Bayesian learning uses the posterior predictive distribution,

$$
\begin{aligned}
p(x=c \mid \mathbf{X}, \boldsymbol{\alpha}) & =\int_{\boldsymbol{\theta}} p(x=c \mid \boldsymbol{\theta}) p(\boldsymbol{\theta} \mid \mathbf{X}, \boldsymbol{\alpha}) \mathrm{d} \boldsymbol{\theta} \\
& =\int_{\boldsymbol{\theta}} \theta_{c} p(\boldsymbol{\theta} \mid \mathbf{X}, \boldsymbol{\alpha}) \mathrm{d} \boldsymbol{\theta} \quad=\underset{\boldsymbol{\theta} \sim \operatorname{Dir}(\mathbf{n}+\boldsymbol{\alpha})}{\mathbb{E}}\left[\theta_{c}\right] \quad \propto \mathbf{n}+\boldsymbol{\alpha}
\end{aligned}
$$

Multivariate Gaussian

- To handle Bayesian linear regression, we're going to need one more tool: multivariate Gaussians
- (Also useful much more broadly ...)

Motivating problem: Measuring building air quality

- Want to measure "air quality" across rooms in a building
- Measure pollutant concentrations (PM10, CO, O3, ...) in each room over time:

Rm 1	Rm 2	Rm 3	Rm 4	Rm 5	Rm 6	Rm 7	Rm 8	Rm 9
0.1	1.4	0.2	1.8	1.0	1.0	0.1	0.1	1.1
0.2	1.3	0.1	1.9	1.1	0.9	0.1	0.1	1.1
0.1	0.3	1.4	2.0	0.7	0.3	0.1	0.2	0.4
0.1	1.1	0.2	2.1	1.1	1.1	0.1	0.3	0.5
2.7	2.6	2.5	5.1	2.4	2.8	3.2	2.5	3.1
0.1	0.4	0.2	1.8	1.3	0.4	0.1	0.4	1.0
0.1	1.2	0.2	1.8	1.4	1.1	0.7	0.7	0.5

- We can model this data to identify patterns/problems:
- Some rooms usually have worse air than others
- Some rooms' quality may be correlated with others' (adjacent, shared air...)
- Also temporal correlations, which we won't handle yet

Start: product of Gaussians

- Like before, simplest thing to do is to make different dimensions independent

$$
x_{j} \sim \mathcal{N}\left(\mu_{j}, \sigma_{j}^{2}\right)
$$

- Gives joint density

$$
\begin{aligned}
& \qquad p\left(x \mid \boldsymbol{\mu}, \boldsymbol{\sigma}^{2}\right)=\prod_{j=1}^{d} p\left(x_{j} \mid \mu_{j}, \sigma_{j}^{2}\right) \propto \prod_{j=1}^{d} \exp \left(-\frac{\left(x_{j}-\mu_{j}\right)^{2}}{2 \sigma_{j}^{2}}\right) \\
& =\exp \left(-\frac{1}{2} \sum_{j=1}^{d} \frac{\left(x_{j}-\mu_{j}\right)^{2}}{\sigma_{j}^{2}}\right)=\exp \left(-\frac{1}{2}(x-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(x-\boldsymbol{\mu})\right) \\
& \text { where } \boldsymbol{\Sigma}=\left[\begin{array}{cccc}
\sigma_{1}^{2} & 0 & \ldots & 0 \\
0 & \sigma_{2}^{2} & \ldots & 0 \\
0 & 0 & \ddots & \vdots \\
0 & 0 & \ldots & \sigma_{j}^{2}
\end{array}\right]
\end{aligned}
$$

Multivariate Gaussians

- General multivariate Gaussian: $\boldsymbol{\Sigma}$ doesn't have to be diagonal

$$
x \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \quad \text { means } \quad p(x \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{(2 \pi)^{\frac{d}{2}}|\boldsymbol{\Sigma}|^{\frac{1}{2}}} \exp \left(-\frac{1}{2}(x-\mu)^{\top} \boldsymbol{\Sigma}^{-1}(x-\boldsymbol{\mu})\right)
$$

- $|\boldsymbol{\Sigma}|$ is the determinant (product of eigenvalues)
- Many nice properties, like univariate case
- Closed-form, intuitive MLE
- Conjugate priors
- Many nice analytic properties
- Multivariate central limit theorem

personal.kenyon.edu/hartlaub/MellonProject/Bivariate2.html
- Off-diagonal covariance entries give covariance: $\operatorname{Cov}\left(x_{j}, x_{j^{\prime}}\right)=\Sigma_{j j^{\prime}}$
- "Adjacent rooms have similar air qualities"
- Correlation is $\operatorname{Cov}\left(x_{j}, x_{j^{\prime}}\right) / \sqrt{\operatorname{Var}\left(x_{j}\right) \operatorname{Var}\left(x_{\left.j^{\prime}\right)}\right)}=\Sigma_{j j^{\prime}} / \sqrt{\Sigma_{j j} \Sigma_{j^{\prime} j^{\prime}}}$

Covariance matrices

- The $d \times d$ matrix $\boldsymbol{\Sigma}$ is called the covariance matrix, $\operatorname{Cov}(x)$
- Also called "variance-covariance matrix"; sometimes written $\operatorname{Var}(x)$
- For any continuous distribution, $\operatorname{Var}(x)>0$. What about multivariate dists?
- Consider the univariate random variable $v^{\top} x$. We have

$$
\begin{aligned}
\operatorname{Var}\left(v^{\top} x\right) & =\operatorname{Var}\left(\sum_{j=1}^{d} v_{j} x_{j}\right)=\sum_{j=1}^{d} \sum_{j^{\prime}=1}^{d} \operatorname{Cov}\left(v_{j} x_{j}, v_{j^{\prime}} x_{j^{\prime}}\right) \\
& =\sum_{j=1}^{d} \sum_{j^{\prime}=1}^{d} v_{j} \operatorname{Cov}\left(x_{j}, x_{j^{\prime}}\right) v_{j^{\prime}}=v^{\top} \boldsymbol{\Sigma} v
\end{aligned}
$$

- A continuous multivariate random variable requires $v^{\top} \boldsymbol{\Sigma} v>0$ for all v
- This is exactly the condition that $\boldsymbol{\Sigma}$ is strictly positive-definite
- Equivalent condition (see notes on website): all eigenvalues are positive
- Equivalent condition: there is some (full-rank) $A \in \mathbb{R}^{n \times n}$ such that $\boldsymbol{\Sigma}=A A^{\top}$

Kinds of covariances

- If $\boldsymbol{\Sigma}=\sigma^{2} \mathbf{I}$, level sets of the density are circles
- One parameter
- The $x_{j} \sim \mathcal{N}\left(0, \sigma^{2}\right)$ are mutually independent, because

$$
p\left(x \mid \sigma^{2}\right)=p\left(x_{1} \mid \sigma^{2}\right) \cdots p\left(x_{d} \mid \sigma^{2}\right)
$$

- If $\boldsymbol{\Sigma}=\operatorname{diag}\left(\sigma_{1}^{2}, \ldots, \sigma_{d}^{2}\right)$ is diagonal: axis-aligned ellipses
- d parameters
- Each $x_{j} \sim \mathcal{N}\left(0, \sigma_{j}^{2}\right)$ is still independent

- For general $\boldsymbol{\Sigma}$, might not be axis-aligned
- $d(d+1) / 2$ parameters - not d^{2} since $\boldsymbol{\Sigma}$ is symmetric
- x_{j} can now be correlated

Degenerate Gaussians

- If $\boldsymbol{\Sigma} \succeq 0$ but not $\succ 0$ - it has some zero eigenvalues - we call it degenerate
- Means that there's some direction v where $v^{\top} \boldsymbol{\Sigma} v=0$, i.e. $v^{\top} x$ is constant
- Standard density function doesn't exist (no inverse, i.e. divide-by-zero error)
- For $d=1, \mathcal{N}(\mu, 0)$ is a point mass: every sample is exactly μ
- For $d=2$, can be a point mass, or all samples can live along a line

- In general, has support on a subspace of dimension rank $\boldsymbol{\Sigma}$
- Has a Gaussian density with respect to that subspace

Affine transformations

- For any random vector x, we have that

$$
\begin{aligned}
\mathbb{E}[A x+\mu] & =A \mathbb{E}[x]+\mu \\
\operatorname{Cov}(A x+\mu) & =A \operatorname{Cov}(x) A^{\top}
\end{aligned}
$$

- Fact (won't prove here; straightforward if you use characteristic functions): affine transformations of multivariate normals are multivariate normal
- So, if $X \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then $A x+b \sim \mathcal{N}\left(A \boldsymbol{\mu}+b, A \boldsymbol{\Sigma} A^{\boldsymbol{\top}}\right)$
- Even if x is non-degenerate, $A \boldsymbol{\Sigma} A^{\top}$ might be singular!
- Examples: $A=0$, or if x is one-dimensional and A is $5 \times 1 \ldots$
- This immediately gives us a nice sampling algorithm:
- Sample d independent standard normals, $z_{j} \sim \mathcal{N}(0,1)$
- Return $A Z+\boldsymbol{\mu} \sim \mathcal{N}\left(\boldsymbol{\mu}, A A^{\top}\right)$
- Need to find an A such that $A A^{\top}=\boldsymbol{\Sigma}$
- Can use Cholesky factorization (np.linalg.cholesky) to find a (lower-triangular) A
- Or (a little slower), eigendecompose Σ and use $A^{\frac{1}{2}}=\sum_{j} \sqrt{\lambda_{j}} v_{j} v_{j}^{\top}$

Marginalizing Gaussians

- If we have a joint distribution over $x=\left(x_{1}, \ldots, x_{d}\right)$, might care about just x_{j}
- $p\left(x_{j}\right)=\int \cdots \int p(x \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) \mathrm{d} x_{1} \cdots \mathrm{~d} x_{j-1} \mathrm{~d} x_{j+1} \cdots \mathrm{~d} x_{d}$
- ... but we can skip that nasty integral by just thinking a little bit!
- Let's partition our variables into block matrices, $\left[\begin{array}{c}X \\ Z\end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{l}\boldsymbol{\mu}_{x} \\ \boldsymbol{\mu}_{z}\end{array}\right],\left[\begin{array}{cc}\boldsymbol{\Sigma}_{x} & \boldsymbol{\Sigma}_{x z} \\ \boldsymbol{\Sigma}_{x z}^{\top} & \boldsymbol{\Sigma}_{z}\end{array}\right]\right)$
- For example,

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{r}
0.6 \\
-1.3 \\
9.8 \\
0.1 \\
-3
\end{array}\right],\left[\begin{array}{rrrrr}
1.3 & -0.1 & -0.2 & 0.4 & 0 \\
-0.1 & 3.6 & 0.1 & 0.3 & -0.5 \\
-0.2 & 0.1 & 8.1 & -0.2 & 1.4 \\
0.4 & 0.3 & -0.2 & 1.8 & -0.7 \\
0 & -0.5 & 1.4 & -0.7 & 2.3
\end{array}\right]\right)
$$

- Notice that $x=\left[\begin{array}{ll}\mathbf{I} & \mathbf{0}\end{array}\right]\left[\begin{array}{l}x \\ z\end{array}\right]$, so

$$
\begin{gathered}
X \sim \mathcal{N}\left(\left[\begin{array}{ll}
\mathbf{I} & \mathbf{0}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{\mu}_{x} \\
\boldsymbol{\mu}_{z}
\end{array}\right],\left[\begin{array}{ll}
\mathbf{I} & \mathbf{0}
\end{array}\right]\left[\begin{array}{cc}
\boldsymbol{\Sigma}_{x} & \boldsymbol{\Sigma}_{x z} \\
\boldsymbol{\Sigma}_{x z}^{\top} & \boldsymbol{\Sigma}_{z}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{I} & \mathbf{0}
\end{array}\right]^{\top}\right) \\
X
\end{gathered}
$$

Marginalizing Gaussians

- If $\left[\begin{array}{l}x \\ z\end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{l}\boldsymbol{\mu}_{x} \\ \boldsymbol{\mu}_{z}\end{array}\right],\left[\begin{array}{cc}\boldsymbol{\Sigma}_{x} & \boldsymbol{\Sigma}_{x z} \\ \boldsymbol{\Sigma}_{x z}^{\top} & \boldsymbol{\Sigma}_{z}\end{array}\right]\right)$, then $x \sim \mathcal{N}\left(\boldsymbol{\mu}_{x}, \boldsymbol{\Sigma}_{x}\right)$:
we can just ignore a subset of the variables

Independence structure in Gaussians

- For bivariate Gaussians, if $\Sigma_{12}=0$ then Σ is diagonal, and so $x_{1} \Perp x_{2}$
- So, in multivariate Gaussians, $x_{j} \Perp x_{j^{\prime}}$ iff $\Sigma_{j j^{\prime}}=0$
- If $\Sigma_{j j^{\prime}} \neq 0, x_{j}$ and $x_{j^{\prime}}$ are correlated: can have all pairs correlated
- Multivariate Gaussians don't have any nonlinear or "higher-order" interactions
- Example:

$$
\begin{gathered}
x \sim \mathcal{N}(0,1) \\
y \sim \operatorname{Unif}(\{-1,1\}) \\
z=x y
\end{gathered}
$$

- $x \Perp y, \operatorname{Cov}(x, z)=0, y \Perp z$
- $x \sim \mathcal{N}(0,1), z \sim \mathcal{N}(0,1)$
- But they're not jointly normal

Conditioning in Gaussians

- If $\left[\begin{array}{l}x \\ z\end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{l}\boldsymbol{\mu}_{x} \\ \boldsymbol{\mu}_{z}\end{array}\right],\left[\begin{array}{cc}\boldsymbol{\Sigma}_{x} & \boldsymbol{\Sigma}_{x z} \\ \boldsymbol{\Sigma}_{x z}^{\top} & \boldsymbol{\Sigma}_{z}\end{array}\right]\right)$, then what's $x \mid z$?
- By doing a bunch of linear algebra (see PML1 7.3.5), you get

$$
\begin{aligned}
x \mid z & \sim \mathcal{N}\left(\boldsymbol{\mu}_{x \mid z}, \boldsymbol{\Sigma}_{x \mid z}\right) \\
\boldsymbol{\mu}_{x \mid z} & =\boldsymbol{\mu}_{x}+\boldsymbol{\Sigma}_{x z} \boldsymbol{\Sigma}_{z}^{-1}\left(z-\boldsymbol{\mu}_{z}\right) \\
\boldsymbol{\Sigma}_{x \mid z} & =\boldsymbol{\Sigma}_{x}-\boldsymbol{\Sigma}_{x z} \boldsymbol{\Sigma}_{z}^{-1} \boldsymbol{\Sigma}_{x z}^{\top}
\end{aligned}
$$

- If you know the value of z, the distribution of x is a different Gaussian
- If $\boldsymbol{\sigma}_{x z}=\mathbf{0}$, then $x \mid \mathbf{z} \sim \mathcal{N}\left(\boldsymbol{\mu}_{x}, \boldsymbol{\Sigma}_{x}\right)$; another way to see $x \Perp z$
- Notice that while $\boldsymbol{\mu}_{x \mid z}$ depends on the value of $z, \boldsymbol{\Sigma}_{x \mid z}$ doesn't!
- This property is occasionally surprisingly important

Outline

(1) Multivariate Gaussians
(2) Learning multivariate Gaussians

MLE for the mean of a multivariate Gaussian

- If $x^{(i)} \stackrel{i i d}{\sim} \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ for $\boldsymbol{\Sigma} \succ 0$, we have

$$
p\left(x^{(i)} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}\right)=\frac{1}{(2 \pi)^{\frac{d}{2}}|\boldsymbol{\Sigma}|^{\frac{1}{2}}} \exp \left(-\frac{1}{2}\left(x^{(i)}-\boldsymbol{\mu}\right)^{\top} \boldsymbol{\Sigma}^{-1}\left(x^{(i)}-\boldsymbol{\mu}\right)\right)
$$

so up to a constant our negative log-likelihood for n examples is

$$
\frac{1}{2} \sum_{i=1}^{n}\left(x^{(i)}-\boldsymbol{\mu}\right)^{\top} \boldsymbol{\Sigma}^{-1}\left(x^{(i)}-\boldsymbol{\mu}\right)+\frac{n}{2} \log |\boldsymbol{\Sigma}|
$$

- This is a convex quadratic in μ; setting gradient to zero gives

$$
\hat{\mu}=\frac{1}{n} \sum_{i=1}^{n} x^{(i)}
$$

- Mean along each dimension; it doesn't depend on Σ

MLE for the covariance of a multivariate Gaussian

- To get MLE for Σ we can re-parameterize in terms of precision matrix $\Theta=\Sigma^{-1}$,

$$
\begin{aligned}
& \frac{1}{2} \sum_{i=1}^{n}\left(x^{(i)}-\boldsymbol{\mu}\right)^{\top} \boldsymbol{\Sigma}^{-1}\left(x^{(i)}-\boldsymbol{\mu}\right)+\frac{n}{2} \log |\boldsymbol{\Sigma}| \\
& =\frac{1}{2} \sum_{i=1}^{n}\left(x^{(i)}-\boldsymbol{\mu}\right)^{\top} \boldsymbol{\Theta}\left(x^{(i)}-\boldsymbol{\mu}\right)+\frac{n}{2} \log \left|\boldsymbol{\Theta}^{-1}\right|
\end{aligned}
$$

- After some work (bonus slides), we get that this is equal to

$$
f(\boldsymbol{\Theta})=\frac{n}{2} \operatorname{Tr}(\mathbf{S} \Theta)-\frac{n}{2} \log |\boldsymbol{\Theta}| \text {, with } \mathbf{S}=\frac{1}{n} \sum_{i=1}^{n}\left(x^{(i)}-\boldsymbol{\mu}\right)\left(x^{(i)}-\boldsymbol{\mu}\right)^{\top}
$$

- \mathbf{S} is the sample covariance: if $\tilde{\mathbf{X}}=\mathbf{X}-\mathbf{1}_{n} \mu^{\boldsymbol{\top}}$ is centred data, $S=(1 / n) \tilde{\mathbf{X}}^{\top} \tilde{\mathbf{X}}$
- Trace operator $\operatorname{Tr}(A)$ is the sum of the diagonal elements of A
- $\operatorname{Tr}\left(A^{\top} B\right)=\sum_{j}\left(A^{\top} B\right)_{j j}=\sum_{j} \sum_{i}\left(A^{\top}\right)_{j i} B_{i j}=\sum_{i j} A_{i j} B_{i j}$, i.e. $(\mathrm{A} * \mathrm{~B})$.sum()

MLE for the covariance of a multivariate Gaussian

- Gradient matrix of NLL with respect to Θ is (not obvious, see bonus slides)

$$
\nabla f(\Theta)=\frac{n}{2}\left(\mathbf{S}-\mathbf{\Theta}^{-1}\right) \quad \text { for } S=\frac{1}{n} \sum_{i=1}^{n}\left(x^{(i)}-\boldsymbol{\mu}\right)\left(x^{(i)}-\boldsymbol{\mu}\right)^{\top}
$$

- The MLE for a given μ is obtained by setting the gradient matrix to zero, giving

$$
\Theta=\mathbf{S}^{-1} \quad \text { or } \quad \Sigma=\frac{1}{n} \sum_{i=1}^{n}\left(x^{i}-\mu\right)\left(x^{i}-\mu\right)^{\top}
$$

- To have $\Sigma \succ 0$, we need a positive-definite sample covariance, $S \succ 0$
- If S is not positive definite, NLL is unbounded below, and MLE doesn't exist
- Like requiring "not all values are the same" in univariate Gaussian
- In d-dimensions, you need d linearly independent $x^{(i)}$ values (no "multi-collinearity")
- This is only possible if $n \geq d!$ (But might not be true even if it is)
- Note: most distributions' MLEs don't correspond with "moment matching"

Example: Multivariate Gaussians on MNIST

- Let's try continuous density estimation on (binary) handwritten digits

General Σ :

$\hat{\mu}$ is the same (!)
$\hat{\Sigma}$ is big
(784 by 784)

Product of Gaussian densities

- This property will be helpful in deriving MAP/Bayesian estimation:
- Consider a variable x whose pdf is written as product of two Gaussians,

$$
p(x) \propto \underbrace{\mathcal{N}\left(x \mid \boldsymbol{\mu}_{1}, \mathbf{I}\right)}_{\text {density of } \mathcal{N}\left(\boldsymbol{\mu}_{1}, \mathbf{I}\right) \text { at } x} \mathcal{N}\left(x \mid \boldsymbol{\mu}_{2}, \mathbf{I}\right)
$$

- This product of Gaussian pdfs is a Gaussian with $\boldsymbol{\mu}=\frac{1}{2}\left(\boldsymbol{\mu}_{1}+\boldsymbol{\mu}_{2}\right)$ and $\boldsymbol{\Sigma}=\frac{1}{2} \mathbf{I}$

Product of Gaussian densities

- If $p(x) \propto \mathcal{N}\left(x \mid \boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{1}\right) \mathcal{N}\left(\boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}_{2}\right)$,
- then x is Gaussian with (see PML2 2.2.7.6 - complete the square in the exponent)

$$
\begin{aligned}
& \text { covariance } \boldsymbol{\Sigma}=\left(\boldsymbol{\Sigma}_{1}^{-1}+\boldsymbol{\Sigma}_{2}^{-1}\right)^{-1} \\
& \text { mean } \boldsymbol{\mu}=\boldsymbol{\Sigma} \boldsymbol{\Sigma}_{1}^{-1} \boldsymbol{\mu}_{1}+\boldsymbol{\Sigma} \boldsymbol{\Sigma}_{2}^{-1} \boldsymbol{\mu}_{2}
\end{aligned}
$$

- Consider $x^{(i)} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ for fixed $\boldsymbol{\Sigma}$ and $\boldsymbol{\mu} \sim \mathcal{N}\left(\boldsymbol{\mu}_{0}, \boldsymbol{\Sigma}_{0}\right)$:

$$
\begin{aligned}
p\left(\boldsymbol{\mu} \mid \mathbf{X}, \boldsymbol{\Sigma}, \boldsymbol{\mu}_{0}, \boldsymbol{\Sigma}_{0}\right) & \propto p\left(\boldsymbol{\mu} \mid \boldsymbol{\mu}_{0}, \boldsymbol{\Sigma}_{0}\right) \prod_{i=1}^{n} p\left(x^{(i)} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}\right) \quad \text { (Bayes rule) } \\
& \left.=p\left(\boldsymbol{\mu} \mid \boldsymbol{\mu}_{0}, \boldsymbol{\Sigma}_{0}\right) \prod_{i=1}^{n} p\left(\boldsymbol{\mu} \mid x^{(i)}, \boldsymbol{\Sigma}\right) \quad \text { (symmetry of } x^{(i)} \text { and } \boldsymbol{\mu}\right) \\
& =(\text { product of }(n+1) \text { Gaussians) }
\end{aligned}
$$

- So, working it out gives...

MAP estimation for mean

- For fixed Σ, conjugate prior for mean is a Gaussian:

$$
x^{(i)} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \quad \mu \sim \mathcal{N}\left(\boldsymbol{\mu}_{0}, \boldsymbol{\Sigma}_{0}\right) \quad \text { implies } \quad \boldsymbol{\mu} \mid \mathbf{X}, \boldsymbol{\Sigma} \sim \mathcal{N}\left(\boldsymbol{\mu}^{+}, \boldsymbol{\Sigma}^{+}\right)
$$

where

$$
\begin{aligned}
& \boldsymbol{\Sigma}^{+}=\left(n \boldsymbol{\Sigma}^{-1}+\boldsymbol{\Sigma}_{0}^{-1}\right)^{-1} \\
& \boldsymbol{\mu}^{+}=\Sigma^{+}\left(n \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_{\mathrm{MLE}}+\boldsymbol{\Sigma}_{0}^{-1} \boldsymbol{\mu}_{0}\right) \quad \text { MAP estimate of } \mu
\end{aligned}
$$

- In special case of $\boldsymbol{\Sigma}=\sigma^{2} \mathbf{I}$ and $\Sigma_{0}=\frac{1}{\lambda} \mathbf{I}$, we get

$$
\begin{aligned}
& \boldsymbol{\Sigma}^{+}=\left(\frac{n}{\sigma^{2}} \mathbf{I}+\lambda \mathbf{I}\right)^{-1}=\frac{1}{\frac{n}{\sigma^{2}}+\frac{1}{\lambda}} \mathbf{I} \\
& \boldsymbol{\mu}^{+}=\boldsymbol{\Sigma}^{+}\left(\frac{n}{\sigma^{2}} \boldsymbol{\mu}_{\mathrm{MLE}}+\lambda \boldsymbol{\mu}_{0}\right)
\end{aligned}
$$

- Posterior predictive is $\mathcal{N}\left(\boldsymbol{\mu}^{+}, \boldsymbol{\Sigma}+\boldsymbol{\Sigma}^{+}\right)$- take product of $(n+2)$ then marginalize
- Many Bayesian inference tasks have closed form; if not, Monte Carlo is easy

MAP Estimation in Multivariate Gaussian (Trace Regularization)

- A common MAP estimate for Σ is

$$
\hat{\Sigma}=\mathbf{S}+\lambda \mathbf{I}
$$

where S is the covariance of the data.

- Key advantage: $\hat{\Sigma}$ is positive-definite (eigenvalues are at least λ)
- This corresponds to L1 regularization of precision diagonals (see bonus)

$$
f(\Theta)=\underbrace{\operatorname{Tr}(\mathbf{S} \boldsymbol{\Theta})-\log |\boldsymbol{\Theta}|}_{\text {NLL times } 2 / n}+\lambda \sum_{j=1}^{d}\left|\boldsymbol{\Theta}_{j j}\right|
$$

- Note this doesn't set $\Theta_{j j}$ values to exactly zero
- Log-determinant term becomes arbitrarily steep as the $\Theta_{j j}$ approach 0
- It's not really the case that "L1 gives sparsity"; it's "L2 + L1 gives sparsity"

Trace Regularization

- For MNIST, MAP estimate of precision $\boldsymbol{\Theta}$ with regularizer $\frac{1}{n} \operatorname{Tr}(\boldsymbol{\Theta})$

- Sparsity pattern using this "L1-regularization of the trace":

- Doesn't yield a sparse matrix (only zeroes are with pixels near the boundary)

Summary

- Multivariate Gaussians: random vectors, which allow correlations
- Affine transformations of Gaussians are Gaussian
- Can use that to sample
- Marginals, conditionals are also Gaussian

MLE for the covariance of a multivariate Gaussian

- To get MLE for Σ we re-parameterize in terms of precision matrix $\Theta=\Sigma^{-1}$,

$$
\begin{aligned}
& \frac{1}{2} \sum_{i=1}^{n}\left(x^{(i)}-\mu\right)^{\top} \Sigma^{-1}\left(x^{i}-\mu\right)+\frac{n}{2} \log |\Sigma| \\
= & \frac{1}{2} \sum_{i=1}^{n}\left(x^{(i)}-\mu\right)^{\top} \Theta\left(x^{i}-\mu\right)+\frac{n}{2} \log \left|\Theta^{-1}\right| \quad \text { (okay because } \Sigma \text { is invertible) } \\
= & \frac{1}{2} \sum_{i=1}^{n} \operatorname{Tr}\left(\left(x^{(i)}-\mu\right)^{\top} \Theta\left(x^{i}-\mu\right)\right)+\frac{n}{2} \log |\Theta|^{-1} \\
= & \frac{1}{2} \sum_{i=1}^{n} \operatorname{Tr}\left(\left(x^{(i)}-\mu\right)\left(x^{i}-\mu\right)^{\top} \Theta\right)-\frac{n}{2} \log |\Theta| \quad\left(\operatorname{Tscalar} y^{\top} A y=\operatorname{Tr}\left(y^{\top} A y\right)\right) \\
&
\end{aligned}
$$

- $\left|A^{-1}\right|=1 /|A|$ (can see e.g. from eigenvalues)
- The trace is the sum of the diagonal elements: $\operatorname{Tr}(A)=\sum_{i} A_{i i}$
- $\operatorname{Tr}(A B)=\operatorname{Tr}(B A)$ when dimensions match: called trace rotation or cyclic property

MLE for the covariance of a multivariate Gaussian

- From the last slide,

$$
p(\mathbf{X} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{2} \sum_{i=1}^{n} \operatorname{Tr}\left(\left(x^{(i)}-\boldsymbol{\mu}\right)\left(x^{(i)}-\boldsymbol{\mu}\right)^{\top} \boldsymbol{\Theta}\right)-\frac{n}{2} \log |\boldsymbol{\Theta}|
$$

- We can exchange the sum and trace (trace is a linear operator) to get,

$$
\begin{aligned}
& =\frac{1}{2} \operatorname{Tr}\left(\sum_{i=1}^{n}\left(x^{(i)}-\mu\right)\left(x^{i}-\mu\right)^{\top} \Theta\right)-\frac{n}{2} \log |\Theta| \quad \sum_{i} \operatorname{Tr}\left(A_{i} B\right)=\operatorname{Tr}\left(\sum_{i} A_{i} B\right) \\
& =\frac{n}{2} \operatorname{Tr}((\underbrace{\frac{1}{n} \sum_{i=1}^{n}\left(x^{i}-\mu\right)\left(x^{i}-\mu\right)^{\top}}_{\text {sample covariance, } S}) \Theta)-\frac{n}{2} \log |\Theta| \quad\left(\sum_{i} A_{i} B\right)=\left(\sum_{i} A_{i}\right) B
\end{aligned}
$$

MLE for the covariance of a multivariate Gaussian

- So the NLL in terms of the precision matrix Θ and sample covariance S is

$$
f(\Theta)=\frac{n}{2} \operatorname{Tr}(S \Theta)-\frac{n}{2} \log |\Theta|, \text { with } S=\frac{1}{n} \sum_{i=1}^{n}\left(x^{(i)}-\boldsymbol{\mu}\right)\left(x^{(i)}-\boldsymbol{\mu}\right)^{\top}
$$

- Weird-looking but has nice properties:
- $\operatorname{Tr}(S \Theta)$ is linear function of Θ, with $\nabla_{\Theta} \operatorname{Tr}(S \Theta)=S$
(it's the matrix version of an inner product $s^{\top} \theta$; called "Frobenius inner product")
- Negative log-determinant is strictly convex, and $\nabla_{\Theta} \log |\Theta|=\Theta^{-1}$ (generalizes $\nabla \log |x|=1 / x$ for for $x>0$)
- Using these two properties the gradient matrix has a simple form:

$$
\nabla f(\Theta)=\frac{n}{2}\left(S-\Theta^{-1}\right)
$$

which is what we use to get the MLE

