Attention and Transformers
CPSC 440/550: Advanced Machine Learning

cs.ubc.ca/~dsuth/440/23w2
University of British Columbia, on unceded Musqueam land

2023-24 Winter Term 2 (Jan—-Apr 2024)

Admin

e A2 is out

— Due after break, but it’s long

Al grades are out
— If something seems wrong, send a regrade request
— Please don’t send regrade requests for small subjective things

— Please do send regrade requests for something that’s wrong
* Might affect others too

* Quiz grading still ongoing
— Hit some technical issues...

Last time: RNNs

* Process sentences/whatever in sequence

— Have a “hidden state” that updates as you read

* Closely-related challenges:
— Remembering things for long enough

* Exacerbated by state being fixed-size,
no matter how much you have to remember

— Vanishing/exploding gradients
e Approach that helps (doesn’t solve): long-short memory (LSTM)

— Adds “memory cells,” and complicated machinery to store/load from memory

— Similar motivation: state-space models

* Uses complicated math we didn’t cover (and Danica/Alan don’t know!)

Last Time: Sequence-to-Sequence RNNs

* Sequence-to-sequence:

— Recurrent neural network for sequences of different lengths

- = - ~ —_

e Similar idea for multimodal models:

* Problem: .Ev\co:‘iv\l

— —_— — — —

— All “encoding” information must be summarized by last state (z; above)
— Might “forget” earlier parts of sentence (or middle, for bi-directional)
— Might want to “re-focus” on parts of input, depending on decoder state

Problems with RNNs

* Hard to “remember” relevant information for long enough

— Fixed amount of “state” information has to store everything relevant
* Hard to optimize: vanishing/exploding gradients, huge memory usage
* Hard to parallelize: everything depends on everything before it

* Not always very natural for some (most?) data types: GraphFattening
7, Zn 0 0000060

e @ Default Order
Mask B o . .
Node Prioritization
Mask A G G e J L | LI 1

L2 Degree Low Degree High

PixelRNN (2016): density estimator for ~ Graph-Mamba (2 weeks ago):

images, looks at each pixel one-by-one ~ complicated heuristics to walk over
graph data in the “right order”

* |s looking at data sequentially always the right thing to do? 5

https://arxiv.org/abs/2402.00789
https://arxiv.org/abs/1601.06759

Looking back in history

* What if we didn’t have to “remember” everything?
* Decoder could look back at every encoder state (skip connections)

- R — e
- N
/ ¢
‘ G ‘
A

/ ”l’lov/hj :

)
/ - - - — am o —

' 0 Q 22 G 0 e

!

|
\EV\LoJinﬁ)

- —_— —_—) — —_— =

* But: number of weights depends on input length

— We'd need every input to be the same length!

Attention

We can’t “look at” everything in the history
To start, only look at one old state at a time...but which one?

— Fixed choice ("always look 10 steps ago”) could work...but might not help
Let the model choose what it wants to pay attention to!
Treat history like a database:

— Make keys for each encoder state

— Decoder makes a query

— Pick key with biggest “score”

— Pass as context vector to decoder

Max isn’t differentiable...use softmax

. . .évw Ji
— Context: convex combination of states "L

Context vectors from attention
 Each decoder step can look at every encoder state

— Each decoder step potentially looks at different inputs

 Decoder combines context vector and hidden state as inputs

 “Multi-head attention”:
several different
attention mechanisms
(with own queries+keys)
at the same time

— One “subject context”,
one “verb tense context,
one “style context”...

)

1. Prepare inputs i ! i

2. Score each hidden state 13 9 9
3. Softmax the scores 0.96 | 0.02 |0.02
4. Multiply each vector by

its softmaxed score + +

5. Sum up the weighted
vectors

Encoder g Decoder hidden

hidden state at time step
states

scores
Attention weights for
decoder time step #4

softmax scores

Context vector for
decoder time step #4

How to score a query/key combination?

Name Alignment score function Citation

Content-base

attention score(s;, h;) = cosine[s;, h;] Graves2014

Additive(*) score(s;, h;) = v, tanh(W[s; h]) Bahdanau2015 | | egrn how to score

a;; = softmax(W ,s;)
Location-Base Note: This simplifies the softmax alignment to only depend on the Luong2015
target position.

score(sy, h;) = 8] W h;

General . . : . .
where W is a trainable weight matrix in the attention layer.

Luong2015

Dot-Product score(s;, h;) = s Luong2015
;

ST i
score(s;, h;) = =
Note: very similar to the dot-product attention except for a Vaswani2017
scaling factor; where n is the dimension of the source hidden

state.

Scaled
Dot-Product(”)

dot product is big if vecs point in same direction
Most common: (scaled) dot product (and when either/both vectors are big)

(scaling only affects “temperature” of the softmax, not which is max)

How to get keys / queries?

* Computing key/query of a hidden state:
* Conceptually, could use whatever computation you want

— Some earlier work used a fully-connected layer or two

* These days, almost always just a linear transformation

key, = K z; query; =Q z(y, +i p@®) - - — — -)
. R ians A 1

— K and Q are matrices to learn / 7] Ters »’ ° ° ,
— Dimension of key/query is a hyperparam ’{ \ ”fw’ng \

* Needs to match to do inner product e Q Q 6 0 e

- —_— N

ev\coa‘mg " & |

- - = —_ — — —— —_— =

Ioon U\S.‘

Multi-Modal Attention -

e Attention for image captioning:

Figure 3. Examples of attending to the correct object (white indicates the attended rcbmns underlines indicated the corresponding word)

-

A woman is throwing a frisbee in a park, A dog is standing on a hardwood floor. A stop sign is on a road with a
mountain in the background,

A little girl sitting on a bed with A group of people sitting on a boat A giraffe standing in a forest with
a teddy bear, in the water, trees in the background.

11

IoonU\S.(
Biological Motivation for Attention

Gaze tracking:
— https://www.youtube.com/watch?v=QUbiHKucljw

Selective attention test:
— https://www.youtube.com/watch?v=vJG698U2Mvo

Change blindness:
— https://www.youtube.com/watch?v=EARtANyz98Q

Door study:
— https://www.youtube.com/watch?v=FWSxSQsspiQ

https://www.youtube.com/watch?v=QUbiHKucljw
https://www.youtube.com/watch?v=vJG698U2Mvo
https://www.youtube.com/watch?v=EARtANyz98Q
https://www.youtube.com/watch?v=FWSxSQsspiQ

Ioonu\S.(
Neural Turing Machine/Neural Programmers™

* Many interesting variations on memory/attention.
— An out-of-date survey: https://distill.pub/2016/augmented-rnns

Here is an example of what the system can do. After having been trained, it
was fed the following short story containing key events in JRR Tolkien's
Lord of the Rings:

Bilbo travelled to the cave.
Gollum dropped the ring there. - i i - - N
Bilbo took the ring. (

Bilbo went back to the Shire.

Bilbo left the ring there.
Frodo got the ring. ! c > s |
Frodo journeyed to Mount-Doom. : T T T
Frodo dropped the ring there. l] 1] | (]) R))
Sauron died. A > A > A ‘ A Ar— ‘ > | s .l - A > A } »| A
Frodo went back to the Shire.))
Bilbo travelled to the Grey-havens.
The End. Neural Turing Attentional Adaptive Neural
After seeing this text, the system was asked a few questions, to which it Machines Interfaces Computation Time Programmers
provided the following answers: R)) I fo T))) T T)
have external memory that allow RNNs to focus on allows for varying amounts can call functions, building
Q: Where is the ring?)
they can read and write to parts of their input of computation per step programs as they run

A: Mount-Doom

Q: Where is Bilbo now?
A: Grey-havens

Q: Where is Frodo now?
A: Shire

It's probably one of the few technical papers that cite "Lord of the Rings".

13

https://distill.pub/2016/augmented-rnns

14

. bOV\MS,(
Transformers are taking over -

Attention is all you need
A Vaswani, N Shazeer, N Parmar... - Advances in neural ..., 2017 - proceedings.neurips.cc

The dominant sequence transduction models are based on complex recurrent orconvolutional
neural networks in an encoder and decoder configuration. The best performing such ...

v Save 9YY Cite | Cited by 108423 (Related articles All 62 versions 9o

* As of 2014, the most-cited paper ever had ~300,000 citations...

— An important experimental method in biology, from 1970

* TheTin GPT —also ~every other LLM (Gemini, Claude, LLAMA, ...)
e Also in AlphaFold2, current ~best vision models, graphs, ...

15

https://www.nature.com/news/the-top-100-papers-1.16224

Transformer Networks

e “Attention is all you need”: ditch the recurrent part

* Encoder gets input representations with “self-attention” layers
— Each word representation attends to all words in the previous layer

— In addition to query/keys, also values: instead of passing z; forward, pass V z

attention

attention

embedding

~—————

O 0 0 0 0 0 0 O

h, h, h,

All words attend
to all words in
previous layer;
most arrows here
are omitted

e Sequence of representations of words; each depends on all other words

16

U7
o gh k

Self-attention layer

output #1 output #2

Self-attention

17

Position encodings

RNNs see sequences in order; CNNs have order built-in
But attention mechanisms “look everywhere” (at everything, all at once)

— Big advantage...except they don’t get to see the order of the sentence!
— Add position encodings to tell where a word is in the sequence

Original transformers use trig features of the position

PE(pos, 2i) = sin(pos/10000%/dmer)
PE(pos, 2i + 1) = cos(pos/10000%/ o)

Later work often learns them

nnnnn

Some variations on exactly what you do, but all ~similar

18

A couple other tricks

* Layer normalization almost always used in Transformers:

— Computes the mean and standard deviation across a layer’s activations
for each input separately

H
1 l |1 I ,,0)2
— Kind of like batch norm, H= H;az g _\IH' (af — 1)

internal covariate shift something something

— Makes sense if you have big layers, LayerNorm(x)
avoids some issues of batch norm

|
|2
]

|
t&n
|
™

e Residual connections

— Makes optimization easier if you don’t “need to do anything” (identity map)

LayerNorm(z + Sublayer(x))

Transformer encoder architecture

N * Also have a simple two-layer ReLU network
[—~(Agartom) processing each individual embedding
“toe . * Repeat (attention + feed forward) a bunch of times
A
N — Vaswani et al. used N = 6, and 8 attention heads
& Add &'Norm
Multi-H'ead
— * At the end, get an encoding vector for each input
N - ’ — Like an RNN! But here everything depends on everything
Positional
Encoding ®_?
Emlt;]sg(tjing

T

Inputs

Output

Probabilities

ftmax
near
~N

Transformer decoder

* Uses the same ingredients, with one twist

7

Add & Norm

Feed
Forward

| Add & Norm I::

4 I)
Ok N Multi-Head
Feed Attention
Forward) Nx
Nix Add & Norm
f—>| Add & Norm | iEEReE
Multi-Head Multi-Head
Attention Attention 0
A_ ¢t & A 2 14
2
Qo y & =) 3
Positional) @ Positional 5
Encoding Encoding 6-
Input Output o ;:
Embedding Embedding £ 9-
CRIE
T T = 11
12
Inputs Outputs 13-
(shifted right) 144

e “Masked attention” means that words can’t
attend to the words after them

 Encoder outputs depend on those words anyway!

n i i

Subsequent Mask
1.0

SoftmaX(QKT © M)V

)

21

Transformer summary

* Encoder:

— A bunch of self-attention layers intermixed with fully-connected
— Maps a sequence of input representations to sequence of outputs

* Decoder:
— A bunch of self-attention layers intermixed with fully-connected
— Does big multiclass classifier at the end for each word

— Uses both encoder embeddings and plain word embeddings of past words
e Masking structure only on the “plain” part

* Now, you might ask...why do we need both?

— They look pretty similar, except decoder only looks at past, encoder at all
— Answer: we probably don’t! GPT, etc are decoder-only

Transformers vs RNNs/state space models

* RNNs/state space models:

— Process things one at a time: order is very “built in” and easy
— Hard to “remember” things for a long time

e Transformers:

— Avoids needing to “remember” things: just looks at history directly

— Doesn’t have a built-in order; need to hack it with position features
e Having the right positional features can be really important!

Positional Description Matters for Transformers Arithmetic
Ruoqi Shen, Sébastien Bubeck, Ronen Eldan, Yin Tat Lee, Yuanzhi Li, Yi Zhang

Transformers, central to the successes in modern Natural Language Processing, often falter on arithmetic tasks despite their
vast capabilities —--which paradoxically include remarkable coding abilities. We observe that a crucial challenge is their naive
reliance on positional information to solve arithmetic problems with a small number of digits, leading to poor performance on
larger numbers. Herein, we delve deeper into the role of positional encoding, and propose several ways to fix the issue, either by

23

bon U\S_(

Other tricks -

Weight decay (L2 regularization)
* Dropout

* Label smoothing
— Make “true labels” 0.9 probability instead of 1

— Penalizes wrong predictions a little less Irate = dpoil in(step_num”*", step_num - warmup_steps™*)
— Can help discourage overconfidence /\

* Optimized with Adam / ,\\ ______________________________
— With a weird learning rate schedule (??) JZZZZZ/ ERaEma

e Beam search to decode

— Not just an iid sample, does a little search for “likely samples”

GPT: Generative Pre-trained Transformer

Text Task
Prediction | Classifier

~

12X —

i

Layer Norm

S—

Feed Forward
A

Layer Norm

S

Masked Multi
Self Attention

A

Text & Position Embed

3.1 Unsupervised pre-training

Given an unsupervised corpus of tokens U = {u,...,u,}, we use a standard language modeling
objective to maximize the following likelihood:
L,(U) = ZlogP(ui|ui_k,...,ui_l;@) (1)

where k is the size of the context window, and the conditional probability P is modeled using a neural
network with parameters ©. These parameters are trained using stochastic gradient descent [S1].

In our experiments, we use a multi-layer Transformer decoder [34] for the language model, which is
a variant of the transformer [62]. This model applies a multi-headed self-attention operation over the
input context tokens followed by position-wise feedforward layers to produce an output distribution
over target tokens:

h; = transformer_block(h;—1)Vi € [1,n] (2)
P(u) = softmax(h,W1)
where U = (u—g, ..., u—1) is the context vector of tokens, n is the number of layers, W, is the token

embedding matrix, and W), is the position embedding matrix.

3.2 Supervised fine-tuning

After training the model with the objective in Eq.|1} we adapt the parameters to the supervised target
task. We assume a labeled dataset C, where each instance consists of a sequence of input tokens,
z',...,x2™, along with a label y. The inputs are passed through our pre-trained model to obtain
the final transformer block’s activation h;", which is then fed into an added linear output layer with

parameters W, to predict y:
P(y|z,...,2™) = softmax(h]"W,). 3)

bonuS!

/_\

25

Ioon U\S.(

GPT-2 and GPT-3 -

2.3. Model few modifications. Layer normalization (Ba et al., 2016)
was moved to the input of each sub-block, similar to a
pre-activation residual network (He et al., 2016) and an
additional layer normalization was added after the final self-
attention block. A modified initialization which accounts
for the accumulation on the residual path with model depth
is used. We scale the weights of residual layers at initial-
ization by a factor of 1/v/N where N is the number of
residual layers. The vocabulary is expanded to 50,257. We
also increase the context size from 512 to 1024 tokens and
a larger batchsize of 512 is used.

We use a Transformer (Vaswani et al., 2017) based archi-
tecture for our LMs. The model largely follows the details
of the OpenAl GPT model (Radford et al., 2018) with a

We use the same model and architecture as GPT-2 [RWC™ 19], including the modified initialization, pre-normalization,
and reversible tokenization described therein, with the exception that we use alternating dense and locally banded sparse
attention patterns in the layers of the transformer, similar to the Sparse Transformer [CGRS19]. To study the dependence

~A- - PN

26

Ioon U\S.‘

GPT-4 -

This report focuses on the capabilities, limitations, and safety properties of GPT-4. GPT-4 is a
Transformer-style model [39] pre-trained to predict the next token in a document, using both publicly
available data (such as internet data) and data licensed from third-party providers. The model was
then fine-tuned using Reinforcement Learning from Human Feedback (RLHF) [40]. Given both
the competitive landscape and the safety implications of large-scale models like GPT-4, this report
contains no further details about the architecture (including model size), hardware, training compute,
dataset construction, training method, or similar.

There were some leaks
It seems to be pretty similar to GPT-3,
but using a “product of experts” and other tricks

27

. bonu\s_(
Computational cost

* Each of T units attends to each T inputs: O(7?) cost per layer

e Various approaches to improving scalability
— Sparse attention: just don’t do all the connections, e.g. BigBird

n ™ g
L] O] O]
| [] []
O]
O 4 l
O O L]
C O
1 [- [
(a) Random attention (b) Window attention (c) Global Attention (d) BIGBIRD

Figure 1: Building blocks of the attention mechanism used in BIGBIRD. White color indicates absence
of attention. (a) random attention with » = 2, (b) sliding window attention with w = 3 (c) global
attention with g = 2. (d) the combined BIGBIRD model.

— Reformer approximates dot product with locality-sensitive hashing
— Performer approximates better, based on fancy kernel methods

https://arxiv.org/abs/2007.14062
https://arxiv.org/abs/2001.04451
https://arxiv.org/abs/2009.14794

bon U\S.(

—

Computational cost

* 14,400 GPUs: NVIDIA H100s, 80GB

| think Microsoft Azure “Eagle” is probably

— Each one of these retails for about the most important tech news of 2023 that
USS35,000 (if you can even get them) ﬁi haven't heard of — here's why
— 141400 * $35;OOO = $504;OOO;OOO Microsoft's Eagle supercomputer is the most powerful cloud-facing
. L. system in the world
¢ ESt' mated that tra NI ng G PT‘3, Microsoft Azure Eagle is a Paradigm
. . Shifting C‘Ioud Supercomputer
ignoring hyperparameter search, -

costs ~USS5,000,000 in power costs
(as much carbon as 500 NY-London flights)

— Also involved a lot of flights — Danica has a
friend-of-a-friend who flew cross-country
~weekly trying to get his feature into GPT-4

29

bon (AS,(

/_\

Input representation for text

Word-level: vocab gets really big to be multilingual, handle typos, ...

Character-level: more flexible!
— Sequences really really long
— 74,000+ Chinese characters, 3,000+ emoji

Byte-level for UTF-8: can handle anything in 256 characters!

Usual in-between these days using Byte-Pair Encoding:
e Start with the 256 single bytes as tokens
* Repeat: for the most commonly co-occurring pair (A, B), make a new token AB
e Stop when you get to target size (usually a few tens of thousands)
e Usually disallow merging “outside words”: don’t want “dog.” “dog?” “dog!” tokens

— Can assign probability to any Unicode string
— Assign a Gaussian vector to each token, optimize as parameter from there

bonu\S.(
Bidirectional Encoder Representations from Transformers

e BERT: very popular model in natural language processing (2018)

— (Full) transformer model trained on masked sentences to predict masked words
* Masked word prediction is a pretext task

— Then fine-tune the architecture on specific applications

KSP Mask LM Mag LM \ MNLI MAD Start/End SpaN
& = o

00—
L)) Gl) (Gw] L) o) (]
A [>
BERT » .. » BERT
leca &] [E][B[] [E] [eea]l & | (B [Eem][E] [E]
= T e B e i o = T pme T e Y o

()= (o) () (). () (). (). ()

Masked Sentence A Masked Sentence B Question ' Paragraph
& Unlabeled Sentence A and B Pair / k&\ Question Answer Pair /

Pre-training Fine-Tuning

Figure 1: Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the same architec-
tures are used in both pre-training and fine-tuning. The same pre-trained model parameters are used to initialize
models for different down-stream tasks. During fine-tuning, all parameters are fine-tuned. [CLS] 1is a special
symbol added in front of every input example, and [SEP] is a special separator token (e.g. separating ques-
tions/answers).

1000

100

Model Size (in billions of parameters)
o

o
[EEN

0.01
2018

Megatron-LM (8.3B)

ELMo (94M)

Bigger and bigger

2019

GPT-3 (175B)

BERT-Large (340M)

2020

2021

2022

32

Vision Transformers

Vision Transformer (ViT)

Class

Bird MLP |
Ball < Head

Transformer Encoder

|
a-eddddd dd

* Extra learnable
[class] embedding Linear Projection of Flattened Patches

NN E |
m % ity
L s

bonuS!

33

Transfer accuracy [%]

bon U\S.(

—

Vision Transformers

Input Attention
* Usually outperform CNNs if you have enough data g

Average-5 90 ImageNet
O @)
e C
95 i, ® ®
85
@
@)
| @
80 1
90 - ® Transformer (ViT) 1 ® Transformer (ViT)
ResNet (BiT) : ResNet (BiT)
Hybrid | Hybrid
T N T N N N M | N N T N 75 T N A | N T T N N L
102 10° 10? 103

Total pre-training compute [exaFLOPs]

34

MLPs on patches might be enough

2 A
1 Skip-connections Skip-connections Mixer Layer |
: Channels :
| o Patches A _]
= o 2 —(MLP1 }—» £
5 S
! Z > £ g - (MLP1 —» /TN 2 !
- g\Irz - MLP) > 5 l
1 3* —=| @ @) —(MLP1 J—» = 1
| > ~ I
e e m e = = = = = == = J
Class

J

Fully-connected MLP

Global Average Pooling

|)
B B B

N x (Mixer Layer)

MMMQ@@

Per- pdtch Fu]ly connected

/‘r\ [[
¢ 1‘_ 1 1814 -

s IR

Figure 1: MLP-Mixer consists of per-patch linear embeddings, Mixer layers, and a classifier heac
Mixer layers contain one token-mixing MLP and one channel-mixing MLP, each consisting of twc

fully-connected layers and a GELU nonlinearity. Other components include: skip-connections,

dropout, and layer norm on the channels.

Linear 5-shot ImageNet Top-1 [%]

—
// //
;‘;_‘;-';:4
74 = L
60 - L
50
Mixer-B/32 ViT-B/32
404 -+- Mixer-L/32 —— ViT-L/32
-+- Mixer-L/16 —— ViT-L/16
—— BiT-R152x2
30 A ¢’| | | | - | L
10M 30 M 100 M 300 M = ~3B

Training Size

35

Dropping Attention

ConNvoruTons ATreENTIoN MEBs
PatcHESs ARE ALL You NEep? “#

Asher Trockman, J. Zico Kolter'
Carnegie Mellon University and 'Bosch Center for Al

CXNXn

Figure 2: ConvMixer uses “tensor layout” patch embeddings to preserve locality, and then applies
d copies of a simple fully-convolutional block consisting of large-kernel depthwise convolution
followed by pointwise convolution, before finishing with global pooling and a simple linear classifier.

Patch Embedding

BatchNorm

S

hxn/pxn/p

v
GELU

v

v

Residual connection

ConvMixer Layer

c

g9 E
A D o
£3LizblZ
NS w =
Q 2 o [3]
o S -
<) @©
Qg5 o

Pointwise
Convolution

\
GELU
v
BatchNorm

X depth

\/

Global Average Pooling
v

|

|

Fully-Connected

|

Class

~
(00]
1

~
()}
1

~
B
1

ImageNet Top-1 Accuracy (%)

~
N
1

40 60 80
Parameters (Millions)

100 120

- ConvMixer ResMLP e DeiT = ResNet

Figure 1: Accuracy vs. parameters,
trained and evaluated on ImageNet-1k.

36

bon U\S.(

Combining convolutions with attention

* Conformer: basis for recent top
speech recognition systems

e Convolution might be better at
“very local” features

— See post-summary bonus slides about
convolutions on sequences

e Can also do these kinds of
combinations in other domains

40 ms rate ! (
---------------- !
' ' ' Layernor m
LI) 1 \
‘ . L
1 1 '
1

1
40 ms rate T : + < X

. 1
. 1
1 1
40 ms rate T : T :
1 1

1 1
Convolution ' + !
1 1

/

: Multi-Head Self Attention
Module

1

1

') 1

AN) :

SpecAug . T—J)
]

1
+ — 1

1

10 ms rate T !
. 1/2 xT
1
1

10 ms rate

Feed Forward Module

i_ ________ Tﬁ--i

Figure 1: Conformer encoder model architecture. Conformer
comprises of two macaron-like feed-forward layers with half-
step residual connections sandwiching the multi-headed self-
attention and convolution modules. This is followed by a post
layernorm.

Summary

Attention:

— Allow decoder to look at previous states.

Context vectors:

— Combine previous states into a fixed-length vector.
[Dilated] convolutions for sequences.

— Alternative to sequential architectures like RNNs.
Transformer networks:

— Layers of “self-attention” to build context.
* “Everything depends on everything”, and you learn how.
* Lots of implementation details, but excellent performance on many tasks.
 Basis for modern enormous/impressive language models and applications.

Next time: what is our ehilsrermodels learning?

. Ioonus,‘
Convolutions for Sequences?

* Alternative approach, mostly predating Transformers

— Convolutions for sequences

S

40

bon U\S.(
Digression: Dilated Convolutions (“a trous”) ~
* Best CNN systems have gradually reduced convolutions sizes
— Many modern architectures use 3x3 convolutions, far fewer parameters
e Sequences of convolutions take into account larger neighbourhood

— 3x3 convolution followed by another gives a 5x5 neighbourhood
— But need many layers to cover a large area

* Alternative recent strategy is dilated convolutions (“a trous”)

.......... + + . + .
.................... . .
..............................

* Not the same as “stride” in a CNN:
— Doing a 3x3 convolution at all locations, but using pixels that are not adjacent

41

. . bOV\MS.(
Dilated Convolutions (“a trous”)

* Modeling music and language and with dilated convolutions:

Dilation = 8

©0.0.0 0. 0.0 .0 .0 .0 .0 .0 .0 .0 0 0,9 ouu t

" I- O OOOOOO? Hidden Layer

Dilation = 4

Hidden Layer
Dilation = 2

lo t1 to t3 tg ts te t7 |tg
Hidden Layer

T e
oo o

S0 S1 S2 S3 S4 S5 Se¢ ST S8 S9 S10 S11 S12 S13 S14 S15 S16

Figure I. The architecture of the ByteNet. The target decoder
(blue) is stacked on top of the source encoder (red). The decoder
generates the variable-length target sequence using dynamic un-

folding.
olding "

Ioon U\S.(

RNNs/CNNs/Attention for Music and Dance =

Music generation:
— https://www.youtube.com/watch?v=RaO4HpMO7hE

Text to speech and music waveform generation:
— https://deepmind.com/blog/wavenet-generative-model-raw-audio

Dance choreography:
— http://theluluartgroup.com/work/generative-choreography-using-deep-learning

Music composition:
— https://www.facebook.com/yann.lecun/videos/10154941390687143

https://www.youtube.com/watch?v=RaO4HpM07hE
https://deepmind.com/blog/wavenet-generative-model-raw-audio
http://theluluartgroup.com/work/generative-choreography-using-deep-learning
https://www.facebook.com/yann.lecun/videos/10154941390687143

