
1

Attention and Transformers
CPSC 440/550: Advanced Machine Learning

cs.ubc.ca/~dsuth/440/23w2

University of British Columbia, on unceded Musqueam land

2023-24 Winter Term 2 (Jan–Apr 2024)

1 / 1

Admin
• A2 is out
– Due after break, but it’s long

• A1 grades are out
– If something seems wrong, send a regrade request
– Please don’t send regrade requests for small subjective things
– Please do send regrade requests for something that’s wrong

• Might affect others too

• Quiz grading still ongoing
– Hit some technical issues… 2

Last time: RNNs
• Process sentences/whatever in sequence
– Have a “hidden state” that updates as you read

• Closely-related challenges:
– Remembering things for long enough

• Exacerbated by state being fixed-size,
no matter how much you have to remember

– Vanishing/exploding gradients

• Approach that helps (doesn’t solve): long-short memory (LSTM)
– Adds “memory cells,” and complicated machinery to store/load from memory
– Similar motivation: state-space models

• Uses complicated math we didn’t cover (and Danica/Alan don’t know!)
3

Last Time: Sequence-to-Sequence RNNs
• Sequence-to-sequence:
– Recurrent neural network for sequences of different lengths

• Similar idea for multimodal models:
encode an image (e.g. with CNN), decode a sentence

• Problem:
– All “encoding” information must be summarized by last state (z3 above)
– Might “forget” earlier parts of sentence (or middle, for bi-directional)
– Might want to “re-focus” on parts of input, depending on decoder state

x1

z1

x2

z2

x3

z3 z4 z5z0

y1 y2

4

Graph-Mamba (2 weeks ago):
complicated heuristics to walk over
graph data in the “right order”

Problems with RNNs
• Hard to “remember” relevant information for long enough
– Fixed amount of “state” information has to store everything relevant

• Hard to optimize: vanishing/exploding gradients, huge memory usage
• Hard to parallelize: everything depends on everything before it
• Not always very natural for some (most?) data types:

5• Is looking at data sequentially always the right thing to do?

PixelRNN (2016): density estimator for
images, looks at each pixel one-by-one

https://arxiv.org/abs/2402.00789
https://arxiv.org/abs/1601.06759

Looking back in history
• What if we didn’t have to “remember” everything?
• Decoder could look back at every encoder state (skip connections)

x1

z1

x2

z2

x3

z3 z4 z5z0

y1 y2

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
6

• But: number of weights depends on input length
– We’d need every input to be the same length!

Attention
• We can’t “look at” everything in the history
• To start, only look at one old state at a time…but which one?
– Fixed choice (”always look 10 steps ago”) could work…but might not help

• Let the model choose what it wants to pay attention to!
• Treat history like a database:
– Make keys for each encoder state
– Decoder makes a query
– Pick key with biggest “score”
– Pass as context vector to decoder

• Max isn’t differentiable…use softmax
– Context: convex combination of states 7

x1

z1

x2

z2

x3

z3 z4 z5z0

y1 y2

Context vectors from attention
• Each decoder step can look at every encoder state
– Each decoder step potentially looks at different inputs

• Decoder combines context vector and hidden state as inputs
• “Multi-head attention”:

several different
attention mechanisms
(with own queries+keys)
at the same time
– One “subject context”,

one “verb tense context,”
one “style context”…

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
8

How to score a query/key combination?

9
https://lilianweng.github.io/posts/2018-06-24-attention/

Learn how to score

Most common: (scaled) dot product
 (scaling only affects “temperature” of the softmax, not which is max)

dot product is big if vecs point in same direction
(and when either/both vectors are big)

How to get keys / queries?
• Computing key/query of a hidden state:
• Conceptually, could use whatever computation you want
– Some earlier work used a fully-connected layer or two

• These days, almost always just a linear transformation
𝑘𝑒𝑦! = 𝐾 𝑧! 𝑞𝑢𝑒𝑟𝑦! = 𝑄 𝑧 "!"#!
– K and Q are matrices to learn
– Dimension of key/query is a hyperparam

• Needs to match to do inner product

1010

x1

z1

x2

z2

x3

z3 z4 z5z0

y1 y2

Multi-Modal Attention
• Attention for image captioning:

https://arxiv.org/pdf/1502.03044.pdf
11

Biological Motivation for Attention
• Gaze tracking:
– https://www.youtube.com/watch?v=QUbiHKucljw

• Selective attention test:
– https://www.youtube.com/watch?v=vJG698U2Mvo

• Change blindness:
– https://www.youtube.com/watch?v=EARtANyz98Q

• Door study:
– https://www.youtube.com/watch?v=FWSxSQsspiQ

12

https://www.youtube.com/watch?v=QUbiHKucljw
https://www.youtube.com/watch?v=vJG698U2Mvo
https://www.youtube.com/watch?v=EARtANyz98Q
https://www.youtube.com/watch?v=FWSxSQsspiQ

Neural Turing Machine/Neural Programmers
• Many interesting variations on memory/attention.
– An out-of-date survey: https://distill.pub/2016/augmented-rnns

https://www.facebook.com/FBAIResearch/posts/362517620591864
13

https://distill.pub/2016/augmented-rnns

Next Topic: Transformers

14

Transformers are taking over

https://www.facebook.com/FBAIResearch/posts/362517620591864
15

• As of 2014, the most-cited paper ever had ~300,000 citations…
– An important experimental method in biology, from 1970

• The T in GPT – also ~every other LLM (Gemini, Claude, LLAMA, …)
• Also in AlphaFold2, current ~best vision models, graphs, …

https://www.nature.com/news/the-top-100-papers-1.16224

Transformer Networks
• “Attention is all you need”: ditch the recurrent part
• Encoder gets input representations with “self-attention” layers
– Each word representation attends to all words in the previous layer
– In addition to query/keys, also values: instead of passing zj forward, pass V zj

• Sequence of representations of words; each depends on all other words
http://web.stanford.edu/class/cs224n/slides/cs224n-2021-lecture09-transformers.pdf

16

Self-attention layer

17
https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Position encodings
• RNNs see sequences in order; CNNs have order built-in
• But attention mechanisms “look everywhere” (at everything, all at once)

– Big advantage…except they don’t get to see the order of the sentence!
– Add position encodings to tell where a word is in the sequence

• Original transformers use trig features of the position

• Later work often learns them
– Feature vector for word 1, word 2, … that you learn as a parameter

• Some variations on exactly what you do, but all ~similar 18

A couple other tricks
• Layer normalization almost always used in Transformers:
– Computes the mean and standard deviation across a layer’s activations

for each input separately
– Kind of like batch norm,

internal covariate shift something something

– Makes sense if you have big layers,
avoids some issues of batch norm

• Residual connections
– Makes optimization easier if you don’t “need to do anything” (identity map)

19

Transformer encoder architecture
• Also have a simple two-layer ReLU network

processing each individual embedding
• Repeat (attention + feed forward) a bunch of times
– Vaswani et al. used N = 6, and 8 attention heads

• At the end, get an encoding vector for each input
– Like an RNN! But here everything depends on everything

20

Transformer decoder
• Uses the same ingredients, with one twist
• “Masked attention” means that words can’t

attend to the words after them
• Encoder outputs depend on those words anyway!

21

Transformer summary
• Encoder:
– A bunch of self-attention layers intermixed with fully-connected
– Maps a sequence of input representations to sequence of outputs

• Decoder:
– A bunch of self-attention layers intermixed with fully-connected
– Does big multiclass classifier at the end for each word
– Uses both encoder embeddings and plain word embeddings of past words

• Masking structure only on the “plain” part

• Now, you might ask…why do we need both?
– They look pretty similar, except decoder only looks at past, encoder at all
– Answer: we probably don’t! GPT, etc are decoder-only

22

Transformers vs RNNs/state space models
• RNNs/state space models:
– Process things one at a time: order is very ”built in” and easy
– Hard to “remember” things for a long time

• Transformers:
– Avoids needing to “remember” things: just looks at history directly
– Doesn’t have a built-in order; need to hack it with position features

• Having the right positional features can be really important!

23

Other tricks

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
24

• Weight decay (L2 regularization)
• Dropout
• Label smoothing
– Make “true labels” 0.9 probability instead of 1
– Penalizes wrong predictions a little less
– Can help discourage overconfidence

• Optimized with Adam
– With a weird learning rate schedule (??)

• Beam search to decode
– Not just an iid sample, does a little search for ”likely samples”

GPT: Generative Pre-trained Transformer

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
25

GPT-2 and GPT-3

https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf; https://arxiv.org/abs/2005.14165
26

GPT-4

https://arxiv.org/pdf/2303.08774.pdf
27

There were some leaks
It seems to be pretty similar to GPT-3,
but using a “product of experts” and other tricks

Computational cost
• Each of T units attends to each T inputs: O(T2) cost per layer
• Various approaches to improving scalability
– Sparse attention: just don’t do all the connections, e.g. BigBird

– Reformer approximates dot product with locality-sensitive hashing
– Performer approximates better, based on fancy kernel methods

28

https://arxiv.org/abs/2007.14062
https://arxiv.org/abs/2001.04451
https://arxiv.org/abs/2009.14794

Computational cost
• 14,400 GPUs: NVIDIA H100s, 80GB
– Each one of these retails for about

US$35,000 (if you can even get them)
– 14,400 * $35,000 = $504,000,000

• Estimated that training GPT-3,
ignoring hyperparameter search,
costs ~US$5,000,000 in power costs
(as much carbon as 500 NY-London flights)
– Also involved a lot of flights – Danica has a

friend-of-a-friend who flew cross-country
~weekly trying to get his feature into GPT-4

29

Input representation for text
• Word-level: vocab gets really big to be multilingual, handle typos, …
• Character-level: more flexible!
– Sequences really really long
– 74,000+ Chinese characters, 3,000+ emoji

• Byte-level for UTF-8: can handle anything in 256 characters!
• Usual in-between these days using Byte-Pair Encoding:

• Start with the 256 single bytes as tokens
• Repeat: for the most commonly co-occurring pair (A, B), make a new token AB
• Stop when you get to target size (usually a few tens of thousands)
• Usually disallow merging “outside words”: don’t want “dog.” “dog?” “dog!” tokens

– Can assign probability to any Unicode string
– Assign a Gaussian vector to each token, optimize as parameter from there

30

Bidirectional Encoder Representations from Transformers
• BERT: very popular model in natural language processing (2018)
– (Full) transformer model trained on masked sentences to predict masked words

• Masked word prediction is a pretext task
– Then fine-tune the architecture on specific applications

https://arxiv.org/pdf/1810.04805.pdf
31

Bigger and bigger

https://huggingface.co/blog/large-language-models
32

Vision Transformers

https://arxiv.org/abs/2010.11929
33

Vision Transformers
• Usually outperform CNNs if you have enough data

https://arxiv.org/abs/2010.11929
34

MLPs on patches might be enough

https://arxiv.org/abs/2105.01601
35

Dropping Attention

https://arxiv.org/abs/2201.09792
36

Combining convolutions with attention
• Conformer: basis for recent top

speech recognition systems
• Convolution might be better at

“very local” features
– See post-summary bonus slides about

convolutions on sequences

• Can also do these kinds of
combinations in other domains

https://arxiv.org/abs/2005.08100
37

Summary
• Attention:
– Allow decoder to look at previous states.

• Context vectors:
– Combine previous states into a fixed-length vector.

• [Dilated] convolutions for sequences.
– Alternative to sequential architectures like RNNs.

• Transformer networks:
– Layers of “self-attention” to build context.

• “Everything depends on everything”, and you learn how.
• Lots of implementation details, but excellent performance on many tasks.
• Basis for modern enormous/impressive language models and applications.

• Next time: what is our childrenmodels learning? 39

Convolutions for Sequences?

• Alternative approach, mostly predating Transformers
– Convolutions for sequences

https://medium.com/@TalPerry/convolutional-methods-for-text-d5260fd5675f
40

Digression: Dilated Convolutions (“a trous”)
• Best CNN systems have gradually reduced convolutions sizes
– Many modern architectures use 3x3 convolutions, far fewer parameters

• Sequences of convolutions take into account larger neighbourhood
– 3x3 convolution followed by another gives a 5x5 neighbourhood
– But need many layers to cover a large area

• Alternative recent strategy is dilated convolutions (“a trous”)

• Not the same as “stride” in a CNN:
– Doing a 3x3 convolution at all locations, but using pixels that are not adjacent

https://medium.com/@TalPerry/convolutional-methods-for-text-d5260fd5675f
https://github.com/vdumoulin/conv_arithmetic

41

Dilated Convolutions (“a trous”)
• Modeling music and language and with dilated convolutions:

https://arxiv.org/pdf/1610.10099.pdf
https://arxiv.org/pdf/1609.03499.pdf

42

RNNs/CNNs/Attention for Music and Dance
• Music generation:
– https://www.youtube.com/watch?v=RaO4HpM07hE

• Text to speech and music waveform generation:
– https://deepmind.com/blog/wavenet-generative-model-raw-audio

• Dance choreography:
– http://theluluartgroup.com/work/generative-choreography-using-deep-learning

• Music composition:
– https://www.facebook.com/yann.lecun/videos/10154941390687143

43

https://www.youtube.com/watch?v=RaO4HpM07hE
https://deepmind.com/blog/wavenet-generative-model-raw-audio
http://theluluartgroup.com/work/generative-choreography-using-deep-learning
https://www.facebook.com/yann.lecun/videos/10154941390687143

