Binary Density Estimation CPSC 440/550: Advanced Machine Learning

cs.ubc.ca/~dsuth/440/23w2

University of British Columbia, on unceded Musqueam land

2023-24 Winter Term 2 (Jan-Apr 2024)

Motivation: COVID-19 prevalence

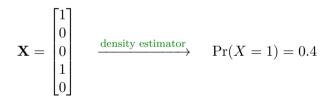
- What percentage of UBC students have COVID-19 right now?
- "Brute force" approach:
 - Line up every single student, test them all, count the portion that test positive.
- Statistical apporach:
 - Grab an "independent and identically distributed" (iid) sample of students
 - Estimate the proportion that have it, based on the sample

General problem: binary density estimation

- This is a special case of density estimation with binary data:
 - Input: $n \text{ iid samples of binary values } x^{(1)}, x^{(2)}, \ldots, x^{(n)} \in \{0,1\}$
 - Output: a probability model for a random variable X: here, just $\Pr(X=1)$
- As a picture: $\mathbf{X} \in$

 $\mathbf{X} \in \mathbb{R}^{n imes 1}$ contains our sample data

X is a random variable over $\{0,1\}$ from the distribution



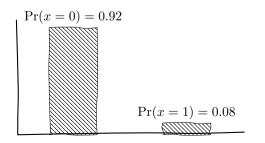
- We'll start by discussing major concepts for this very simple case
 - We'll slowly build to more complicated cases
 - Beyond binary data, more than one variable, conditional versions, deep versions, etc

Other applications of binary density estimation

- Some other questions we might ask:
 - What's the probability this medical treatment works?
 - What's the probability that if you plant 10 seeds, at least one will germinate?
 - I how many lottery tickets should you expect to buy before you win?
- In the first example, we're computing $\Pr(X=1)$ like before
- For the other two, we're using the model to compute some other quantity
 We call all three "inference" with this model

Model definition: Bernoulli distribution

- We're going to start by using a parameterized probability model
 - i.e. a model with some parameters we can learn
- For binary variables, we usually use the Bernoulli distribution
- x is Bernoulli with parameter θ , or $x \sim \text{Bern}(\theta)$, if $\Pr(X = 1 \mid \theta) = \theta$
 - In the COVID example, if $\theta=0.08$, we think 8% of the population has COVID
- Require that $0 \leq \theta \leq 1$ for a valid probability distribution



Digression: "inference" in statistics vs. ML

• In machine learning, the usual terminology is:

- $\bullet~$ "Learning" is the task of going from data ${\bf X}$ to parameters θ
- "Inference" is the task of using the parameters $\boldsymbol{\theta}$ to infer/predict something
- Statisticians sometimes use a "reverse" terminology:
 - Given data, you can "infer" parameters $\boldsymbol{\theta}$
 - Given parameters θ , you can predict something
- This is partly influenced by the history of the two communities:
 - Statisticians often assume there's a "true" parameter we can infer things about
 - ML hackers often focus on making predictions
- Some people use "inference" in both ways!
- We'll use the ML terminology

Inference task: computing probabilities

- An inference task: given θ , compute $\Pr(X = 0 \mid \theta)$
- We'll also sometimes write this as $p(0 \mid \theta)$
 - Be careful you know what we're abbreviating! "Explicit is better than implicit"
- Recall that probabilities add up to 1: since $X \in \{0, 1\}$,

$$\Pr(X = 0 \mid \theta) + \Pr(X = 1 \mid \theta) = 1$$

• Since $\Pr(X=1 \mid \theta) = \theta$ by definition, this gives us

$$\Pr(X=0 \mid \theta) + \theta = 1$$

- and so if $X \sim \operatorname{Bern}(\theta)$, we know $\Pr(X = 0 \mid \theta) = 1 \theta$
- First inference task down!

Bernoulli distribution notation

• It's sometimes helpful to combine the Bernoulli distribution into one expression:

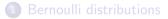
$$p(x \mid \theta) = \theta^{x} (1 - \theta)^{1 - x} = \theta^{\mathbb{1}(x = 1)} (1 - \theta)^{\mathbb{1}(x = 0)}$$

• 1 is an "indicator function": 1(E) is 1 if the condition E is true, and 0 if it's not

Aside: p for probability masses

- If you're like me, you might be bothered by using a lowercase p in p(0 | θ)
 It's a probability mass, not a density!
- This is really really common among ML people, but when I first taught this class I started trying to change them all to P or even to change everything to Pr
- ... it got really really messy (why this is really really common among ML people)
- If you're like me, this might be reassuring:
 - $\bullet \ p$ actually is a probability density for the Bernoulli distribution
 - It's just the Radon-Nikodym derivative wrt $\mu(A) = \mathbbm{1}(0 \in A) + \mathbbm{1}(1 \in A)$
- If you haven't seen measure-theoretic probability, don't worry it's not actually relevant to this course

Outline



Inference task: computing dataset probabilities

- Inference task: given θ and an iid sample, compute $p(x^{(1)}, x^{(2)}, \dots, x^{(n)} \mid \theta)$
- Also called the "likelihood": $\Pr\left(X^{(1)} = x^{(1)}, X^{(2)} = x^{(2)}, \dots, X^{(n)} = x^{(n)} \mid \theta\right)$
 - $\bullet\,$ Many ways to estimate/learn θ need this, e.g. maximum likelihood estimation
 - Also helpful in comparing models on validation/test data
- Assuming the $X^{(i)}$ are independent given θ , we have

$$p(x^{(1)}, x^{(2)}, \dots, x^{(n)} \mid \theta) = \prod_{i=1}^{n} p(x^{(i)} \mid \theta)$$

• We'll talk much more about conditional independence later in the course

Inference task: computing dataset probabilities

• Using the independence property, for example, $p(1,0,1,1 \mid \theta)$ is

$$p\left(x^{(1)}, \dots, x^{(4)} \mid \theta\right) = \prod_{i=1}^{4} p\left(x^{(i)} \mid \theta\right)$$
$$= p\left(x^{(1)} \mid \theta\right) \qquad p\left(x^{(2)} \mid \theta\right) \quad p\left(x^{(3)} \mid \theta\right) \quad p\left(x^{(4)} \mid \theta\right)$$
$$= \theta \qquad (1-\theta) \qquad \theta \qquad \theta$$
$$= \theta^{3}(1-\theta)$$

• More generally, we can write

$$p(\mathbf{X} \mid \theta) = \theta^{\sum_{i=1}^{n} x_i} (1-\theta)^{\sum_{i=1}^{n} (1-x_i)}$$

= $\theta^{\sum_{i=1}^{n} \mathbb{1}(x_i=1)} (1-\theta)^{\sum_{i=1}^{n} \mathbb{1}(x_i=0)}$
= $\theta^{n_1} (1-\theta)^{n_0}$

Inference task: computing dataset probabilities

```
n_1 = 0
n_0 = 0
for i in range(n):
    if X[i] == 1:
        n_1 += 1
    else: # binary data
        n_0 += 1
Better version:
    n_1 = X.sum()
    n_0 = X.shape[0] - n_1
    log_p = n_1 * np.log(theta) \
        + n_0 * np.log1p(-theta)
```

 $p = theta ** n_1 * (1 - theta) ** n_0$

- Computational complexity (of either): $\mathcal{O}(n)$
 - Look at each element once, doing a singe addition each time, then a constant number of operations for final value
- Operating in "log space" is very practically helpful:
 - If n is huge and/or θ is very close to 0 or 1, the probability is tiny
 - Calculation might underflow and return zero / be very inaccurate
 - Logarithms give you much bigger range of effective floating point computation
 - np.log1p(t) is $\log(1+t)$, but floats are much more accurate near 0 than 1!

Inference task: finding the mode ("decoding")

- Inference task: given $\theta,$ find the x that maximizes $p(x \mid \theta)$
 - "What's most likely to happen?"
- For Bernoulli models:
- If $\theta < 0.5,$ the mode is x=0
 - If $\theta = 0.03$, it's more likely that a random person **does not** have COVID-19.
- If $\theta > 0.5,$ the mode is x=1

• If $\theta = 0.6$, it's more likely that a random person **does** have COVID-19 (uh-oh)

- If $\theta = 0.5$, both x = 0 and x = 1 are valid modes
- This process isn't very exciting for Bernoulli models.
 - For more complex models, it can be pretty hard (and important)
 - We'll see later than classification can be viewed as finding a (conditional) mode

Inference task: finding the most likely dataset

- Inference task: given θ , find the X that maximizes $p(\mathbf{X} \mid \theta)$
 - "What set of training example are we most likely to observe?"
- Recall for Bernoullis, $p(\mathbf{X} \mid \theta) = \theta^{n_1} (1 \theta)^{n_0}$
- If $\theta < 0.5,$ the most likely dataset is $\mathbf{X} = (0,0,0,0,\dots)$
 - $p(\mathbf{X} \mid \theta)$ is maximized if n_0 is as big as possible, and n_1 small
 - If $\theta = 0.3$, the "most likely" sample has zero positives!
- The modal dataset almost never represents "typical" behaviour.
 - If $\theta = 0.3$, we expect about 30% of samples to be 1, not 0%!
 - $\bullet\,$ The modal ${\bf X}$ has the highest probability, but that probability might be really low
 - There are many datasets with some 1s in them
 - Each one is lower-probability than the all-zero dataset
 - As a whole they're overwhelmingly more likely

Inference task: sampling

- Inference task: given θ , generate X according to $p(X \mid \theta)$
 - Called sampling from the distribution
- Sampling is the "opposite" of density estimation:

$$\Pr(X=1) = 0.4 \quad \xrightarrow{\text{sampling}} \quad \mathbf{X} = \begin{bmatrix} 1\\0\\0\\1\\0 \end{bmatrix}$$

- Given the model, your job is to generate IID examples
- Often write code to generate one sample, and call it many times

Why sample?

- Sampling isn't especially interesting for Bernoulli distributions
 - Knowing θ tells you everything about the distribution
- But sampling will let us do neat things in more-complicated density models:
 - thispersondoesnotexist.com, DALL-E, ChatGPT, ...

• Sampling often helps us check whether the model is reasonable

• If samples look nothing like the data, the model isn't very good

Inference task: sampling

- Basic ingredient of typical sampling methods:
- We assume we can sample uniformly on $\left[0,1\right]$
- In practice, we use a "pseudo-random" number generator
 - rng = np.random.default_rng(); t = rng.random()
 - We won't talk about how this works; see CPSC 436R / Nick's book
- Consider sampling from Bern(0.9)
 - 90% of the time, we should produce a $1\,$
 - 10% of the time, we should produce a $\boldsymbol{0}$
- How can we do that with a sample from $U \sim \text{Unif}([0,1])$?
 - If $U \leq 0.9$, return 1; otherwise, return 0.

	return 1	return 0
0		$0.9\ 1$

Inference task: sampling

- Sampling from $Bern(\theta)$:
 - Generate $U \sim \text{Unif}([0,1])$. If $U \leq \theta$, return 1; otherwise, return 0

```
u = rng.random()
if u <= theta:
    x = 1
else:
    x = 0</pre>
or x = 1 if rng.random() <= theta else 0
or x = (rng.random(t) <= theta).astype(int)
```

- \bullet Assuming the uniform RNG costs $\mathcal{O}(1),$ generates a single sample in $\mathcal{O}(1)$ time
- To generate t samples, nothing smarter to do than just call it t times; O(t) cost

Summary

- Binary density estimation: models $\Pr(X=1)$ given iid samples $x^{(1)}, \ldots, x^{(n)}$
- Bernoulli distribution over binary variables
 - Parameterized by $\theta \in [0,1]$ with $\Pr(X=1 \mid \theta) = \theta$
- Inference: computing things from models, like finding modes and sampling

• Next time: the exciting world of priors