
CPSC 440/550 Machine Learning (Jan-Apr 2024)
Assignment 1 – due Friday January 19th at 5pm

IMPORTANT!!!!! Please carefully read the submission instructions that will be posted on
Piazza. We will deduct up to 50% on assignments that do not follow the instructions.

Most of the questions below are related to topics covered in CPSC 340, or other courses listed on the
prerequisite form. There are several notes available on the webpage which can help with some relevant
background.

If you find this assignment to be overly difficult, that is an early warning sign that you may not be prepared
to take CPSC 440 at this time. Future assignments may be longer and more difficult than this one.

We use blue to highlight the deliverables that you must answer/do/submit with the assignment.

Cite any sources outside of course materials (including people) that you refer to, as discussed on the syllabus
slides. Do not use ChatGPT, Copilot, or other AI assistance tools. (Something like Grammarly is okay, but
not tools that suggest “content.”) Even if you’ve written code for some of these questions before (e.g. in
340), do it again.
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1 Matrix Notation, Quadratics, Convexity, and Gradients [20 points]

Some of the notes on the course page might be useful to refresh some mathematical tools used in CPSC 340;
in particular, your instance of 340 may not have covered positive semi-definite matrices, so check those notes
out if needed. Each part is worth [2 points].

[1.1] Consider the function

f(x) =

n∑
i=1

n∑
j=1

aijxixj +

n∑
i=1

bixi + c,

where x is a vector of length n with elements xi, b is a vector of length n with elements bi, and A is
an n×n matrix with elements aij (not necessarily symmetric). Write this function in matrix notation
so that it uses A and b, and does not have summations or references to indices i.

Answer: TODO

[1.2] Write the gradient of f from the previous question, in matrix notation.

Answer: TODO

[1.3] Show that f is convex if A is a symmetric, positive semi-definite matrix.

Answer: TODO

[1.4] When A is symmetric and strictly positive definite, give a linear system whose solution minimizes f
in terms of x.

Answer: TODO

[1.5] Suppose that A is symmetric and only positive semi-definite. Will a “good” optimization algorithm,
e.g. gradient descent with an appropriate step size schedule, necessarily find one of the solutions to
your linear system from the last part? If not, where else could it go? Hint: An example of a matrix
that is psd but not strictly pd is A = 0.

Answer: TODO

[1.6] Consider weighted linear regression with an L2 regularizer, with regularization strength 1/σ2,

f(w) =
1

2

n∑
i=1

v(i)(y(i) − wTx(i))2 +
1

2σ2

d∑
j=1

w2
j ,

where σ > 0 is finite and we have a vector v of length n containing the elements vi. As usual, w is the
weight vector, x(i) the ith input point, and y(i) ∈ R its label. Write this function in matrix notation.

Note: you can use X ∈ Rn×d as the matrix with rows (x(i))T, y as the vector containing the elements
y(i), and V as a diagonal matrix containing the vector v along the diagonal.

Answer: TODO

[1.7] Assuming that vi ≥ 0 for all i, show that f from the previous part is convex. (You can use Ques-
tion [1.3] or not, as you prefer.)

Answer: TODO

[1.8] Assuming that we have vi ≥ 0 for all i, give a linear system whose solution minimizes f in terms of w.
(Again, use the previous results or not, your choice.)

Answer: TODO
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[1.9] If we fit a linear classifier with the exponential loss (used in older boosting algorithms, among other
places), it would take the form

f(w) =

n∑
i=1

exp(−y(i)wTx(i)).

Derive the gradient of this loss function.

Answer: TODO

[1.10] The support vector regression objective function is

f(w) =

n∑
i=1

max
{
0,
∣∣∣wTx(i) − y(i)

∣∣∣− ϵ
}
+

λ

2
∥w∥2

where ϵ is a non-negative hyper-parameter. It is similar to the L1 robust regression loss, but “doesn’t
care” if your prediction is less than ϵ from the target (which can reduce overfitting). Show that this
non-differentiable function is convex.

Answer: TODO
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2 Machine Learning Model Memory and Time Complexities [18 points]

Answer the following questions using big-O notation, and a brief explanation. Your answers may involve n,
d, and perhaps additional quantities defined in the question. As an example, the (linear) least squares model
has O(d) parameters, requires O(d) time for prediction, and requires O(nd2 + d3) time to train.1

Each part is worth [2 points].

[2.1] What is the training time for least squares (linear regression by solving the normal equations) with L2
regularization?

Answer: TODO

[2.2] What is the prediction cost for a trained linear model on t test examples?

Answer: TODO

[2.3] What is the storage space required to make predictions with a linear regression model using Gaussian
RBF features (with lengthscale, aka bandwidth, σ)?

Answer: TODO

[2.4] What is the prediction time for linear regression with Gaussian RBFs (with lengthscale, aka bandwidth,
σ) as features on t test examples?

Answer: TODO

[2.5] What is the cost of evaluating the support vector regression objective function from Question [1.10]?

Answer: TODO

[2.6] What is the cost of trying to minimize the exponential loss from Question [1.9] by running t iterations
of gradient descent?

Answer: TODO

[2.7] What is the cost of trying to minimize the exponential loss by running t iterations of stochastic gradient
descent?

Answer: TODO

[2.8] What is the storage space required for the k-means clustering algorithm?

Answer: TODO

[2.9] What is the cost of clustering t examples using an already-trained k-means model?

Answer: TODO

Many people got very low grades on variants of this question from past years. If you’re not sure how to
answer questions like this, get help!

1In this course, we assume matrix operations have the “textbook” cost where the operations are implemented in a straight-
forward way, e.g. with for loops. For example, we’ll assume that multiplying two n×n matrices or computing a matrix inverse
simply costs O(n3), rather than the O(nω) where ω is more like 2.37, which while true is only relevant for extremely huge
matrices; O(n3) is closer to the behaviour observed for actual practical matrix sizes.
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3 MAP Estimation [12 points]

In 340, we showed that under the assumptions of a Gaussian likelihood and Gaussian prior,

y(i) ∼ N (w⊤x(i), 1), wj ∼ N
(
0,

1

λ

)
,

the MAP estimate is equivalent to solving the L2-regularized least squares problem

f(w) =
1

2

n∑
i=1

(w⊤x(i) − y(i))2 +
λ

2

d∑
j=1

w2
j ,

in the “loss plus regularizer” framework. For each of the alternate assumptions below, write it in the “loss
plus regularizer” framework (simplifying as much as possible):

[3.1] [4 points] Gaussian likelihood with a separate variance ν(i) > 0 for each training example, and Laplace
prior with a separate scale 1/λj > 0 for each variable,

y(i) ∼ N (wTx(i), ν(i)), wj ∼ L
(
0,

1

λj

)
where a Laplace distribution L(µ, b) has density 1

2b exp (− |x− µ| /b).

Answer: TODO

[3.2] [4 points] Robust student-t likelihood and a uniform prior for w,

p(y(i)|x(i), w) =
1

√
νB

(
1
2 ,

ν
2

) (1 + (wTx(i) − yi)2

ν

)− ν+1
2

, w ∼ Uniform ({w : ∥w∥ ≤ C}) ,

where B is the “Beta” function, and the parameter ν is called the “degrees of freedom.”2 You can use
Vd as the volume of the d-dimensional unit ball {w : ∥w∥ ≤ 1}. Hint: Think carefully about what a
uniform prior density means for the posterior density of w.

Answer: TODO

[3.3] [4 points] If y(i) represents counts, we can use a Poisson-distributed likelihood, and take a Gaussian
prior on w centered at u ∈ Rd:

p(y(i)|x(i), w) =
exp(y(i)wTx(i)) exp(− exp(w⊤x(i)))

y(i)!
, wj ∼ N

(
uj ,

1

λ

)

Answer: TODO

2This likelihood is more robust than the Laplace likelihood, but leads to a non-convex objective.

5



4 K-Means Clustering [15 points]

This and following questions use code available from the course webpage; get it from a1.zip.

You’ll need Python 3 and the packages numpy, scipy, and matplotlib. If you don’t have them installed
already, install them with conda install, your system package manager, or pip install numpy scipy

matplotlib.

If you run main.py kmeans, it will load a dataset with two features and a very obvious clustering structure.
It will then apply the k-means algorithm with a random initialization. The result of applying the algorithm
will thus depend on the randomization, but a typical run might look like this:

(Note that the colours are arbitrary due to the label switching problem.) But the “correct” clustering (that
was used to make the data) is something more like this:

If you run the demo several times, it will find different clusterings. To select among clusterings for a fixed
value of k, one strategy is to minimize the sum of squared distances between examples x(i) and their means
wy(i) ,

f(w(1), w(2), . . . , w(k), y(1), y(2), . . . , y(n)) =

n∑
i=1

∥∥∥x(i) − w(y(i))
∥∥∥2
2
=

n∑
i=1

d∑
j=1

(
x
(i)
j − w

(y(i))
j

)2

.
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where y(i) ∈ argminc∈[n]

∥∥x(i) − w(c)
∥∥ is the index of the closest mean to xi. This is a natural criterion

because the steps of k-means alternately optimize this objective function in terms of the w(c) and the y(i)

values.

[4.1] [3 points] Complete the function KMeans.loss, inside k means.py, that takes in a data matrix X, a
vector of corresponding cluster assignments y, and a matrix of cluster means W , and computes this
objective function. Hand in your code.

Answer: TODO

[4.2] [1 points] Modify your code to, instead of/in addition to printing the number of labels that change on
each iteration, print the value of KMeans.loss after each iteration. What trend do you observe? (No
need to hand in code or specific loss values for this, just describe the trend.)

Answer: TODO

[4.3] [2 points] main.py kmeans-best will call the function q_kmeans_best() in main.py, which calls the
best_fit function to rerun k-means 50 times and take the one with the lowest error. Complete the
best_fit function, and hand in your code and the resulting plot.

Answer: TODO

[4.4] [3 points] Explain why the KMeans.loss function should not be used to choose k – even if you evaluate
it on test data.

Answer: TODO

[4.5] [1 points] The data in cluster data 2.npz is exactly the same as cluster data.npz, except that it
has four outliers that are far away from the data. main.py kmeans-outliers will run your code from
above to find the best of 50 runs on this data and save it as figs/kmeans-outliers.png. Hand in
this plot; are you satisfied with it?

Answer: TODO

[4.6] [5 points] Implement the k-medians algorithm in kmedians.py, which assigns examples to the nearest
w(c) in the L1-norm, and then updates all the w(c) by setting them to the “median” of the points
assigned to the cluster (defining the d-dimensional median as the concatenation of the medians along
each dimension). For this algorithm it makes sense to use the L1-norm version of the error (where y(i)

now represents the closest centre in the L1-norm),

f(w(1), w(2), . . . , w(k), y(1), y(2), . . . , y(n)) =

n∑
i=1

∥∥∥x(i) − w(y(i))
∥∥∥
1
=

n∑
i=1

d∑
j=1

|x(i)
j − w

(y(i))
j |,

main.py kmedians-outliers will find the best of 50 models with k = 4 for you, once you’ve finished
the KMedians class. Hand in your code and plot. Is this better?

Answer: TODO
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5 Regularization and Hyper-Parameter Tuning [20 points]

If you run main.py lsq, it will:

1. Load a one-dimensional regression dataset.

2. Fit a least-squares linear regression model.

3. Draw a figure showing the training/testing data and what the model looks like.

Unfortunately, this is not a great model of the data, and the figure shows that a linear model with a y
intercept of 0 is probably not suitable.

[5.1] [5 points] Finish the LeastSquaresBias class, in least squares.py. Using this class should fit and
predict with the model

y(i) = wTx(i) + b,

where both w and b are fit to data with least squares; implement it however you like (there are a few
reasonable options). main.py lsq-bias will then run it for you. Hand in your new class and the
updated plot.

Answer: TODO

[5.2] [6 points] Allowing a non-zero y-intercept improves the prediction substantially, but the model still
seems sub-optimal because there are obvious non-linear effects. Complete the model leastSquaresRBFL2
that implements least squares using Gaussian radial basis functions (RBFs) with L2-regularization.
main.py lsq-rbf will then run it for you.

Use lam for the L2 regularization parameter3, and sigma for the lengthscale of the Gaussian features.
Note that your L2 regularization should correspond to minimizing the loss function ∥Xw − y∥2+λ ∥w∥2;
some versions instead correspond to putting a 1

n in front of the loss term.

Hand in your function and the plot generated with λ = 1 and σ = 1.

Hint: The function utils.euclidean dist squared, which was also used in our k-means implemen-
tation, efficiently computes the squared Euclidean distance between all pairs of rows in two matrices.

Answer: TODO

[5.3] [6 points] Modify the script, in the function lsq-rbf-split, to split the training data into a “train”
and “validation” set (you can use half the examples for training and half for validation), and use these
to select λ and σ from some reasonable set of candidate values. You’ll probably want to vary these by
a few orders of magnitude either smaller or larger from 1.

(Although in real work you’d probably use some pre-coded helpers for this, code it yourself here.)

Hand in your modified function, the selected λ and σ, and the plot you obtain by refitting on the full
dataset with the best values of λ and σ.

Answer: TODO

[5.4] [3 points] Consider (but you don’t have to implement) a model combining the first two parts of this
question,

y(i) = wTx(i) + b+ vTz(i),

where z(i) are the Gaussian RBFs and v is a vector of regression weights for those features. Suppose
that we first fit w and b assuming that v = 0 as in Question [5.1], and then we fit v with w and w0

3We can’t name it lambda, because that’s a reserved word in Python. You could technically type λ, but there are a lot of
Unicode characters for λ that all look really similar, so it gets annoying. . . .
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fixed (you could use your code for Question [5.3] to do this by modifying the y(i) values). Why would
someone want to do this?

Hint: Think about how this model would behave on a test point x̃ = 10.

Answer: TODO
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6 Optimal matrix multiplication [15 points]

Suppose we have a bunch of matrices M1,M2, . . . ,Mk, where Mi is of shape di−1 × di, and we want to find
the d0 × dk matrix M1M2 · · ·Mk. There are lots of ways to compute this, since matrix multiplication is
associative: for example, if k = 6 we could do M1(M2(M3(M4(M5M6)))), M1((M2M3)((M4M5)M6)), etc.
The number of possibilities is exponential in k.

Recall that if A is m×n and B is n×p, we can compute AB with O(mnp) scalar operations; this is typically
a “good-enough” model for how much this costs in practice for the kinds of problems that appear in ML.

Fill in the mmul order function in mmul order.py to use dynamic programming to find the optimal order of
multiplications.

Make sure you follow the comments there as to the input and output format of your function, and that your
algorithm is O(k3) or better.

main.py mmul-order will call the function for you with a few test cases; hand in your code and the cost
and order for the final part.

Answer: TODO
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