CPSC 440/540: Machine Learning

Hierarchical Bayes; Multiclass classification
Winter 2023



Last time

Bayesian learning:
— Prior + likelihood define a posterior and posterior predictive distribution

— Fully Bayesian learning: use posterior predictive distributions

* As the rules of probability tell you
* Interpretation as regularized model averaging

Where does the prior come from?
— Actual prior knowledge/belief
— Validation performance

Empirical Bayes: maximize the marginal likelihood
— Like MLE in terms of the hyper-parameters

Alternately: put a hyper-prior on the hyper-parameters, ...



Next Topic: Hierarchical Bayes



Motivating Example: Medical Treatment

* Consider modeling probability that a medical treatment will work.
— But this probability depends on the hospital where treatment is given.
* So we have binary examples x1, x?,...,x".

— We also have a number z' saying “what population it came from”.
* This is a common non-IID setting: examples are only IID within each group.
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 Other examples:
— “What are the covid proportions for different cities?”
— “Which of my stores will sell over 100 units of product?”
— “What proportion of users will click my adds on different websites?”



Independent Model for Each Group

* We could consider a simple independent model for each group:

— Use a parameter 6; for each hospital J".
X' /a( "~ g{/[@lz,-)

— Fit each 6; using only the data from hospital j.

 If we have k hospitals, we solve k IID learning problems.

* Problem: we may not have a lot of data for each hospital.
— Can we use data from a hospital with a lot of data to learn about others?
— Can we use data across many hospitals to learn with less data?
— Can we say anything about a hospital with no data?



Dependencies from Using a Common Prior

Common approach: assume the 6; are drawn from a common prior.

Xl ~Berlg,) O Bef«(o/)/”

This introduces a dependency between the 6; values.

— For example, ifa = 5and f = 2:
* This is like we imagine seeing 5 extra “success” and 2 “failures” at each hospital.

In this setting the 6; are conditionally independent given a and .
— With a fixed prior, we cannot learn about one 6; using data from another.

* So for a new hospital, the posterior over 6; is the prior.

In this setting, we want to learn the hyper-parameters.



Hierarchical Bayesian Modeling

* Consider using a hyper-prior:
x (28~ Ber(0,:) @, 3614(0(),67 “)ﬁ“/D((f)r/)m) L %a;
L (o e W s
— Treating hyper-parameters as random variables, can learn across groups.
* With empirical Bayes we get fixed estimates of & and E
— Learned prior gives better estimates of 6; for groups with few examples.
— For a new hospital, posterior would default to the learned prior.
* With hierarchical Bayes we would integrate over the Hjs, a,and f.

— “Very Bayesian” to handle the unknown parameters/hyper-parameters.
— Hierarchical models almost always need approximations like Monte Carlo.


https://stats.stackexchange.com/questions/67443/does-the-beta-distribution-have-a-conjugate-prior

Discussion of Hierarchical Bayes

* Many practitioners really like Bayesian models.

— “Gosh darn, | love Bayesian ensemble methods!”
* From a domain expert Mark was collaborating with.

— Domain expertise can be incorporated into the design of [hyper-]priors.
— Can model various ways your data may not be IID.
— We will see some more Bayes tricks.

* Advantage is the nice mathematical framework:
— Write out all your prior knowledge of relationships between variables.
— Integrate over variables you do not know.
* Disadvantages:
— It can be hard to exactly encode your prior beliefs.
— The integrals get ugly very quickly (there is no “automatic integration”).



METHODS article
Front. Environ. Sci., 09 March 2021 | https://doi.org/10.3389/fenvs.2021.491636

Evaluating the Benefits of Bayesian Hierarchical
Methods for Analyzing Heterogeneous
Environmental Datasets: A Case Study of Marine
Organic Carbon Fluxes

observations from 407 sampling locations spanning eight biomes across the global ocean. We fit a global scale
Bayesian hierarchical model that describes the vertical profile of organic carbon flux with depth. Profile
parameters within a particular biome are assumed to share a common deviation from the global mean profile.

Individual station-level parameters are then modeled as deviations from the common biome-level profile. The

hierarchical approach is shown to have several benefits over simpler and more common data aggregation

methods. First, the hierarchical approach avoids statistical complexities introduced due to unbalanced sampling

and allows for flexible incorporation of spatial heterogeneitites in model parameters. Second, the hierarchical

approach uses the whole dataset simultaneously to fit the model parameters which shares information across
datasets and reduces the uncertainty up to 95% in individual profiles. Third, the Bayesian approach incorporates
S —— ) =

prior scientific information about model parameters; for example, the non-negativity of chemical concentrations

or mass-balance, which we apply here. We explicitly quantify each of these properties in turn. We emphasize the
generality of the hierarchical Bayesian approach for diverse environmental applications and its increasing

feasibility for large datasets due to recent developments in Markov Chain Monte Carlo algorithms and easy-to-use

high-level software implementations.
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Discussion of Hierarchical Bayes

* “We finally have an elegant mathematical way to do...”
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— Frequently used as a justification for hierarchical Bayesian methods.

— We will see some influential and/or neat examples later in the course.

* But often you can find a simple less-elegant solution:

— 340 slide giving features addressing similar issues to hospital example.

 Just features and gradients,
no hyper-priors or integrals.

The Big Global/Local Feature Table for E-

* Each row is one e-mail (there are lots of rows):
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Next Topic: Multi-Class Classification



Multi-Class Classification

* Consider classification with categorical features and labels:

Cough | _rever | shorness
1 Low

0 Cold
1 High 1 Pneumonia
X = y = .
0 High 0 Covid
0 Low 0 Covid
1 Medium 0 Cold

e Recall our previous binary classification methods:
— Naive Bayes.
— Tabular probabilities.
— Logistic regression.
— Neural networks.



Product of Categoricals and Multi-Class Naive Bayes

* We could consider multivariate categorical density estimation:
— Input: n IID samples of categorical vectors x!, x?, X3,..., x" from population.
— Output: model giving probability for any assignment of values xy,x,,...,Xq.
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* Similar to product of Bernoullis, we could use product of categoricals:
— Assumes x; are mutually independent (strong assumption, easy computation).

f(,,'q,?,ﬁ:cn__){.-a): Pl lpls=) = ply=c ) = 0, 6, @

ac, J(A
— We have a parameter 6;. representing probability that feature j is in category c.
* |f we use a product of categoricals conditional on Y, within a generative classifier:
— We get a version of naive Bayes for categorical data.

— |If we used posterior predictive for predictions we could get a “Bayesian naive Bayes” method.
* It’s called naive “Bayes” because it uses Bayes rule, not because it uses Bayesian inference.



Multi-Class Naive Bayes on MNIST Digits

* Consider fitting multi-class naive Bayes to binarized MNIST digits.

— Visualizing the conditional Bernoulli parameter for each class:

012345678249

— The class probabilities are all ~1/10.

— Generating a sample from each class:




Tabular Probabilities for Categorical Data

Tabular parameterization (2-features and 3-categories per feature/label):
— Pr(Y=1|X,=1,X,=1)=014;.
— Pr(Y=2|X,=1,X,=1) =05
— Pr(Y=3|X,=1,X,=1) .

— Pr(Y=1|X,=1,X,=0) =010

— Pr(Y=2|X,=1,X,=0)=0,1,.

— Pr(Y=3|X,=1,X,=0)=053,.

— .... (enumerate all combinations of labels and features).

* Helpabit: 0311 =1 — 60111 — 0,11 because of “sum to 1” over y values.

MLE has simple closed-form solution: 811 = N{11/M11.

— (number of times y=1 when x,=1 and x,=1) / (number of times x;=1 and x,=1).
— Can add a Dirichlet prior and do MAP.

— Could integrate over ® to do Bayesian inference.



Decision Theory

* We may also have a cost for different predictions:

* |n the above example:

— Cost for correct prediction is zero.
— Cost for missing pneumonia is high.
— Cost for falsely declaring pneumonia or covid is relatively high.

* Need to take antibiotics or isolate.



Decision Theory

* We may also have a cost for different predictions:

* Instead of most probable label, take ¥ minimizing expected cost:
—E[CH,N]=Xc pF = |X,0) CH,0).

 Probability that true label is ¢, times cost of predicting y when true label is c.
— Marginalized over possible values of c.

* In the above example, if all probabilities are equal then you predict pneumonia.
— Mis-diagnosing as pneumonia has the smallest “cost” in this example.



Bayesian Decision Theory

 Unfortunately, we get sub-optimal decisions using MLE/MAP G.

— Relying on a “point estimate” can miss important information.

e Bayesian decision theory gives optimal actions:

— Minimize expected cost using posterior predictive estimate for class c.
* E[CT, ] =2cp(V =c %X, y,A)C(, ¢).
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Linear Parameterization of Conditionals

* Tabular parameterization will overfit when you have many features.

— |f each feature has k categories, and Y has k categories:
 Total number of parameters is k91,

— Fully-expressive, but really only useful with a small number of features.

* Similar to logistic regression:

— We can use parameterizations based on linear combinations of features.
* Have a weight w_ for each class ¢, giving z. = w_'x for each class c.
— Allows us to have continuous features.

e To turn these into a probability, we typically use functions of the form:
C(Mvor'* 'Fm\m 'n'l’s.o ’/r ' re../
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But first...

* How do we use categorical features in regression models?

Standard approach is to convert to a set of binary features:
— “1 of k” (“one-hot”) encoding.

NN N o N

22,000.00 1 0 0 22,000.00
23 Bur 21,000.00 23 0 1 0 21,000.00
22 Van 0.00 22 1 0 0 0.00
25 Sur 57,000.00 25 0 0 1 57,000.00
19 Bur 13,500.00 19 0 1 0 13,500.00
22 Van 20,000.00 22 1 0 0 20,000.00

— What if you get a new category in the test data?
e Common approach: set all three variables to 0.



Softmax Function and Unnormalized Probabilities

* We want to map from the k real values of z_to probabilities.

— To do this, we typically use the softmax function:

g(z,)zx).,.)zk,) = exp(z) (>< exp(zc>
gu,oﬁz,)

|

* This is similar to when we used probabilities:

— We converted unnormalized (but positive) values §C to probabilities.

— Softmax is similar but uses exponentiation since the z. may be negative.

* You could use other operations, but exponential function has many nice properties.



Softmax Function and Binary Logistic Regression

* We want to map from the k real values of z_to probabilities.

— To do this, we typically use the softmax function:

J;(z,)z’l).\.)zk,) = g’fﬁ(z‘) N exp(z.)
e’(logzo')

|

 We obtain the sigmoid function as a special case:
— With two classes and z,=0: {I‘(Z')0> = e (2,) — |
PAr(z,)*er(O) ) 1 ex(:\‘-z,)

Sh)mo'lcl

— So linearly-parameterized softmax generalizes logistic regression.



Inference in Multi-Class Logistic Regression

* Using z. = w_'x in the softmax function as probabilities gives:

‘D(y:c IY) ")y ) = £xple) X eX/” )
2 PXP‘W X)

(=
— This is the likelihood for multi-class logistic regression.

* To do inference in the model, first compute the z_ = w_"x values:

Wy =] —"=x = [”,,5 =[§,2
__,.w'\___. w,\,x ér
— Cost of this is O(dk): need to do ‘k’ dot products with ‘d” elements.
* Plug the z_values into softmax to get probabilities.

— And then you can do inference as if it was a categorical distribution.



Review: Softmax Loss and its Gradient

* Take negative log-likelihood (n IID examples) to obtain softmax NLL:

N - Ik
f(""n"‘&,----)""k) = ’é[*— w x't log (éexf(%’x'»
— Softmax loss is equivalent to what people call the cross-entropy.

— This is a convex and differentiable, so we can use gradient descent.

* Not necessarily obvious the second term is convex, but it is. "
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could instead use multi-class SVM losses (“discriminant function”).

* The gradient has a special form:



https://math.stackexchange.com/questions/2418554/why-is-log-of-sum-of-exponentials-fx-log-left-sum-i-1n-e-x-i-right

Next Topic: Neural Networks for Multi-Class



Multi-Class Linear Classification

* We're discussing multi-class classification:

— j f27/j
I
= y= |
s 7
2

L - L5

* For example, classify image as “cat”, “dog”, or “person”.

— There is one correct label.




Previously: Multi-Label Classification

* We previously saw neural networks for multi-label classification:
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* Which of the k objects are in this image?

— There may be more than one “correct” class label.




Neural Network for Multi-Label Classification

 Multi-label classification a neural network:
— Input is connected to a hidden layer.
— Hidden layer is connected to multiple output units.

© 2,‘—"7® )i~ ' h{We)
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— We convert to probabilities for each label using sigmoid element-wise:

(\ W - '
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— We predict by maximizing p(y. | x, W, V) for y. = +1 and y. = -1 for each c (predict each class).
— We train by minimizing sum of negative logs of these probabilities over c.




Neural Network for Multi-Class Classification

e Multi-class classification a neural network:
— Input is connected to a hidden layer (same as multi-label).
— Hidden layer is connected to multiple output units (same as multi-label).
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— We convert to probabilities for each class using softmax to the . values.
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— We predict by maximizing p(y | x, W, V) over all each C (one prediction across classes).
— We train by minimizing negative log of this probability (summing across examples).




Discussion: Multi-Class Neural Networks

* Binary versus multi-label versus multi-class neural networks:
— Network can be the same except for the last layer (same encoding steps).
* Training issues/challenges/tricks are the same.
— We often only need to change last layer for new problems.
* You can pre-train multi-class neural network on multi-label (or go in the opposite direction).

* Asin Part 1, we can consider convolutional neural networks:

Up-

Convolution RelU Pool Convolution RelLU Pool Convolution RelLU sample

AN

— Each pixel comes from one class, but we can recognize multiple labels in same image.



Summary

Multi-class classification:
— Supervised learning with categorical labels.
Tabular probabilities for conditional categorical features/labels:
— One parameter for each combination of label and features.
— Fully-expressive but has an exponential number of parameters.
Bayesian decision theory:
— Given a cost function, optimize expected cost under posterior predictive.
Softmax function:
— Converts k real numbers into a probability.
Multi-class logistic regression:
— Take linear combination for each class, use softmax to get a probability.
— Differentiable, convex, and MLE “matches probabilities to labels”.

Multi-class neural networks:
— Same as binary and multi-label neural networks, just use categorical likelihood is last layer.

Next time: are CNNs learning something sensible?
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Softmax NLL vs. Cross-Entropy

* Multi-class objective often written as minimizing cross-entropy:
f(l/f/ V) = ’Z’JZLCY ¢ J (= log /)(y’:—z IX) l,,)/;/))
* The indicator function is zero except for true label y':

WC(WV Zloc”o(/ /XWI/)

* When we plug in the softmax likelihood, we get the softmax NLL.

— So cross-entropy is the softmax NLL with extra terms that do nothing.

e Cross-entropy would make more sense if training data had “soft” assignments to
classes.
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Loss vs. Objective vs. Error vs. Cost

loss function, cost function, objective function

What are the differences between loss/cost/objective/error function?

lectures

~ An instructor (Mark Schmidt) thinks this is a good question ~

m undo good question

the instructors' answer, where instructors collectively construct a single answer

Some of these terms are often used interchangeably, or may be synonyms depending what notation people use. In this course, | am trying to use the following:

Loss: the function measuring how well you fit a given data point. In this course, this is the negative of the log-likelihood (NLL), but there exist models (like SVMs) that use other measures.
Objective: the function that are optimizing in terms of a set of parameters. In this course, this will usually be the sum of the NLLs over all training examples.

Error: a measure of how you have fit the data. This might be the NLL, or for classification be the total number of mistakes you make in prediction on a given data set.

Cost: the penalty you get for making a given prediction, based on what the correct value is. The error corresponds to the special case where all errors have the same cost, but more generally you could have different costs for different types of
errors.



