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Last Time: Beta-Bernoulli coin flipping
• Flipping a coin :
– Prior 𝑝 𝜃 𝜃 ∼ Beta 𝛼, 𝛽 Uniform: 𝛼 = 1, 𝛽 = 1
– Likelihood 𝑝 𝑥 𝜃 𝑋 ∣ 𝜃 ∼ Bernoulli(𝜃)
– Posterior 𝑝 𝜃 𝑿 𝜃 ∣ 𝑿 ∼ Beta(𝛼 + 𝑛!, 𝛽 + 𝑛") Beta(𝑛! + 1, 𝑛" + 1)

• Want to estimate Pr(𝑥! = 1 ∣ 𝑥" = 1, 𝑥# = 1)
• MAP: becomes MLE
– ;𝜃 = argmax 𝑝 𝜃 𝑥!, 𝑥# 1 if 𝛽 ≤ 1,   $%!$%& if 𝛽 ≥ 1 chooses ;𝜃 = 1

– Answer Pr(𝑥' = 1 ∣ ;𝜃) 1 if 𝛽 ≤ 1,   $%!$%& if 𝛽 ≥ 1 estimate is 1

• Bayesian learning:
– Marginalize over all possible values of 𝜃:
Pr 𝑥' = 1 𝑥!, 𝑥# = ∫ 𝑥' = 1 𝜃 𝑝 𝜃 𝑥!, 𝑥# d𝜃 =

𝛼 + 2
𝛼 + 𝛽 + 2

=
3
4



Motivation: Controlling Complexity
• For many application, we need complicated models.
• But complex models can overfit.
• So what should we do?

• In CPSC 340 we saw two ways to reduce overfitting:
– Model averaging (like in random forests).
– Regularization (like in L2-regularized linear regression).

• Bayesian methods combine both of these.
– Average over “models”, weighted by posterior (which includes regularizer).

• Recall that the regularizer corresponds to the negative logarithm of the prior.
– This can allow you fit extremely complicated models without overfitting.



MAP vs Bayes for Categorical-Dirichlet
• MAP (regularized optimization) approach maximizes over parameters:

• Bayesian approach predicts by integrating over possible parameters:

• Considers all possible Θ, and weights prediction by posterior for Θ.
– Posterior contains a regularizer, so this is averaging and regularizing.



Ingredients of Bayesian Inference (MEMORIZE)
1. Likelihood 𝑝 𝑋 Θ)
– Probability of seeing data given parameters.

2. Prior p(Θ | Α).
– Belief that parameters are correct before we have seen data.

3. Posterior p(Θ | 𝑿, Α).
– Probability that parameters are correct after we have seen data.
– MAP maximizes, but Bayesian approach uses the whole distribution.

4. Posterior predictive 𝑝 +𝑋 𝑿, Α) (NEW).
– Probability of new data !𝑋 given old data 𝑿, integrating over parameters.

• Specifically, we average the likelihood of !𝑋, weighted by the posterior of 𝜃 given 𝑿.
– Bayesian approach uses this distribution for inference.



Bayesian Approach: Discussion
• Our previous “learn then predict” approaches (MLE and MAP):
– Optimize parameters 𝜃 (learning).
– Do inference with the parameter estimate %𝜃 (inference).

• Bayesian approach doesn’t really have a separate “learning phase”.
– There is no optimization of the parameter 𝜃.
– You just skip to doing inference with the posterior predictive.

• Consider all parameters 𝜃.

• In practice, it often still looks like “learn then predict”.
– Characterize the form of the posterior (“learning”).
– Make predictions by doing integrals with the posterior (inference).



Bayesian Approach: Discussion
• The Bayesian approach is the optimal way to use a probabilistic model.
– It’s what the rules of probability say we should do.
– …if you believe in your probability model (prior + likelihood).

• If the prior (or likelihood) is bad, Bayesian approach can be harmful.
– Bayesian approach historically criticized since it requires “subjective” prior.
– But all models are based on “subjective” assumptions, sometime hidden!

• As we see more data, Bayesian posterior concentrates on MLE.
– MLE/MAP/Bayes usually more or less agree for large datasets.

• Real problem with the Bayesian approach is that integrals are hard.
– Posterior and posterior predictive only have a nice form with conjugate priors.

• Otherwise, you need to use methods like Monte Carlo or “variational” methods for inference.



Next Topic: Empirical Bayes



Learning the Prior from Data?
• How do we tune the hyper-parameters in Bayesian methods?

• Adapting our usual validation set approach:
– Split into a training and validation set.
– For different hyper-parameter values:

• Compute some measure of “test error”.
– For density estimation, this could be the (negative log) posterior predictive for the validation set given the training set.
– For supervised learning, you could make predictions on the validation set and measure validation set error.

– Choose the hyper-parameters with the highest value.

• Advantage:
– Directly tunes hyper-parameters to achieve good performance on new data.

• Disadvantage:
– Optimization bias: can start to overfit to the validation set.
– Slow! If you try 10 values for each of k hyper-parameters, there are 10k values to try.



Learning the Prior from Data?
• Empirical Bayes:

– Optimize the likelihood of the data given the hyper-parameters.

• This is called the “marginal likelihood” or the “evidence” function.
– It can be computed by marginalizing over parameters.

– It’s the denominator we ignore when we do MAP estimation: 𝑝 Θ 𝑋) = ! " #)! # %)
! " %)

.
• Empirical Bayes is also called “type II maximum likelihood” or “evidence maximization”.

– This is doing MLE for the hyper-parameters.

• Advantage:
– Fast! Might have a closed-form solution or allow using gradient descent (assuming conjugate prior).

• Disadvantage:
– It is not directly testing the performance on new data.
– Optimization bias: can start to overfit the marginal likelihood (could increase/decrease test performance).



Marginal Likelihood with Conjugate Priors
• Marginal likelihood has closed form when using conjugate priors.
– It is proportional to ratio of posterior/prior normalizing constants.

• We will show this for the Bernoulli-Beta model:



Marginal Likelihood with Conjugate Priors
• For the Bernoulli-beta model we have marginal likelihood of:

– For other distributions the ratio might be multiplied by a constant.
• By similar argument, posterior predictive for new data with counts $𝑛! and $𝑛" is:

• Empirical Bayes maximizes marginal likelihood in terms of 𝛼 and 𝛽.
– More useful when we have many hyper-parameters.
– Could be used for categorical-Dirichlet model’s k hyper-parameters.
– In some cases, this is related to leave-one-out cross-validation.

• The “most extreme” form of cross-validation.



Learning Principles for Predicting “0 or 1 Next?”

• Maximum likelihood:

• MAP:

• Bayesian (no “learning”):

• Empirical Bayes:



Bayesian Hierarchy
• Maximum likelihood estimation can do weird things.
– Predict zero probability for events not seen in training.
– Pick a highly-unlikely model that exactly fits the training data.

• MAP estimation improves MLE by adding a prior on the parameters..
– But by only using one parameter estimate this leads to sub-optimal decisions.

• Bayesian inference over parameters makes optimal decisions.
– Avoids overfitting, and decisions follow rules of probability.

• No optimization bias because no optimization.
– But this relies on have a good choice of prior/hyper-parameters.

• Empirical Bayes uses data to find a good prior.
– Tends to be less sensitive to overfitting than regular MLE.
– But has an optimization bias: can still overfit the hyper-parameters.
– In my experience, more likely to “just be weird” than actual overfitting.

https://www.sweetsugarbelle.com/2013/01/that-funky-bandaid-color/



Bayesian Hierarchy
• To fix empirical Bayes issues:
– We can put a prior on the hyper-parameters.
– Sometimes called a “hyper-prior”, that has “hyper-hyper-parameters”.

• Seriously!

– But by only using one parameter estimate this leads to sub-optimal decisions.

• So use Bayesian inference over parameters and hyper-parameters:
– You would integrate over all values of the parameters and hyper-parameters.

• Unfortunately, we often do not have a “conjugate hyper-prior” for the prior.

– This avoids overfitting, but now we rely on having a good choice of hyper-prior.

• And then could consider empirical Bayes over hyper-hyper-parameters…
– This was one the hottest ML topics before deep learning came back.

https://en.wikipedia.org/wiki/Turtles_all_the_way_down
https://www.sweetsugarbelle.com/2013/01/that-funky-bandaid-color/



Next Topic: Hierarchical Bayes



Motivating Example: Medical Treatment
• Consider modeling probability that a medical treatment will work.

– But this probability depends on the hospital where treatment is given.
• So we have binary examples x1, x2,…,xn.

– We also have a number zi saying “what population it came from”.
• This is a common non-IID setting: examples are only IID within each group.

• Other examples:
– “What are the covid proportions for different cities?”
– “Which of my stores will sell over 100 units of product?”
– “What proportion of users will click my adds on different websites?”

Worked?
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Hospital

1

4

3

2

3



Independent Model for Each Group 
• We could consider a simple independent model for each group:
– Use a parameter 𝜃! for each hospital ‘j’.

– Fit each 𝜃! using only the data from hospital ‘j’.
• If we have ‘k’ hospitals, we solve ‘k’ IID learning problems.

• Problem: we may not have a lot of data for each hospital.
– Can we use data from a hospital with a lot of data to learn about others?
– Can we use data across many hospitals to learn with less data?
– Can we say anything about a hospital with no data?



Dependencies from Using a Common Prior
• Common approach: assume the 𝜃! are drawn from a common prior.

• This introduces a dependency between the 𝜃! values.
– For example, if 𝛼 = 5 and 𝛽 = 2:

• This is like we imagine seeing 5 extra “success” and 2 “failures” at each hospital.

• In this setting the 𝜃! are conditionally independent given 𝛼 and 𝛽.
– With a fixed prior, we cannot learn about one 𝜃! using data from another.

• So for a new hospital, the posterior over 𝜃! is the prior.

• In this setting, we want to learn the hyper-parameters.



Hierarchical Bayesian Modeling
• Consider using a hyper-prior:

– Treating hyper-parameters as random variables, can learn across groups.

• With empirical Bayes we get fixed estimates of /𝛼 and +𝛽.
– Learned prior gives better estimates of 𝜃! for groups with few examples.
– For a new hospital, posterior would default to the learned prior.

• With hierarchical Bayes we would integrate over the 𝜃!s, 𝛼, and 𝛽.
– “Very Bayesian” to handle the unknown parameters/hyper-parameters.
– Hierarchical models almost always need approximations like Monte Carlo.

thread on Beta's conjugate prior

https://stats.stackexchange.com/questions/67443/does-the-beta-distribution-have-a-conjugate-prior


Discussion of Hierarchical Bayes
• Many practitioners really like Bayesian models.
– “Gosh darn, I love Bayesian ensemble methods!”

• From a domain expert I was collaborating with.
– Domain expertise can be incorporated into the design of [hyper-]priors.
– Can model various ways your data may not be IID.
– We will see some more Bayes tricks.

• Advantage is the nice mathematically framework:
– Write out all your prior knowledge of relationships between variables.
– Integrate over variables you do not know.

• Disadvantages:
– It can be hard to exactly encode your prior beliefs.
– The integrals get ugly very quickly (there is no “automatic integration”).
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Discussion of Hierarchical Bayes
• Many practitioners really like Bayesian models.
– “Gosh darn, I love Bayesian ensemble methods!”

• From a domain expert Mark was collaborating with.
– Domain expertise can be incorporated into the design of [hyper-]priors.
– Can model various ways your data may not be IID.
– We will see some more Bayes tricks.
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https://www.frontiersin.org/articles/10.3389/fenvs.2021.491636/full



stat.columbia.edu/~gelman/book/

http://www.stat.columbia.edu/~gelman/book/


Discussion of Hierarchical Bayes
• “We finally have an elegant mathematical way to do…”
– Frequently used as a justification for hierarchical Bayesian methods.
– We will see some influential and/or neat examples later in the course.

• But often you can find a simple less-elegant solution:
– 340 slide giving features addressing similar issues to hospital example.

• Just features and gradients,
no hyper-priors or integrals.



Summary
• Marginal likelihood:

– Probability of data given hyper-parameters (integrating over parameters).
• Empirical Bayes (“type II MLE” or “evidence maximization”).

– Tune hyper-parameters by optimizing marginal likelihood.
– Can be used to cheaply tune a huge number of hyper-parameters.

• If you can efficiently do/approximate the integrals.
• Hyper-priors:

– Putting a prior on the prior.
– Often needed to make empirical Bayes work, or in hierarchical Bayes.

• Hierarchical Bayes:
– Building models with multiple levels of priors.
– Often allows learning in non-standard scenarios.

• We considered the case of non-IID grouped data.

• Next Time: everyone’s favourite loss to take the gradient of.


