
CPSC 440/540: Machine Learning

Bayesian Learning
Winter 2023



Last Time: Monte Carlo Methods
• Monte Carlo approximates expectation of random functions:

– Approximation is average of function g applied to samples from p:

• Can approximate a wide variety of quantities by changing g:
– Mean: g(x) = x.
– Probability of event ‘A’: g(x) = 𝟙[“A happened”].
– CDF: g(x) = 𝟙[x ≤ c].

• This is useful when:
– You know how to sample from p(x).
– You do not know how to efficiently compute 𝔼[g(x)].
– Are patient and/or don’t care about being precise, because it converges slowly.



Monte Carlo for Snakes and Ladders
• Consider the children’s game “Snakes and Ladders”:
– Start on ‘1’, roll die, move marker, go up/down on ladder/snake, end at 100.
– No decisions, so you can simulate the game.

• How many turns does it take for this game to end?
– Simulate game many times, count number of turns.
– Compute average number of turns.

• Probability and cumulative probability:

https://www.datagenetics.com/blog/november12011/



Conditional Probabilities with Monte Carlo
• We often want to compute conditional probabilities.

– “What is the probability that the game will go more than 100 turns,  if it already went 50 turns?”

• A Monte Carlo approach for estimating p(A | B):
– Generate a large number of samples.
– Use Monte Carlo estimate of p(A, B) and p(B) to approximate conditional:

• Frequency of the first event, in samples consistent with the second event.
– This is the MLE for a binary variable that is 1 when A happens, conditioned on B happening.

• This is a special case of rejection sampling (general case later).
– Unfortunately, if B is rare then most samples are “rejected” (ignored).
– The conditional probability demo here has a good visualization of this.

https://seeing-theory.brown.edu/compound-probability/index.html


Next Topic: MLE and MAP for Categorical



MLE for Categorical Distribution
• Now we will consider how to train a categorical model (“learning”).

– Goal is to go from samples to an estimate of parameters 𝜃!, 𝜃", … , 𝜃#:

• As before we will first consider maximum likelihood estimation:

– In this case the MLE is given by 𝜃$ =
%!
%

(nc is number ‘c’ examples).
• If “34% of your samples are LIB, your guess for 𝜃!"#=0.34”.
• As with Bernoulli, the derivation of the MLE is not as a simple as the result.

Party?

LIB

CPC

NDP

LIB

GRN

X = 

p(x = LIB) = 0.34, p(x=NDP) = 0.34,
p(x = CPC) = 0.27, p(x=GRN) = 0.03,
p(x = PPC) = 0.02.



Derivation of MLE (that does not work)
• Last time we showed that the likelihood has the form:

• Let’s take the log:

• Take the derivative for a particular 𝜃%:

• Set derivative equal to zero:

• …huh?



Derivation of MLE: Handling “Sum to 1”
• “Set derivative of log-likelihood equal to 0” does not work.
– Because of constraint that the 𝜃$ must sum to 1, derivative is not zero at MLE.

• Approaches used in textbooks to enforce constraints:
– Use “Lagrange multipliers” and find stationary point of “Lagrangian”.
– Define 𝜃% = 1 − ∑$&'%('𝜃$ to make it unconstrained.
– See StackExchange thread here.

• We will take a different approach to make it unconstrained:
1. Use a unnormalized parameterization &𝜃$ that doesn’t have constraints.
2. Compute the MLE for the &𝜃$ by setting log-likelihood derivative to zero.
3. Convert from the &𝜃$ parameters to our usual 𝜃$ parameters by normalizing.

https://math.stackexchange.com/questions/2725539/maximum-likelihood-estimator-of-categorical-distribution


Unconstrained Parameterization
• Consider categorical distribution with unnormalized parameters:

– To give non-negative probabilities, we require that �̅�$ ≥ 0 for all ‘c’.
• The  normalized probability can then be written:

– The “normalizing constant” makes the probability sum to 1 across c values.
• So we do not need to an explicit “sum to 1” constraint. 

– We convert from unnormalized to normalized by dividing by Z: 𝜃$ =
)*$
+ .



Derivation of MLE (that does work)
• Using the unnormalized parameters in the likelihood gives:

• Let’s take the log:

• Take the derivative for a particular 𝜃%:

• Set derivative equal to zero:

• Solve for #𝜃%:



MAP Estimation and Dirichlet Prior
• As before, we may prefer to use a MAP estimate over the MLE.
– Often becomes more important as k grows.

• More parameters to [over]fit.

• Most common prior for categorical is the Dirichlet distribution:

– Generalization of the beta distribution to k classes (requires 𝛼" > 0).

• This is a distribution over Θ values:
– Since the Θ parameterize probabilities,

Dirichlet is a probability distribution over possible probability distributions.



Dirichlet Distribution
• Wikipedia’s visualizations of Dirichlet distribution for k=3:

• Can bias towards various types of probabilities.
https://en.wikipedia.org/wiki/Dirichlet_distribution
https://commons.wikimedia.org/wiki/Category:Dirichlet_distribution



MAP Estimation and Dirichlet Prior
• The MAP for a categorical with Dirichlet prior is given by:

– Derivation is similar to the MLE derivation.

• Dirichlet has k hyper-parameters 𝛼%.
– We often set 𝛼" = 𝛼 for some constant 𝛼 (reduces to 1 hyper-parameter).
– This simplifies the MLE to:

– With 𝛼 = 2, we get Laplace smoothing (“add 1 to count of each class”).



Posterior for Categorical Likelihood + Dirichlet Prior

• People use the Dirichlet because posterior has a simple form:

– This is another Dirichlet distribution with “updated” parameters '𝛼".
• Where &𝛼$ = 𝑛$ + 𝛼$.
• Again, make sure you understand why we can recognize this as a Dirichlet.

– The normalizing constant must be the normalizing constant for the Dirichlet.



Conjugate Priors
• We have now some examples of a convenient phenomenon:

– If we put a beta prior on a Bernoulli likelihood, posterior is beta.
• Same happens if you put beta prior on binomial/geometric: posterior is beta.

– If we put a Dirichlet prior on a categorical likelihood, posterior is Dirichlet.

• In these situations, we say the prior is conjugate to the likelihood.
– With conjugate priors, the prior and posterior come from the same “family”.

• The posterior will look like the prior with “updated” parameters.

• Many computations become easier when we use conjugate priors.
– Because we have an explicit formula for the posterior distribution.
– But not all distributions have conjugate priors.



Next Topic: Bayesian Learning



Problems with MAP
• With good hyper-parameters, MAP usually outperforms MLE.

• But MAP is still weird.
– Recall that we said that decoding the mode can do weird things.

• The value with highest probability/PDF may not represent “typical” behavior.
– MAP is maximum a posteriori, the posterior mode.

• MAP is fine if you want to find parameters with highest probability,
but in ML usually the goal is to make predictions (or decisions).

– Our ultimate goal is not just to find the best parameters.

• You can show that MAP is a sub-optimal way to make predictions.



Example: “Two Heads” with “Fair vs. Unfair” Prior
• Suppose you have a Bernoulli variable and the following prior:
– p(𝜃 = 0.5) = 0.5 and p(𝜃 = 1) = 0.5.

• You think coin has 50% chance of being fair, 50% chance of “always landing head”.

• The first two coin flips are “head”.
– x1 = 1, x2= 1.

• What is the probability that the third flip will be a “head”?
– MAP approach:

– MAP predicts 100% chance of head.
• But the MAP “decoding” of the parameters is over-confident.

– There was a 1/4 chance of seeing two heads from the fair coin. 



Example: “Two Heads” with “Fair vs. Unfair” Prior

• Can compute correct probability using marginalization rule over 𝜃:

• The correct probability weights possible predictions by posterior.
– Assume x3 is independent of X once we know 𝜃:
– Use Bayes rule to compute posterior and get final answer:



Bayesian Approach to Machine Learning
• MAP predicted 100% chance that third coin would be a head.
– But the correct value was only 90% (obtained by marginalizing over 𝜃).

• “Compute correct probability by marginalizing over parameters” is 
called the Bayesian approach to machine learning.
– MAP approach optimizes posterior over parameter values.

• Searches for the single “best” parameter value according to posterior.
– Bayesian approach marginalizes posterior over parameter values.

• Considers all possible parameter values, but upweighting ones with high posterior.

• MAP and Bayes are similar if posterior is “concentrated” at one 𝜃.
– But if there are many reasonable 𝜃, Bayes can be much better.



Digression: Review of Independence
• Let 𝐴 and 𝐵 be random variables taking values 𝑎 ∈ 𝒜 and 𝑏 ∈ ℬ.

• We say that 𝐴 and 𝐵 are independent if for all 𝑎 and 𝑏 we have:

• To denote independence of 𝐴 and 𝐵 we often use the notation:

• The product of Bernoullis model assumes mutual independence:



Digression: Review of Independence
• For independent 𝐴 and 𝐵 we have:

• We can also use this as a more intuitive definition:
– 𝐴 and 𝐵 are independent if for all 𝑎 and 𝑏 where 𝑝 𝑏 ≠ 0 we have:

• In words: “knowing 𝑏 tells us nothing about 𝑎” (and vice versa: p(b | a)=p(b)).
• This will often simplify calculations.

• Useful fact that can help determine if variables are independent:
– A ⫫ B iff 𝑝 𝑎, 𝑏 = 𝑓 𝑎 𝑔(𝑏) for some functions 𝑓 and 𝑔.



Digression: Review of Conditional Independence

• We say that 𝐴 is conditionally independent of 𝐵 given 𝐶 if:

– Same as independence definition, but “knowing extra stuff” 𝐶.

• Or, alternatively:

– “If you know 𝐶, then also knowing 𝐵 would tell you nothing about 𝐴.”

• We often write this as:
• In naïve Bayes we assume 𝑋* ⫫ 𝑋+| 𝑌 for all i and j.
– As we saw, this makes inference and learning easy.



Standard ML Independence Assumptions (MEMORIZE)
• In machine learning we typically make a standard set of independence assumptions:

– IID assumption: training examples are independent of each other.

• “If you see example xi, it doesn’t tell you anything about xj.”
• Maybe better framing is 𝑥! ⫫ 𝑥"| 𝒟: they’re conditionally independent given the hidden “data-generating process” 𝒟.

– Independence of data given parameters.

• “If we know the parameters, the examples are independent of each other”
• Again, maybe better to think of this as 𝑥!⫫ 𝑥"| 𝜃, 𝒟.

– Independence of features X and parameters w in discriminative models.

• Discriminative models assume parameters are fixed, and w just transforms them to y (knowing X without y tells you nothing).
– Conditional independence of data and hyper-parameters, given parameters:

• “Given the parameters, the hyper-parameters don’t tell you anything more about the data.”
• Later we’ll discuss the models that lead to these assumptions, and testing independence in a model.



Bayesian Approach for Bernoulli-Beta Model
• Consider probability that x3= 1 after x1=1 and x2=1 with beta prior:

• Now use that posterior is a beta with parameters 2𝛼 and #𝛽.



Bayesian Approach for Bernoulli-Beta Model
• The correct probability of seeing a “head” after 2 flips in Bernoulli-beta:

• With a uniform prior, (𝛼 = 𝛽 = 1), then Pr(x3 = 1 | x1=1, x2=1, 𝛼, 𝛽) = ¾.
– The MAP under a uniform prior (which is MLE) would be 𝜃 =1.

• It is less confident than MAP since it considers all possible 𝜃 values, not just the most likely.
• Bayesian estimate is not degenerate even under a uniform prior here.

• Looks like Laplace smoothing, but trusts data less for same 𝛼 and 𝛽.
– For other models, MAP and Bayes can be much more different.



Effect of Prior in Bernoulli-Beta
• In Bayesian approach, hyper-parameters 𝛼 and 𝛽 can be thought of as “pseudo-counts”.

– The number of 0 and 1 outcomes you have in your imagination before you see any data.

• If we see 3 “heads” (x1=1,x2=1,x3=1), the probability of a 4th under different priors:
– Beta(1,1) prior is like seeing 1 imaginary head and 1 tail before flipping.

• Probability is 4/5, even though all 𝜃 values under this uniform prior “equally likely”.
– Beta(3,3) prior is like seeing 3 imaginary heads and 3 tails.

• Probability is 0.667. This is a stronger bias towards 0.5.
– Beta(100,1) prior is like seeing 100 imaginary heads and 1 tail.

• Probability is 0.990. This is a strong bias towards high 𝜃 values.
– Beta(0.01,0.01) prior biases towards having an unfair coin (head or tail).

• Probability is 0.997. 

• We might hope to use an “uninformative” prior to not bias results.
– We saw that with the “uniform” prior, Beta(1,1), it biases towards 0.5.
– See bonus for additional details on why “uninformative” can be 

hard/ambiguous/impossible/undesirable.



Motivation: Controlling Complexity
• For many application, we need complicated models.
• But complex models can overfit.
• So what should we do?

• In CPSC 340 we saw two ways to reduce overfitting:
– Model averaging (like in random forests).
– Regularization (like in L2-regularized linear regression).

• Bayesian methods combine both of these.
– Average over “models”, weighted by posterior (which includes regularizer).

• Recall that the regularizer corresponds to the negative logarithm of the prior.
– This can allow you fit extremely complicated models without overfitting.



MAP vs Bayes for Categorical-Dirichlet
• MAP (regularized optimization) approach maximizes over parameters:

• Bayesian approach predicts by integrating over possible parameters:

• Considers all possible Θ, and weights prediction by posterior for Θ.
– Posterior contains a regularizer, so this is averaging and regularizing.



Ingredients of Bayesian Inference (MEMORIZE)
1. Likelihood 𝑝 𝑋 Θ)
– Probability of seeing data given parameters.

2. Prior p(Θ | Α).
– Belief that parameters are correct before we have seen data.

3. Posterior p(Θ | 𝑿, Α).
– Probability that parameters are correct after we have seen data.
– MAP maximizes, but Bayesian approach uses the whole distribution.

4. Posterior predictive 𝑝 #𝑋 𝑿, Α) (NEW).
– Probability of new data ,𝑋 given old data 𝑿, integrating over parameters.

• Specifically, we average the likelihood of ,𝑋, weighted by the posterior of 𝜃 given 𝑿.
– Bayesian approach uses this distribution for inference.



Bayesian Approach: Discussion
• Our previous “learn then predict” approaches (MLE and MAP):
– Optimize parameters 𝜃 (learning).
– Do inference with the parameter estimate /𝜃 (inference).

• Bayesian approach doesn’t really have a separate “learning phase”.
– There is no optimization of the parameter 𝜃.
– You just skip to doing inference with the posterior predictive.

• Consider all parameters 𝜃.

• In practice, it often still looks like “learn then predict”.
– Characterize the form of the posterior (“learning”).
– Make predictions by doing integrals with the posterior (inference).



Bayesian Approach: Discussion
• The Bayesian approach is the optimal way to use a probabilistic model.
– It’s what the rules of probability say we should do.
– …if you believe in your probability model (prior + likelihood).

• If the prior is bad, Bayesian approach can be harmful.
– Bayesian approach historically criticized since it requires “subjective” prior.
– But all models are based on “subjective” assumptions, sometime hidden!

• As we see more data, Bayesian posterior concentrates on MLE.
– MLE/MAP/Bayes usually more or less agree for large datasets.

• Real problem with the Bayesian approach is that integrals are hard.
– Posterior and posterior predictive only have a nice form with conjugate priors.

• Otherwise, you need to use methods like Monte Carlo or “variational” methods for inference.



Uninformative Priors and Jeffreys Priors
• We might want to use an uninformative prior to not bias results.
– But this is often hard/impossible to do.

• We might think the uniform distribution, Beta(1,1), is uninformative.
– But posterior will be biased towards 0.5 compared to MLE.
– And if you use a different parameterization it won’t stay uniform.

• We might think to use “pseudo-count” of 0, Beta(0,0), as uninformative.
– But posterior isn’t a probability until we see at least one head and one tail.

• Some argue that the “correct” uninformative prior is Beta(0.5,0.5).
– This prior is invariant to the parameterization, which is called a Jeffreys prior.



Summary
• MLE for categorical distribution:

– Write using unnormalized parameters and 
normalizing constant ‘Z’.

• Dirichlet distribution:
– “Probability distribution over discrete probability 

distributions”.
– When used as prior for categorical, posterior is 

also Dirichlet.
– MAP estimate with Dirichlet prior gives 

generalization of Laplace smoothing.
• Conjugate prior:

– Prior for a particular likelihood such that posterior 
is in same “family”.

• Conditional independence of A and B [given C].
– “Knowing A tells you nothing about B [if you also 

know C]”.
– Independence assumptions often simplify 

computations.
– In ML we make a standard set of independence 

assumptions.
• Data and hyper-parameters are independent given 

parameters.
• Bayesian learning.

– Do inference with the posterior predictive (no 
“learning” phase).

– Can be viewed as regularizing and averaging over 
parameters (harder to overfit).

– Involves solving unpleasant integrals (unless you 
have a conjugate prior).

• Next time: priors on priors + relaxing IID.


