CPSC 440/540: Machine Learning

Bayesian Learning
Winter 2023



Last Time: Monte Carlo Methods

* Monte Carlo approximates expectation of random functions:
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* Can approximate a wide variety of quantities by changing g:
— Mean: g(x) =
— Probability of event ‘A’: g(x) = 1[“A happened”].
— CDF: g(x) =1[x < c].
e This is useful when:
— You know how to sample from p(x).
— You do not know how to efficiently compute E[g(x)].
— Are patient and/or don’t care about being precise, because it converges slowly.
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Monte Carlo for Snakes and Ladders

* Consider the children’s game “Snakes and Ladders”:

— Start on ‘1’, roll die, move marker, go up/down on ladder/snake, end at 100.
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— No decisions, so you can simulate the game. R

* How many turns does it take for this game to end? [= Ll B, Al Rl

%
82
79
61 | ] 63 Lo | &
Sl S5 52 sz|s-
.,df.
‘ 20

— Simulate game many times, count number of turns. - a
— Compute average number of turns. K %D [ W= [
* Probability and cumulative probability: LA - S To ]9

Cummulative probability of finishing
game in n-moves




Conditional Probabilities with Monte Carlo

 We often want to compute conditional probabilities.
— “What is the probability that the game will go more than 100 turns, if it already went 50 turns?”

* A Monte Carlo approach for estimating p(A | B):
— Generate a large number of samples.
— Use Monte Carlo estimate of p(A, B) and p(B) to approximate conditional:
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* Frequency of the first event, in samples consistent with the second event.
— This is the MLE for a binary variable that is 1 when A happens, conditioned on B happening.

* This is a special case of rejection sampling (general case later).
— Unfortunately, if B is rare then most samples are “rejected” (ignored).
— The conditional probability demo here has a good visualization of this.


https://seeing-theory.brown.edu/compound-probability/index.html

Next Topic: MLE and MAP for Categorical



MLE for Categorical Distribution

 Now we will consider how to train a categorical model (“learning”).
— Goal is to go from samples to an estimate of parameters 64, 65, ..., O
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p(x = LIB) = 0.34, p(x=NDP) = 0.34,
« - CPC p(x = CPC) = 0.27, p(x=GRN) = 0.03,
NDP p(x = PPC) = 0.02.
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e As before we will first cg‘nsider maximum likelihood estimation:
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— In this case the MLE is given by 8, = % (n.is number ‘c’ examples).

* If “34% of your samples are LIB, your guess for 8;;5=0.34".
* As with Bernoulli, the derivation of the MLE is not as a simple as the result.



Derivation of MLE (that does not work)

Last time we showed that the likelihood has the form:
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Derivation of MLE: Handling “Sum to 1”

e “Set derivative of log-likelihood equal to 0” does not work.
— Because of constraint that the 6. must sum to 1, derivative is not zero at MLE.

* Approaches used in textbooks to enforce constraints:
— Use “Lagrange multipliers” and find stationary point of “Lagrangian”.
— Define 8, = 1 — Y¥Z1 6, to make it unconstrained.
— See StackExchange thread here.

* We will take a different approach to make it unconstrained:
1. Use a unnormalized parameterization 6, that doesn’t have constraints.
2. Compute the MLE for the §C by setting log-likelihood derivative to zero.
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3. Convert from the 6. parameters to our usual 8. parameters by normalizing.


https://math.stackexchange.com/questions/2725539/maximum-likelihood-estimator-of-categorical-distribution

Unconstrained Parameterization
* Consider categorical distribution with unnormalized parameters:
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— To give non-negative probabilities, we require that 8, = 0 for all ‘c’.
* The normalized probability can then be written:
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— The “normalizing constant” makes the probability sum to 1 across ¢ values.
* So we do not need to an explicit “sum to 1” constraint.

— We convert from unnormalized to normalized by dividing by Z: 6, = %.



Derivation of MLE (that does work)

Using the unnormalized parameters in the likelihood gives:
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MAP Estimation and Dirichlet Prior

* As before, we may prefer to use a MAP estimate over the MLE.

— Often becomes more important as k grows.
* More parameters to [over]fit.

* Most common prior for categorical is the Dirichlet distribution:
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— Generalization of the beta distribution to k classes (requires a. > 0).

 This is a distribution over O values:

— Since the 0 parameterize probabilities,
Dirichlet is a probability distribution over possible probability distributions.



Dirichlet Distribution

* Wikipedia’s visualizations of Dirichlet distribution for k=3:
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MAP Estimation and Dirichlet Prior

* The MAP for a categorical with Dirichlet prior is given by:
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— Derivation is similar to the MLE derivation.
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* Dirichlet has k hyper-parameters «a,.

— We often set o, = a for some constant a (reduces to 1 hyper-parameter).

— This simplifies the MLE to:
A Nt
O ~ én(' +K(x~1)

— With a = 2, we get Laplace smoothing (“add 1 to count of each class”).



Posterior for Categorical Likelihood + Dirichlet Prior

* People use the Dirichlet because posterior has a simple form:
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— This is another Dirichlet distribution with “updated” parameters ..
* Wherea, =n, + a,.
* Again, make sure you understand why we can recognize this as a Dirichlet.
— The normalizing constant must be the normalizing constant for the Dirichlet.
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Conjugate Priors

* We have now some examples of a convenient phenomenon:

— |If we put a beta prior on a Bernoulli likelihood, posterior is beta.
« Same happens if you put beta prior on binomial/geometric: posterior is beta.
— |If we put a Dirichlet prior on a categorical likelihood, posterior is Dirichlet.

* In these situations, we say the prior is conjugate to the likelihood.
— With conjugate priors, the prior and posterior come from the same “family”.
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* The posterior will look like the prior with “updated” parameters.

 Many computations become easier when we use conjugate priors.
— Because we have an explicit formula for the posterior distribution.
— But not all distributions have conjugate priors.



Next Topic: Bayesian Learning



Problems with MAP

With good hyper-parameters, MAP usually outperforms MLE.

But MAP is still weird.

— Recall that we said that decoding the mode can do weird things.
* The value with highest probability/PDF may not represent “typical” behavior.

— MAP is maximum a posteriori, the posterior mode.

MAP is fine if you want to find parameters with highest probability,
but in ML usually the goal is to make predictions (or decisions).

— Our ultimate goal is not just to find the best parameters.

You can show that MAP is a sub-optimal way to make predictions.



Example: “Two Heads” with “Fair vs. Unfair” Prior

e Suppose you have a Bernoulli variable and the following prior:
— p(6@ =0.5)=0.5and p(@ =1) =0.5.

* You think coin has 50% chance of being fair, 50% chance of “always landing head”.

* The first two coin flips are “head”.
— x1=1, x2=1.

 What is the probability that the third flip will be a “head”?
— MAP approach: ) FMJ é\ £ a/(jmxz'a(@/X)g
A (mMLe o= | A= DEY

— MAP predicts 100% chance of head.

* But the MAP “decoding” of the parameters is over-confident.
— There was a 1/4 chance of seeing two heads from the fair coin.



Example: “Two Heads” with “Fair vs. Unfair” Prior

* Can compute correct probability using marginalization rule over 0:
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 The correct probability weights possible predictions by posterior.

— Assume x3 is independent of X once we know 6: ()(X ]_ @X} f()( 1 / 7
— Use Bayes rule to compute posterior and get final answer:
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Bayesian Approach to Machine Learning

* MAP predicted 100% chance that third coin would be a head.
— But the correct value was only 90% (obtained by marginalizing over 8).

 “Compute correct probability by marginalizing over parameters” is
called the Bayesian approach to machine learning.

— MAP approach optimizes posterior over parameter values.
» Searches for the single “best” parameter value according to posterior.

— Bayesian approach marginalizes posterior over parameter values.
e Considers all possible parameter values, but upweighting ones with high posterior.

* MAP and Bayes are similar if posterior is “concentrated” at one 4.
— But if there are many reasonable 8, Bayes can be much better.



Digression: Review of Independence

Let A and B be random variables taking values a € A and b € B.

We say that A and B are independent if for all a and b we have:

P(ﬁ)é): r(a)}oa)

To denote independence of A and B we often use the notation:
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The product of Bernoullis model assumes mutual independence:
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Digression: Review of Independence

* For independent A and B we have:

plal )= plab) = plogth —
r(b) '/t(A) [
 We can also use this as a more intuitive definition:
— A and B are independent if for all a and b where p(b) # 0 we have:

p(al)=p ()

* In words: “knowing b tells us nothing about a” (and vice versa: p(b | a)=p(b)).
* This will often simplify calculations.

e Useful fact that can help determine if variables are independent:
— Al Biffp(a,b) = f(a)g(b) for some functions f and g.



Digression: Review of Conditional Independence

We say that A is conditionally independent of B given C if:
F(Q7 b I CI) = r(o\ { C)/’(é /(,) T'%/ d\/‘ ﬂ) é,mm./ C lA«iﬂn /J(()-fo

— Same as independence definition, but “knowing extra stuff” C.

Or, alternatively:
F(ﬁ/",d:'o(qlc) Or {J(l? I“‘)")’,D(é/c)

— “If you know C, then also knowing B would tell you nothing about A.”

We often write thisas: A [l £ | C

In naive Bayes we assume X; 1L X;| Y for all i and j.

— As we saw, this makes inference and learning easy.



Standard ML Independence Assumptions (MEMORIZE)

In machine learning we typically make a standard set of independence assumptions:
— 1ID assumption: training examples are independent of each other.

' J
Xl x
* “If you see example x|, it doesn’t tell you anything about x.”
« Maybe better framing is x! 1L x¥| D: they’re conditionally independent given the hidden “data-generating process” D.

— Independence of data given parameters. ] ,
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* “If we know the parameters, the examples are independent of each other”
* Again, maybe better to think of this as x'1L x*| 8, D.

— Independence of features X and parameters w in discriminative models.

w_ll X

* Discriminative models assume parameters are fixed, and w just transforms them to y (knowing X without y tells you nothing).
— Conditional independence of data and hyper-parameters, given parameters:

XA, b | @

* “Given the parameters, the hyper-parameters don’t tell you anything more about the data.”
Later we’ll discuss the models that lead to these assumptions, and testing independence in a model.



Bayesian Approach for Bernoulli-Beta Model

* Consider probability that x3= 1 after x=1 and x?=1 with beta prior:
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Bayesian Approach for Bernoulli-Beta Model

* The correct probability of seeing a “head” after 2 flips in Bernoulli-beta:

P(x”’ /X)o() B)= é"f (*h 6 /X,o()B)J&

* With a uniform prior, (&¢ = 8 = 1), then Pr(x3=1 | x!=1, x*=1, «a, B) = %.
— The MAP under a uniform prior (which is MLE) would be 6 =1.

* Itis less confident than MAP since it considers all possible 6 values, not just the most likely.
* Bayesian estimate is not degenerate even under a uniform prior here.

* Looks like Laplace smoothing, but trusts data less for same a and £.
— For other models, MAP and Bayes can be much more different.



Effect of Prior in Bernoulli-Beta

* In Bayesian approach, hyper-parameters a and [ can be thought of as “pseudo-counts”.
— The number of 0 and 1 outcomes you have in your imagination before you see any data.

* |f we see 3 “heads” (x'=1,x2=1,x3=1), the probability of a 4" under different priors:
— Beta(1,1) prior is like seeing 1 imaginary head and 1 tail before flipping.
* Probability is 4/5, even though all 8 values under this uniform prior “equally likely”.
— Beta(3,3) prior is like seeing 3 imaginary heads and 3 tails.
* Probability is 0.667. This is a stronger bias towards 0.5.
— Beta(100,1) prior is like seeing 100 imaginary heads and 1 tail.
* Probability is 0.990. This is a strong bias towards high 6 values.

— Beta(0.01,0.01) prior biases towards having an unfair coin (head or tail).
* Probability is 0.997.

* We might hope to use an “uninformative” prior to not bias results.
— We saw that with the “uniform” prior, Beta(1,1), it biases towards 0.5.

— See bonus for additional details on why “uninformative” can be
hard/ambiguous/impossible/undesirable.



Motivation: Controlling Complexity

For many application, we need complicated models.
But complex models can overfit.
So what should we do?

In CPSC 340 we saw two ways to reduce overfitting:
— Model averaging (like in random forests).
— Regularization (like in L2-regularized linear regression).

Bayesian methods combine both of these.

— Average over “models”, weighted by posterior (which includes regularizer).
* Recall that the regularizer corresponds to the negative logarithm of the prior.

— This can allow you fit extremely complicated models without overfitting.



MAP vs Bayes for Categorical-Dirichlet

 MAP (regularized optimization) approach maximizes over parameters:
N
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e Bayesian approach predicts by integrating over possible parameters:
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Ingredients of Bayesian Inference (MEMORIZE)

1. Likelihood p(X | ©)
— Probability of seeing data given parameters.
2. Priorp(0@ | A).
— Belief that parameters are correct before we have seen data.
3. Posteriorp(0 | X,A).
— Probability that parameters are correct after we have seen data.
— MAP maximizes, but Bayesian approach uses the whole distribution.

4. Posterior predictive p(X | X, A) (NEW).

— Probability of new data X given old data X, integrating over parameters.
» Specifically, we average the likelihood of X, weighted by the posterior of 8 given X.

— Bayesian approach uses this distribution for inference.



Bayesian Approach: Discussion

e Our previous “learn then predict” approaches (MLE and MAP):
— Optimize parameters 6 (learning).
— Do inference with the parameter estimate 6 (inference).

e Bayesian approach doesn’t really have a separate “learning phase”.
— There is no optimization of the parameter 6.

— You just skip to doing inference with the posterior predictive.
e Consider all parameters 6.

* |In practice, it often still looks like “learn then predict”.
— Characterize the form of the posterior (“learning”).
— Make predictions by doing integrals with the posterior (inference).



Bayesian Approach: Discussion

The Bayesian approach is the optimal way to use a probabilistic model.
— It’'s what the rules of probability say we should do.
— ...if you believe in your probability model (prior + likelihood).

If the prior is bad, Bayesian approach can be harmful.
— Bayesian approach historically criticized since it requires “subjective” prior.
— But all models are based on “subjective” assumptions, sometime hidden!

As we see more data, Bayesian posterior concentrates on MLE.
— MLE/MAP/Bayes usually more or less agree for large datasets.

Real problem with the Bayesian approach is that integrals are hard.

— Posterior and posterior predictive only have a nice form with conjugate priors.
* Otherwise, you need to use methods like Monte Carlo or “variational” methods for inference.



bomAS_(
Uninformative Priors and Jeffreys Priors

We might want to use an uninformative prior to not bias results.
— But this is often hard/impossible to do.

We might think the uniform distribution, Beta(1,1), is uninformative.
— But posterior will be biased towards 0.5 compared to MLE.
— And if you use a different parameterization it won’t stay uniform.

We might think to use “pseudo-count” of 0, Beta(0,0), as uninformative.
— But posterior isn’t a probability until we see at least one head and one tail.

Some argue that the “correct” uninformative prior is Beta(0.5,0.5).
— This prior is invariant to the parameterization, which is called a Jeffreys prior.



Summary

* MLE for categorical distribution: * Conditional independence of A and B [given C].
— Write using unnormalized parameters and — “Knowing A tells you nothing about B [if you also
normalizing constant ‘Z’. know C]”.
e Dirichlet distribution: — Independence assumptions often simplify

— “Probability distribution over discrete probability computations. -
distributions”. — In ML we make a standard set of independence

assumptions.
* Data and hyper-parameters are independent given
parameters.
* Bayesian learning.

— Do inference with the posterior predictive (no
“learning” phase).

— Can be viewed as regularizing and averaging over
parameters (harder to overfit).

— Involves solving unpleasant integrals (unless you
have a conjugate prior).

— When used as prior for categorical, posterior is
also Dirichlet.

— MAP estimate with Dirichlet prior gives
generalization of Laplace smoothing.
* Conjugate prior:
— Prior for a particular likelihood such that posterior
is in same “family”,

* Next time: priors on priors + relaxing IID.



