
CPSC 440/540: Machine Learning

Fully-Convolutional Networks
Winter 2022



Last Time: Multi-Label Classification
• Consider multi-label classification:
– “Which of the ‘k’ objects are in this image?”

• We considered an encoding-decoding approach:
– Fewer parameters than independent classifiers.
– Captures dependencies through shared hidden layer.

http://image-net.org/challenges/LSVRC/2013/



Some clarification about “encoders”/”decoders”

• (Vanilla) autoencoders have clear “bottleneck” / “encoder” / 
“decoder” structure (…right?)



Some clarification about “encoders”/”decoders”

• (Vanilla) autoencoders have clear “bottleneck” / “encoder” / 
“decoder” structure (…right?)

• Denoising autoencoders: not necessarily…



Some clarification about “encoders”/”decoders”

• (Vanilla) autoencoders have clear “bottleneck” / “encoder” / 
“decoder” structure (…right?)

• Denoising autoencoders: not necessarily…
• “Encoder” / “decoder” structure for multilabel classifiers:
– Just terminology we decide to use!
– Definitely not an autoencoder!



Some clarification about unsupervised pre-training

• One version of what I meant last time: semi-supervised learning
– 1. Train an autoencoder on all of Instagram (e.g.)
– 2. Use its features for softmax regression on your (small) labeled dataset

• Could also “fine-tune” the whole network;
this would be one version of unsupervised pre-training



Some clarification about unsupervised pre-training

• What “unsupervised pre-training” used to mean
• Old scheme for deep networks: stacked denoising autoencoders
– Train a two-layer denoising autoencoder
– Freeze the encoder layer as first layer of your deep net
– Train a denoising autoencoder on activations from that layer
– Freeze its encoder as the second layer of your deep net
– Repeat
– Fine-tune with SGD at the end

• People don’t do this anymore: we can do end-to-end SGD now



Motivation: Pixel Classification
• Suppose we want to assign a binary label to each pixel in an image:
– Tumour vs. non-tumour, pedestrian vs. non-pedestrian, and so on.

• How can we use CNNs for this problem?
https://ipsjcva.springeropen.com/articles/10.1186/s41074-019-0062-2
https://www.youtube.com/watch?v=YbNmL6hSNKw



Naïve Approach: Sliding Window Classifier
• Train a CNN that predicts pixel label given its neighbourhood.

• To label all pixels, apply the CNN to each pixel.
– Advantages:

• Turns pixel labeling into image classification.
• Can be applied to images of different sizes.

– Disadvantage: this is slow.
• (Cost of applying CNN) * (number of pixels in the image).

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53



Encoding-Decoding for Pixel Classification
• Similar to multi-label, could use CNN to generate an image encoding.
– With output layer making a prediction at each pixel.

• Much-faster classification.
– Small number of “global” convolutions, instead of repeated “local” convolutions.

• But, the encoding has mixed up all the space information.
– Due to fully-connected layers. 
– Fully-connected layer needs to learn “how to put the image together”.

• And images must be the same size.

Convolution ReLU Pool Convolution ReLU

https://ipsjcva.springeropen.com/articles/10.1186/s41074-019-0062-2

Pool Fully-
Connected

Fully-
Connected

ReLU



Fully-Convolutional Networks
• Fully-convolutional networks (FCNs):
– CNNs with no fully-connected layers (only convolutional and pooling).

• Maintains fast classification of the encoding-decoding approach.
• Same parameters used across space at all layers.
– This allows using the network on inputs of different sizes.
– Needs upsampling layer(s) to get back to image size.

• FCNs quickly achieved state of the art results on many tasks.
https://ipsjcva.springeropen.com/articles/10.1186/s41074-019-0062-2

Convolution ReLU Pool Convolution ReLU Pool Convolution ReLU
Up-

sample



Traditional Upsampling Methods
• In upsampling, we want to go from a small image to a bigger image.
– This requires interpolation: guessing “what is in between the pixels”.

• Classic upsampling operator is nearest neighbours interpolation:
– But this creates blocky/pixelated images.

https://towardsdatascience.com/transposed-convolution-demystified-84ca81b4baba



Traditional Upsampling Methods
• Another classic method is bilinear interpolation:
– Weighted combination of corners:
– More smooth methods include “bicubic” and “splines”.

• In FCNs, we learn the upsampling/interpolation operator.

https://towardsdatascience.com/transposed-convolution-demystified-84ca81b4baba



Upsampling with Transposed Convolution
• FCN Upsampling layer is implemented with a transposed convolution.

– Sometimes called “deconvolution” in ML or “fractionally-strided convolution”.
• But not related to deconvolution in signal processing.

• Convolution generates 1 pixel by taking weighted combination of several pixels.
– And we learn the weights.

• Transposed convolution generates several pixels by weighting 1 pixel.
– And we learn the weights.
– This generates overlapping regions, which get added together to make final image.

https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Noh_Learning_Deconvolution_Network_ICCV_2015_paper.pdf



Upsampling with Transposed Convolution

• Animations here and here.
https://towardsdatascience.com/transposed-convolution-demystified-84ca81b4baba

https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1
https://medium.com/apache-mxnet/transposed-convolutions-explained-with-ms-excel-52d13030c7e8


Why is it called “transposed” convolution?
• We can write the convolution operator as a matrix multiplication, z = W’ x.

• In transposed convolution, non-zero pattern of ‘W’ is transposed from convolution.
– You can implement transposed convolution as a convolution.

• In this example the filter is the same, but does not need to be:
– Transposed convolution is not the “reverse” of convolution (it only “reverses” the size).

https://www.machinecurve.com/index.php/2019/09/29/understanding-transposed-convolutions/



Increasing Resolution: FCN Skip Connections
• Convolutions and pooling lose a lot of information.
• Original FCN paper considered adding skip connections to help upsampling:

• Allows using high-resolution information from earlier layers.
• They first trained the low-resolution FCN-32, then FCN-16, then FCN-8.

– “First learn to encode at a low resolution”, then slowly increase resolution.
– Parameters of transposed convolutions initialized to simulate “bilinear interpolation”.

https://arxiv.org/pdf/1411.4038.pdf



Increasing Resolution: Deconvolution Networks
• Alternate resolution-increasing method is deconvolution networks:

• Includes transposed convolution layers and unpooling layers.
– Store the max pooling argmax values. 
– Restores “where” activation happened.

• Still loses the “non-argmax” information.

https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Noh_Learning_Deconvolution_Network_ICCV_2015_paper.pdf
https://towardsdatascience.com/transposed-convolution-demystified-84ca81b4baba



Increasing Resolution: U-Nets
• Another popular variant is u-nets:

• Decoding has connections to same-resolution encoding step.
https://arxiv.org/pdf/1505.04597.pdf



Source of Labels
• Labeling every pixel takes a long time.
• Where we get the labels from?
– Domain expert (medical images).
– Grad students or paid labelers (ImageNet).
– Simulated environments.

• High number of
lower-quality examples.

• Often a net gain with 
fine-tuning on real images.

• Can get data at night, in fog,
or dangerous situations.

https://arxiv.org/pdf/1608.01745v1.pdf



Source of Labels
• Recent works recognize you do not need to label every pixel.
– You can evaluate loss/gradient on a subset of labeled pixels.
– Could have labeler click on a few pixels inside objects, and a few outside.

• Many variations are possible, that let you label a lot of images in a short time.

• Penguin counting based “single pixel” labels in training data:
– And some tricks to separate objects and remove false positives:

https://arxiv.org/pdf/1807.09856.pdf



End of Part 1 (“Binary Variables”): Key Concepts

• We discussed binary density estimation.
– Model the proportion of times a binary event happens.

• We discussed the Bernoulli parameterization.
• We discussed various inference tasks, given the parameter:
– Compute probabilities, find decoding, generate samples.

• We discuss different learning strategies, given data:
– Maximum likelihood estimation (MLE), maximum a posteriori (MAP).
– Beta distribution as a prior gives a beta distribution as posterior (“∝”).

• We discussed modeling binary variables conditioned on features:
– Tabular parameterization is flexible but has too many parameters.
– Logistic regression is limited but has a linear number of parameters.



End of Part 1 (“Binary Variables”): Key Concepts
• We discussed multivariate binary density estimation.

– Refined inference tasks when we have more than one random variable:
• Joint probability, marginal probability, and conditional probability.

– Product of Bernoullis assumes variables are independent.
• Fast inference/learning but a strong assumption.

• We discussed generative classifiers:
– Build a model of the joint probability of features and labels.

• Compared to usual discriminative classifiers that model labels given features.
– Naïve Bayes assumes features are independent given label.

• We discussed neural networks:
– Model that learns the features and classifier simultaneously.
– Alternate between linear and non-linear transformations (universal approximator).
– Training is a non-convex problem, but SGD often works better than expected:

• For large-enough networks we often find global, and SGD seems to have implicit regularization.



End of Part 1 (“Binary Variables”): Key Concepts

• We discussed deep learning with multiple hidden layers.
– Biological motivations and efficient representation of some functions.
– Vanishing gradient problem and modern solutions:

• ReLU, skip connections, ResNets.

• We discussed automatic differentiation to generate gradient code.
– Code that generates gradient code for you (using chain rule).

• We discussed convolutional neural networks (CNNs):
– Include convolution layers that measure image features.
– Include max pooling layers that highlight top features across space.
– Reduces number of parameters and gives some spatial invariance.



End of Part 1 (“Binary Variables”): Key Concepts
• We discussed autoencoders:
– Networks where the output is the input.
– Encodes input into a bottleneck layer, then decodes back to input.
– Non-linear dimensionality reduction.
– Denoising autoencoders learn to enhance images.

• We discussed multi-label classification:
– Where each training examples can have 0-k correct labels.
– We discussed an encoding approach where the classes shares hidden layers.

• Reduces parameters and captures dependencies between labels.
– We discussed pre-training to learn new tasks with fewer labeled examples.

• We discussed pixel labeling:
– Fully-convolutional networks maintain spatial information at all layers.

• Requires upsampling to original image size.
• Can label images of different sizes.



Next Topic: Categorical Variables



Motivating problem: Political Polling
• Want to know support for political parties among a voter group.
– What percentage will vote the Liberal party? Conservative party? NDP?

• What to know support for each party, since may want to attract voters?

• Where Mark lives, the last election results were:
– 34.4% LIB
– 33.5% NDP
– 26.8% CPC
– 2.9% GRN
– 2.4% PPC

• We want to predict these quantities based on a sample (“poll”).



General Problem: Categorical Density Estimation
• This is a special case of density estimation with a categorical variable:
– Input: n IID samples of categorical values x1, x2, x3,…, xn from a population.
– Output: model of probability that X=1, X=2, X=3, …, X=k.

• Categorical density estimation as a picture:

• We are going to revisit many of our previous concepts in this case.
– Again building up to more-complicated cases.

• And introducing some concepts that we skipped in Part 1.

Party?

LIB

CPC

NDP

LIB

GRN

Pr(X = LIB) = 0.34
Pr(X = CPC) = 0.27
Pr(X = NDP) = 0.34
Pr(X = GRN) = 0.03
Pr(X = PPC) = 0.02

X = 



Other Applications of Categorical Density Estimation

• Other applications where categorical density estimation is useful:
– What portion of my clients use cash, credit, or debit?
– Prevalence of different blood types.
– Probability of having different types of cancers.
– Probability of seeing different words (natural language processing).

• For categorical variables, we do not assume there is an ordering.
– Category 4 is not “closer” to category 3 than it is to category 1.



Ordinal Variables
• Categorical variables with an ordering are called ordinal:
– Dice (1, 2, 3, 4, 5, 6).

• Though I may use dice to illustrate categorical ideas.

– Survey results (“strongly disagree”, “disagree”, “neutral”,…).
– Ratings (1 star, 2 star,…).
– Tumour grading (Grade I, Grade II, Grade III, Grad IV).

• We will not cover ordinal variables (for now), but several methods exist.
– Such as “ordinal logistic regression”. 

• A loss function that reflects that “2 stars” is closer to “3 stars” than “4 stars”.
– But the distances between adjacent “stars” may not be the same.

• That loss function can be used in place of “softmax” in neural nets with ordinal labels.



Parameterization of Categorical Probabilities 
• We typically parameterize using the categorical distribution:
– Sometimes called “multinoulli”.
– Has parameters 𝜃!, 𝜃", … , 𝜃# when we have k categories.
– Defines probabilities using:

– Because probabilities sum to 1, we require:

• One way to write this for a generic x:



Inference Task: Union
• Inference task : given 𝜃, compute probabilities of unions:
– For example, Pr(X = LIB ∪ X = NDP | Θ).

• What fraction of votes would these parties their supporters voted together?

• We assume the categories are mutually exclusive.
– “You can only pick one.”
– This allows us to compute unions with addition:

• Pr(X = 2 ∪ X = 3 ∪ X = 4 | Θ) = 𝜃! + 𝜃" + 𝜃#.

• A variation on this task is computing Pr(X ≤ c) for some value c.
– Easy to do: Pr(X ≤ 4) = 𝜃! + 𝜃" + 𝜃# + 𝜃$.
– We often want to do this even though the categories are unordered.
– We call Pr(X ≤ c) the cumulative distribution function (CDF).



Inference Task: Mode / Decoding
• Inference task: given 𝜃, find x that maximizes p(x | Θ) (decoding).

• Probably the most relevant inference for the elections example:
– The mode is “who wins the election”.

• Computing the decoding using “argmax” notation:

– So the decoding is the category ‘c’ where 𝜃$ is the largest.



• Inference task : given Θ and IID data, compute p(x1, x2,..., xn | Θ).
– The likelihood of training/validation/testing data.

• Assuming “independence of IID data given parameters”, we have:

• Where n1 is “number of 1s”, n2 is “number 2s”, and so on.
– Similar to the Bernoulli, the likelihood only depends on the counts.

Inference Task: Computing Dataset Probabilities 



Code for Categorical Likelihood
• We just showed that the categorical likelihood can be written:

• Will be very small for large n.
– Compute the log-likelihood in practice.

• Runtime: O(n + k).
– If n >> k (many samples, few categories), this is O(n).
– If k >> n (many categories, few samples), you could also get O(n).

• Only track the classes with non-zero counts. 



Inference Task: Sampling
• Inference task: given Θ, 

generate samples of ‘X’ distributed according to p(x | Θ).

• Notice that we are not “sampling a value for each of the classes”.
– Each sample will belong to one category.

• About 34% of the samples should be LIB, 27% will be CPC, and so on. 

Party?

LIB

CPC

NDP

LIB

GRN

Pr(X = LIB) = 0.34, Pr(X=NDP) = 0.34,
Pr(X = CPC) = 0.27, Pr(X=GRN) = 0.03,
Pr(X = PPC) = 0.02.



• Recall we assume we can sample uniformly between 0 and 1.
– And we want to turn this into a sample over the k categories.

• Sampling from categorical distribution with Θ = {0.4, 0.2, 0.3, 0.1}:
– Generate a uniform sample u.
– If u < 0.4, return 1 (like sampling from a Bernoulli with 𝜃 = 0.4).
– If u > 0.4 but less than 0.6, return 2 (like sampling Bernoulli with 𝜃 = 0.2).
– If u > 0.6 but less than 0.9, return 3 (like sampling Bernoulli with 𝜃 = 0.3).
– If u > 0.9, return 0 (like sampling Bernoulli with 𝜃 = 0.1).

Inference Task: Sampling



Inference Task: Sampling
• Formally, the sampler “returns the c such that p(x ≤ c-1) < u < p(x ≤ c)”.
– Where the CDF for categorical is p(x ≤ c) = 𝜃! + 𝜃" +⋯+ 𝜃%.

• Sampling from a categorical distribution with ‘k’ categories:
1. Generate ‘u’ uniformly on the interval between 0 and 1.
2. If u ≤ p(x ≤ 1), return 1.
3. If u ≤ p(x ≤ 2), return 2.
4. If u ≤ p(x ≤ 3), return 3.
5. …

• Runtime:
– If you compute Pr(x ≤ c) from scratch at each step, costs O(k2).
– If you use that Pr(x ≤ c) = Pr(x ≤ c-1) + 𝜃%, costs O(k).



Inference Task: Sampling
• In code:

• Calling this function each time costs O(k).

• You can go faster if you have CDF values stored.
– In this case, do a binary search for the c such that Pr(x ≤ c-1) < u < Pr(x ≤ c).

• Using this faster procedure, it costs O(k + t log k) to generate ‘t’ samples.
– O(k) to compute all the CDFs.
– O(log k) to do a binary search to generate each sample.



Even faster sampling: Alias method
• Previous method (sometimes called “roulette wheel sampling”):

O(k) preprocessing time, O(log k) time per sample
• Vose’s alias method: O(k) preprocessing, O(1) time per sample

• Nice (long) article building up to it by Keith Schwarz (Stanford CS):
Darts, Dice, and Coins: Sampling from a Discrete Distribution

https://www.keithschwarz.com/darts-dice-coins/


Next Topic: Monte Carlo Approximation



Motivation: Probabilistic Inference
• Given a probabilistic model, we often want to make inferences:
– Marginals: what is the probability that Xj = c?
– Conditionals: what is the probability that Xj = c given Xj’ = c’?

• This is simple for the models we have seen so far.
– For Bernoulli/categorical, computing probabilities is straightforward.
– For multivariate models, we assumed everything was independent.

• Perhaps conditioned on a label or the final hidden layer of a neural network.

• For many models, inference has no closed form or is NP-hard.
– For these problems, we often use Monte Carlo approximations.



Monte Carlo: Marginalization by Sampling
• A basic Monte Carlo method for estimating probabilities of events:
– Generate a large number of samples xi from the model:

– Compute frequency that the event happened in the samples:
Pr(X2=1) ≈ %

&
Pr(X3=0) ≈ 0

• Monte Carlo methods are the second most important type of ML algorithms.
– Modern versions originally developed to build better atomic bombs L

• Runs physics simulator to “sample”, then see if it leads to a chain reaction.



Monte Carlo for Approximating Probabilities
• Monte Carlo estimate of the probability of an event A:

• You can think of this as the MLE for a binary variable:
– The binary variable is 1 for samples where A happened, 0 otherwise.

• Approximating probability of a pair of independent dice rolling a sum of 7:
– Roll two dice, check if the sum is 7.
– Roll two dice, check if the sum is 7.
– Roll two dice, check if the sum is 7.
– Roll two dice, check if the sum is 7.
– Roll two dice, check if the sum is 7.
– …
– Monte Carlo estimate: fraction of samples where sum is 7.



Monte Carlo for Approximating Probabilities
• Recall our motivating problem:
– Building a model of voters among categories (LIB, CPC, NDP, GRN, PPC).

• You might consider the following inference problem:
– In 100 samples, what the probability that nLIB > max{nCPC, nNDP, nGRN, nPPC}?

• “What is the probability that LIBs win the election again?”

• You can do some math to figure out the answer, or do Monte Carlo:
– Generate 100 samples, check who won.
– Generate 100 samples, check who won.
– …
– Approximate probability by fraction of times they won.



Monte Carlo for Inequalities
• Consider probability that a variable is above a threshold.
– Probability that a beta variable is above 0.7.
– Probability that a standard normal variable is above -1.2.

• Monte Carlo estimate for Pr(X ≤ 𝜏) for some threshold 𝜏: 
– Fraction of samples that are above the threshold.



Monte Carlo Method for the Mean
• A Monte Carlo approximation of the mean:
– Approximate the mean by the mean of the samples.

• A Monte Carlo approximation of expected value of X2:
– Approximate 𝔼[X2] by the average value of (x)2 on the samples.

• A Monte Carlo approximation of the expected value of function g.
– Approximate 𝔼[g(X)] by the average value of g(x) on the samples.



Monte Carlo Method: Definition
• Monte Carlo approximates expectation of random functions:

• Computing mean is a special case: use g(x) = x.
• Computing probability of an event A is also a special case:
– Set g(x) = 𝟙[“A happened in sample x”], indicator function for event A.

• Monte Carlo methods generate n samples xi from X, then use:



Summary of Monte Carlo Theory
• Let 𝜇 = 𝔼[𝑔 𝑋 ], the value we want to compute.

– And assume variance of g(X), 𝜎!, exists and is bounded (“not infinite”).

• With IID samples, Monte Carlo gives an unbiased approximation of 𝜇.
– Expected value of Monte Carlo estimate, averaged over samplings, is 𝜇.

• Monte Carlo estimate “converges” to 𝜇 as sample size n goes to ∞.
– Estimate get arbitrarily close to 𝜇 as your number of samples gets large.

• Expected squared error between estimate and 𝜇 is 𝜎"/n with n samples.
– This is the speed at which you converge to 𝜇 (in squared error) as you increase n.

• Monte Carlo can be written as a special case of SGD.
– See the post-lecture bonus slides for some details on all of the above.



Summary
• Pixel classification:

– Assigning a label to every pixel in an 
image.

• Fully-convolutional networks (FCNs):
– CNNs where every layer maintains spatial 

information.
– Useful for handling images of different 

sizes.
– Requires upsampling to be used for pixel 

classification.
– Transpose convolutions learn upsampling

operators.

• Categorical distribution:
– Probability over unordered categories, 

where p(x = c | Θ) = 𝜃".
• Inference in categorical models:

– CDF, decoding, likelihood, sampling.
• Monte Carlo methods:

– Approximate expectations of random 
functions.

– Generate a set of IID samples.
– Take average value of function value 

applied to each sample.

• Next time: why we’re doing 
everything wrong to make decisions.



Law of the Unconscious Statistician

• These equalities sometimes called “Law of the Unconscious Statistician” 
– (“LOTUS”, when I took intro stats)
– “Unconscious” because people don’t realize this is actually a theorem to prove








