
CPSC 440/540: Machine Learning

Convnets, Autoencoders, Multi-label classification
Winter 2023



Motivation: X-Ray Abnormality Detection
• Want to build a system that recognizes abnormalities in x-rays:

• Applications:
– Fast detection of tuberculosis, pneumonia, lung cancer, and so on.

• Deep learning has led to incredible progress on computer vision tasks.
– Much of this progress has been driven by convolutional neural networks (CNNs).

“Abnormality detected”
(binary classification)



Convolutional Neural Network (CNN) Motivation

• Consider training neural networks on 500 pixel by 500 pixel images.
– So the number of inputs d to first layer is 250,000 (more if colour).

• If first layer has k=10,000, then W has 2.5 billion parameters.
– We want to avoid this huge number (due to storage and overfitting).

• CNNs drastically reduce the number of parameters by:
– Having activations only depend on a small number of inputs.
– Using the same parameters on the connections of many activations.

• Done using layers that look like “convolutions” in signal processing.



Illustration of 2D Convolution
• 2D convolution:
– Inputs: an “input” image x and a “filter” image w.
– Output: new image z whose pixels are dot products of filter and image region).

https://scientistcafe.com/ids/convolutional-neural-network.html

Filter image
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Illustration of 2D Convolution
• 2D convolution:
– Inputs: an “input” image x and a “filter” image w.
– Output: new image z whose pixels are dot products of filter and image region).

• As a formula:

– Final image z can be written as usual z=W’ x.
• W’ will be sparse, with filter values in W repeated.

• 3D convolution (for colour images):
– Weighted dot product across all 

three dimensions.
https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1



Formal Convolution Definition
• We have defined the convolution as:

• In other classes you may see it defined as:

• For simplicity we’re skipping the “reverse” step,
and assuming w and x are sampled at discrete points (not functions).

• But keep this mind if you read about convolutions elsewhere.



Convolutions
• Pre-2012, people often designed the filters by hand.
– Filters can approximate “derivatives” or “integrals” of the image regions.

• Derivative filters will up to 0, integral filters will add up to 1.

– Three of the most-common filters that people used:
• Gaussian filters: integral filter, giving the average brightness in a region.

– Variance of the Gaussian controls the amount of smoothness.
– This produces a pixel feature that is less sensitive to noise than pixel’s raw value.

• Gabor filters: derivative filters, measuring changes in brightness along a direction.
– We typically compute these for different orientations and “frequencies”.
– This gives a set of features that is useful in describing edges in the image.

• Laplacian of Gaussian filter: total second-derivative filter.
– Complements Gabor filters: helps describe if change is due to an edge, line, or continuous change.

– Similar filters may be used early in the eyes visual processing.
– I think of the results of convolutions as the “bag of words” making up images.



Image Convolution Examples
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Unsupervised Learning of Filters for Image Patches

• Consider building an unsupervised model of image patches:



Unsupervised Learning of Filters for Image Patches

• Some methods to do this generate Gaussian/LoG/Gabor filters:
– These filters are motivated from both neuroscience and ML experiments.

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf



Motivation for Convolutional Neural Networks
• Classic vision methods uses fixed convolutions as features:
– Usually have different types/variances/orientations.
– Can do subsampling or take maxes across locations/orientations/scales.



Motivation for Convolutional Neural Networks
• Convolutional neural networks learn the convolutions:
– Learning W and v automatically chooses types/variances/orientations.
– Don’t pick from fixed convolutions, but learn the elements of the filters.



Motivation for Convolutional Neural Networks
• Convolutional neural networks learn the convolutions:
– Learning W and v automatically chooses types/variances/orientations.
– Can do multiple layers of convolution to get deep hierarchical features.

http://fortune.com/ai-artificial-intelligence-deep-machine-learning/



Convolutional Neural Networks
• Classic architecture of a convolutional neural network:

• Convolution layers:
– Apply convolution with several different filters.
– Sometimes these have a “stride”: skip several pixels between applying filter.

• Pooling layers:
– Aggregate regions to create smaller images (usually “max pooling”).

• Fully-connected layers: usual “multiplication by Wl” in layer.
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://github.com/vdumoulin/conv_arithmetic



Max Pooling Example
• Max pooling:

• Decreases size of hidden layer, so we need fewer parameters.
– Gives some local translation invariance:

• The precise location of max is not important.

• This is continuous and piecewise-linear but non-differentiable.
– Like ReLU, we can still optimize this type of objective with SGD.



LeNet Convolutional Neural Networks
• Classic convolutional neural network (LeNet):

• Visualizing the “activations”:
– http://scs.ryerson.ca/~aharley/vis/conv
– http://cs231n.stanford.edu

http://scs.ryerson.ca/~aharley/vis/harley_vis_isvc15.pdf

http://scs.ryerson.ca/~aharley/vis/conv
http://cs231n.stanford.edu/


ImageNet Competition 
• ImageNet: Millions of labeled images, 1000 object classes.
– Task is to classify images into one of the 1000 class labels.

• We will discuss multi-class classification in Part 2 of the course.

– Everyone submits their “best” model, winners announced.

https://www.youtube.com/watch?v=40riCqvRoMs



AlexNet Convolutional Neural Network
• Modern CNN era started with AlexNet (won 2012 competition):
– 15.4% error vs. 26.2% for closest competitor.
– 5 convolutional layers.
– 3 fully-connected layers.
– SG with momentum.
– ReLU non-linear functions.
– Data translation/reflection/

cropping.
– L2-regularization + Dropout.
– 5-6 days on two GPUs.

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf



ImageNet Insights
• Filters and stride got smaller over time.
– Popular VGG approach uses 3x3 convolution layers with stride of 1.

• 3x3 followed by 3x3 simulates a 5x5, and another 3x3 simulates a 7x7, and so on. 
• Speeds things up and reduces number of parameters.
• Also increases number of non-linear ReLU operations.

https://www.cs.toronto.edu/~frossard/post/vgg16/



ImageNet Insights
• Filters and stride got smaller over time.
– Popular VGG approach uses 3x3 convolution layers with stride of 1.
– GoogLeNet used multiple filter sizes (“inception layer”), but not as popular.

• Eventual switch to “fully-convolutional” networks.
– No fully connected layers.

• ResNets allow easier training of deep networks.
– Won all 5 tasks in 2015, training 152 layers for 2-3 weeks on 8 GPUs. 

• Ensembles help.
– 2016 winner combined predictions of previous networks.

• Competition ended in 2017!
http://www.themtank.org/a-year-in-computer-vision



Discussion of CNNs
• Convolutional layers reduce the number of parameters in two different ways:

– Each hidden unit only depends on small number of inputs from previous layer.
– We use the same filters across the image. 

• So we do not learn a different weight for each “connection” like in classic neural networks.

• CNNs give some amount of translation invariance:
– Because the filters are used across the image, they can detect a pattern anywhere in the image.

• Even in image locations where the pattern has never been seen.
– The pooling layer can also give some local invariance, against small translations of the image.

• CNNs are not only for images!
– Can use CNNs for 1D sequences like sound or language.
– Can use CNNs for 3D objects like videos or medical image volumes.
– Can use CNNs for graphs.

• But you do need some notion of “neighbourhood” for convolutions to make sense.



Next Topic: Autoencoders



Autoencoders

• Autoencoders are neural networks with same input and output.
– Includes a bottleneck layer: with dimension k smaller than input d.
– First layers “encode” the input into bottleneck.
– Last layers “decode” the bottleneck into a (hopefully valid) input.



Autoencoders

• This is an unsupervised learning method.
– There are no labels y.

• Relationship to principal component analysis (PCA):
– With squared error and linear network, equivalent to PCA.

• Size of bottleneck layer gives number of latent factors k in PCA.
– With non-linear transforms: a non-linear/deep generalization of PCA.



Encoder as Learning a Representation
• Consider the encoder part of the network:
– Takes features xi and makes low-dimensional zi.

• Ways you could use the encoder:
– Use zi as compressed input (reduce memory needed).
– Set bottleneck size to 2, and plot the zi to visualize the data.
– Try to interpret what the bottleneck features zi mean.
– Use the zi as features for supervised learning.

• For the special case of PCA and regression with L2 loss, this is called “partial least squares”.
– You could add a supervised yi to final layer of trained autoencoder + fit with SGD.

• This is called “unsupervised pre-training”.
• If you use unlabeled data to do this initialization, an example of “self-supervised” learning.

– Usually it is easier to get a lot of unlabeled data than it is to get labeled data.



PCA vs. Deep Autoencoder (Document Data)

https://www.cs.toronto.edu/~hinton/science.pdf (these days t-SNE is the usual way to make visualizations like this; see these guidelines)

https://distill.pub/2016/misread-tsne/


Decoder as Generative Model
• Consider the decoder part of the network:
– Takes low-dimensional zi and makes features !𝑥i.

• Can be used for outlier detection:
– Check distance to original features to detect outliers.

• Can be used to generate new data:
– The z close to training examples should generate new valid “samples.”
– But this is not actually sampling, since we aren’t modeling p(z) yet.



Font Manifold
• Going from encoding to decoding for different fonts:

• Demo here.
– The above was generated by a Gaussian process and not an autoencoder.
– But the decoder part of autoencoders is trying to do something like this.

http://entangled.systems/fragments/20160729-learning-a-manifold-of-fonts-machine-learning-research-from-2014-by-dr-neill-campbell-provides-an-interactive-exploration-of.html

http://vecg.cs.ucl.ac.uk/Projects/projects_fonts/projects_fonts.html


Latent Space Interpolation

https://arxiv.org/abs/2204.06125

• Encode both ends; decode various points on a line between



Neural Networks with Multiple Outputs
• Previous neural networks we have seen only have 1 output y.
• In autoencoders, we have d outputs (one for each feature).

• For training, we add up the loss across all j:

• Fit with SGD (sampling random i), and usual deep learning tricks can be used.
– Even though network has multiple outputs, f is a scalar so autodiff works as before.
– For images, may want to use convolution layers.



Denoising Autoencoders
• A common variation on autoencoders is denoising autoencoders:
– Use “corrupted” inputs, and learn to reconstruct uncorrupted originals.

– “Learn a model that removes the noise”. Easy to get lots of training data.
• You can apply the model to denoise new images.
• Do not necessarily need a “bottleneck” layer.

https://www.pyimagesearch.com/2020/02/24/denoising-autoencoders-with-keras-tensorflow-and-deep-learning/
https://www.deeplearningbook.org/contents/autoencoders.html



What Denoising Autoencoders Learn

Alain and Bengio (2012)

• Can use to estimate “Hyvärinen score” !!
∗ " #"
$#

≈ ∇" log 𝑝(𝑥)
• Closely related to diffusion models (later in the course!)

https://arxiv.org/abs/1211.4246


• Gallery: http://iizuka.cs.tsukuba.ac.jp/projects/colorization/extra.html
• Video: https://www.youtube.com/watch?v=ys5nMO4Q0iY

Image Colourization

http://iizuka.cs.tsukuba.ac.jp/projects/colorization/en/

http://iizuka.cs.tsukuba.ac.jp/projects/colorization/extra.html
https://www.youtube.com/watch?v=ys5nMO4Q0iY


• Instead of noisy inputs, you use de-coloured inputs:

• Another application is super-resolution:
– Learn to output a high-resolution image based on low-resolution images.

Image Colourization

http://iizuka.cs.tsukuba.ac.jp/projects/colorization/en/



Next Topic: Multi-Label Classification



Motivation: Multi-Label Classification
• Consider multi-label classification:

• Which of the k objects are in this image?
– There may be more than one “correct” class label.

http://image-net.org/challenges/LSVRC/2013/



Independent Classifier Approach
• One way to build a multi-label classifier:
– Train a classifier for each label.

• Train a neural network that predicts +1 if the image contains a dog, and -1 otherwise.
• Train a neural network that predicts +1 if the image contains a cat, and -1 otherwise.
• …

– To make predictions for the k classes, concatenate predictions of the k models.

• Can think of this as a “product of independent classifiers”.

• Drawbacks:
– Lots of parameters: k*(number of parameters for base classifier).
– Each classifier needs to “relearn from scratch”.

• Each classifier needs to learn its own Gabor filters, how corners and light works, and so on.
• A lot of visual features for “dog” might also help us predict “cat”.



Encoding-Decoding for Multi-Label Classification
• Multi-label classification with an encoding-decoding approach:

– Input is connected to a hidden layer.
– Hidden layer is connected to multiple output units.

• Prediction: compute hidden layer, compute activations, compute output:

• Number of parameters and cost is O(dm + mk) for k classes and m hidden units.
– If we trained a separate network for each class, number of parameters and cost would be O(kdm) (for ‘W’ for each class)

• Might have multiple layers, convolution layers, and so on. And no need to have a “bottleneck” layer.



Encoding-Decoding for Multi-Label Classification

• We usually assume that the classes are independent given last layer:

– Conditioned on features/parameters, this is ultimately a fancy product of Bernoullis model:
• p(y1, y2,…,yk | x, W, V) = p(y1 | x, W, V)p(y2 | x, W, V)⋯p(yk | x, W, V), where p(yc = 1| x, W, V)= 𝜃! .
• This makes decoding and other inference problems easy: you do inference on each yc independently.



Encoding-Decoding for Multi-Label Classification
• The negative log-likelihood we optimize for MLE:

• Use backpropagation or AD to compute gradient, train by SGD.
– You randomly sample a training example i and compute gradient for all labels.
– The updates of W lead to features that are useful across classes.
– The updates of V focus on getting the class labels right given the features.

• Important:
– We assumed independence of labels given the last layer.
– But the last layer can reflect dependencies.

• If “dog” and “human” are frequently together, this should be reflected in the hidden layer.
– For example, 𝜃"#$%& might be higher when the features give a high value for 𝜃'().



Pre-Training for Multi-Label Classification
• Consider a scenario where we get a new class label.
– For example, we get new images that contain horses (not seen in training).

• Instead of training from scratch, we could:
– Add an extra set of weights vk+1 to the final layer for the new class.
– Train these weights with the encoding weights W fixed.

• This is a simple/convex logistic regression problem.
• If we already have “features” that are good for many classes,

we may be able to learn a new class with very-few training examples!



Pre-Training for Multi-Label Classification
• Using an existing network for new problems is called “pre-training”
– Typically, we start with a network trained on a large dataset.
– We use this network to give us features to fit a smaller dataset.

• “Few-shot learning”.

• Depending the setup, you may also update W and the other vc.
– Useful if you have a lot of data on the new class.
– In this case, would typically mix in new examples with old ones.

• Increasing trend in vision and language to using pre-training a lot.
– No need to learn everything about language for every language task!



Summary
• Convolutions are flexible class of signal/image 

transformations.
– Can approximate derivatives and integrals at 

different scales/orientations.
• Convolutional neural networks:

– Include layers that apply several (learned) 
convolutions.

– Significantly decreases number of parameters.
– Achieves a degree of translation invariance.
– Often combined with pooling operations like max 

pooling.
• Autoencoders:

– Neural network where the output is the input.
– Non-linear generalization of PCA.
– Encode data into a bottleneck layer, then decode

predict original input.
– Can be used for visualization, compression, 

outlier detection, pre-training.

• Denoising autoencoders train to 
uncorrupt/enhance images.
– Can be used for removing noise, adding colour, 

super-resolution, and so on.
• Multi-label classification:

– Classification with more than one label per 
example.

• Encoding-Decoding approach to multi-label 
classification:
– Have all classes shared the same hidden layer(s).
– Reduces number of parameters.
– Models dependencies between classes, while 

keeping inference easy.
• Pre-training:

– Use parameters from model trained a on large 
diverse dataset, to initialize SGD for new dataset.

• Next time: helping teach fish to drive?


