
CPSC 440/540: Machine Learning

Convnets, Autoencoders, Multi-label classification
Winter 2023

Motivation: X-Ray Abnormality Detection
• Want to build a system that recognizes abnormalities in x-rays:

• Applications:
– Fast detection of tuberculosis, pneumonia, lung cancer, and so on.

• Deep learning has led to incredible progress on computer vision tasks.
– Much of this progress has been driven by convolutional neural networks (CNNs).

“Abnormality detected”
(binary classification)

Convolutional Neural Network (CNN) Motivation

• Consider training neural networks on 500 pixel by 500 pixel images.
– So the number of inputs d to first layer is 250,000 (more if colour).

• If first layer has k=10,000, then W has 2.5 billion parameters.
– We want to avoid this huge number (due to storage and overfitting).

• CNNs drastically reduce the number of parameters by:
– Having activations only depend on a small number of inputs.
– Using the same parameters on the connections of many activations.

• Done using layers that look like “convolutions” in signal processing.

Illustration of 2D Convolution
• 2D convolution:
– Inputs: an “input” image x and a “filter” image w.
– Output: new image z whose pixels are dot products of filter and image region).

https://scientistcafe.com/ids/convolutional-neural-network.html

Filter image

Illustration of 2D Convolution
• 2D convolution:
– Inputs: an “input” image x and a “filter” image w.
– Output: new image z whose pixels are dot products of filter and image region).

https://scientistcafe.com/ids/convolutional-neural-network.html

Filter image

Illustration of 2D Convolution
• 2D convolution:
– Inputs: an “input” image x and a “filter” image w.
– Output: new image z whose pixels are dot products of filter and image region).

• As a formula:

– Final image z can be written as usual z=W’ x.
• W’ will be sparse, with filter values in W repeated.

• 3D convolution (for colour images):
– Weighted dot product across all

three dimensions.
https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1

Formal Convolution Definition
• We have defined the convolution as:

• In other classes you may see it defined as:

• For simplicity we’re skipping the “reverse” step,
and assuming w and x are sampled at discrete points (not functions).

• But keep this mind if you read about convolutions elsewhere.

Convolutions
• Pre-2012, people often designed the filters by hand.
– Filters can approximate “derivatives” or “integrals” of the image regions.

• Derivative filters will up to 0, integral filters will add up to 1.

– Three of the most-common filters that people used:
• Gaussian filters: integral filter, giving the average brightness in a region.

– Variance of the Gaussian controls the amount of smoothness.
– This produces a pixel feature that is less sensitive to noise than pixel’s raw value.

• Gabor filters: derivative filters, measuring changes in brightness along a direction.
– We typically compute these for different orientations and “frequencies”.
– This gives a set of features that is useful in describing edges in the image.

• Laplacian of Gaussian filter: total second-derivative filter.
– Complements Gabor filters: helps describe if change is due to an edge, line, or continuous change.

– Similar filters may be used early in the eyes visual processing.
– I think of the results of convolutions as the “bag of words” making up images.

Image Convolution Examples

Image Convolution Examples

Image Convolution Examples

Image Convolution Examples

Image Convolution Examples

Image Convolution Examples

Image Convolution Examples

Image Convolution Examples

Unsupervised Learning of Filters for Image Patches

• Consider building an unsupervised model of image patches:

Unsupervised Learning of Filters for Image Patches

• Some methods to do this generate Gaussian/LoG/Gabor filters:
– These filters are motivated from both neuroscience and ML experiments.

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf

Motivation for Convolutional Neural Networks
• Classic vision methods uses fixed convolutions as features:
– Usually have different types/variances/orientations.
– Can do subsampling or take maxes across locations/orientations/scales.

Motivation for Convolutional Neural Networks
• Convolutional neural networks learn the convolutions:
– Learning W and v automatically chooses types/variances/orientations.
– Don’t pick from fixed convolutions, but learn the elements of the filters.

Motivation for Convolutional Neural Networks
• Convolutional neural networks learn the convolutions:
– Learning W and v automatically chooses types/variances/orientations.
– Can do multiple layers of convolution to get deep hierarchical features.

http://fortune.com/ai-artificial-intelligence-deep-machine-learning/

Convolutional Neural Networks
• Classic architecture of a convolutional neural network:

• Convolution layers:
– Apply convolution with several different filters.
– Sometimes these have a “stride”: skip several pixels between applying filter.

• Pooling layers:
– Aggregate regions to create smaller images (usually “max pooling”).

• Fully-connected layers: usual “multiplication by Wl” in layer.
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://github.com/vdumoulin/conv_arithmetic

Max Pooling Example
• Max pooling:

• Decreases size of hidden layer, so we need fewer parameters.
– Gives some local translation invariance:

• The precise location of max is not important.

• This is continuous and piecewise-linear but non-differentiable.
– Like ReLU, we can still optimize this type of objective with SGD.

LeNet Convolutional Neural Networks
• Classic convolutional neural network (LeNet):

• Visualizing the “activations”:
– http://scs.ryerson.ca/~aharley/vis/conv
– http://cs231n.stanford.edu

http://scs.ryerson.ca/~aharley/vis/harley_vis_isvc15.pdf

http://scs.ryerson.ca/~aharley/vis/conv
http://cs231n.stanford.edu/

ImageNet Competition
• ImageNet: Millions of labeled images, 1000 object classes.
– Task is to classify images into one of the 1000 class labels.

• We will discuss multi-class classification in Part 2 of the course.

– Everyone submits their “best” model, winners announced.

https://www.youtube.com/watch?v=40riCqvRoMs

AlexNet Convolutional Neural Network
• Modern CNN era started with AlexNet (won 2012 competition):
– 15.4% error vs. 26.2% for closest competitor.
– 5 convolutional layers.
– 3 fully-connected layers.
– SG with momentum.
– ReLU non-linear functions.
– Data translation/reflection/

cropping.
– L2-regularization + Dropout.
– 5-6 days on two GPUs.

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

ImageNet Insights
• Filters and stride got smaller over time.
– Popular VGG approach uses 3x3 convolution layers with stride of 1.

• 3x3 followed by 3x3 simulates a 5x5, and another 3x3 simulates a 7x7, and so on.
• Speeds things up and reduces number of parameters.
• Also increases number of non-linear ReLU operations.

https://www.cs.toronto.edu/~frossard/post/vgg16/

ImageNet Insights
• Filters and stride got smaller over time.
– Popular VGG approach uses 3x3 convolution layers with stride of 1.
– GoogLeNet used multiple filter sizes (“inception layer”), but not as popular.

• Eventual switch to “fully-convolutional” networks.
– No fully connected layers.

• ResNets allow easier training of deep networks.
– Won all 5 tasks in 2015, training 152 layers for 2-3 weeks on 8 GPUs.

• Ensembles help.
– 2016 winner combined predictions of previous networks.

• Competition ended in 2017!
http://www.themtank.org/a-year-in-computer-vision

Discussion of CNNs
• Convolutional layers reduce the number of parameters in two different ways:

– Each hidden unit only depends on small number of inputs from previous layer.
– We use the same filters across the image.

• So we do not learn a different weight for each “connection” like in classic neural networks.

• CNNs give some amount of translation invariance:
– Because the filters are used across the image, they can detect a pattern anywhere in the image.

• Even in image locations where the pattern has never been seen.
– The pooling layer can also give some local invariance, against small translations of the image.

• CNNs are not only for images!
– Can use CNNs for 1D sequences like sound or language.
– Can use CNNs for 3D objects like videos or medical image volumes.
– Can use CNNs for graphs.

• But you do need some notion of “neighbourhood” for convolutions to make sense.

Next Topic: Autoencoders

Autoencoders

• Autoencoders are neural networks with same input and output.
– Includes a bottleneck layer: with dimension k smaller than input d.
– First layers “encode” the input into bottleneck.
– Last layers “decode” the bottleneck into a (hopefully valid) input.

Autoencoders

• This is an unsupervised learning method.
– There are no labels y.

• Relationship to principal component analysis (PCA):
– With squared error and linear network, equivalent to PCA.

• Size of bottleneck layer gives number of latent factors k in PCA.
– With non-linear transforms: a non-linear/deep generalization of PCA.

Encoder as Learning a Representation
• Consider the encoder part of the network:
– Takes features xi and makes low-dimensional zi.

• Ways you could use the encoder:
– Use zi as compressed input (reduce memory needed).
– Set bottleneck size to 2, and plot the zi to visualize the data.
– Try to interpret what the bottleneck features zi mean.
– Use the zi as features for supervised learning.

• For the special case of PCA and regression with L2 loss, this is called “partial least squares”.
– You could add a supervised yi to final layer of trained autoencoder + fit with SGD.

• This is called “unsupervised pre-training”.
• If you use unlabeled data to do this initialization, an example of “self-supervised” learning.

– Usually it is easier to get a lot of unlabeled data than it is to get labeled data.

PCA vs. Deep Autoencoder (Document Data)

https://www.cs.toronto.edu/~hinton/science.pdf (these days t-SNE is the usual way to make visualizations like this; see these guidelines)

https://distill.pub/2016/misread-tsne/

Decoder as Generative Model
• Consider the decoder part of the network:
– Takes low-dimensional zi and makes features !𝑥i.

• Can be used for outlier detection:
– Check distance to original features to detect outliers.

• Can be used to generate new data:
– The z close to training examples should generate new valid “samples.”
– But this is not actually sampling, since we aren’t modeling p(z) yet.

Font Manifold
• Going from encoding to decoding for different fonts:

• Demo here.
– The above was generated by a Gaussian process and not an autoencoder.
– But the decoder part of autoencoders is trying to do something like this.

http://entangled.systems/fragments/20160729-learning-a-manifold-of-fonts-machine-learning-research-from-2014-by-dr-neill-campbell-provides-an-interactive-exploration-of.html

http://vecg.cs.ucl.ac.uk/Projects/projects_fonts/projects_fonts.html

Latent Space Interpolation

https://arxiv.org/abs/2204.06125

• Encode both ends; decode various points on a line between

Neural Networks with Multiple Outputs
• Previous neural networks we have seen only have 1 output y.
• In autoencoders, we have d outputs (one for each feature).

• For training, we add up the loss across all j:

• Fit with SGD (sampling random i), and usual deep learning tricks can be used.
– Even though network has multiple outputs, f is a scalar so autodiff works as before.
– For images, may want to use convolution layers.

Denoising Autoencoders
• A common variation on autoencoders is denoising autoencoders:
– Use “corrupted” inputs, and learn to reconstruct uncorrupted originals.

– “Learn a model that removes the noise”. Easy to get lots of training data.
• You can apply the model to denoise new images.
• Do not necessarily need a “bottleneck” layer.

https://www.pyimagesearch.com/2020/02/24/denoising-autoencoders-with-keras-tensorflow-and-deep-learning/
https://www.deeplearningbook.org/contents/autoencoders.html

What Denoising Autoencoders Learn

Alain and Bengio (2012)

• Can use to estimate “Hyvärinen score” !!
∗ " #"
$#

≈ ∇" log 𝑝(𝑥)
• Closely related to diffusion models (later in the course!)

https://arxiv.org/abs/1211.4246

• Gallery: http://iizuka.cs.tsukuba.ac.jp/projects/colorization/extra.html
• Video: https://www.youtube.com/watch?v=ys5nMO4Q0iY

Image Colourization

http://iizuka.cs.tsukuba.ac.jp/projects/colorization/en/

http://iizuka.cs.tsukuba.ac.jp/projects/colorization/extra.html
https://www.youtube.com/watch?v=ys5nMO4Q0iY

• Instead of noisy inputs, you use de-coloured inputs:

• Another application is super-resolution:
– Learn to output a high-resolution image based on low-resolution images.

Image Colourization

http://iizuka.cs.tsukuba.ac.jp/projects/colorization/en/

Next Topic: Multi-Label Classification

Motivation: Multi-Label Classification
• Consider multi-label classification:

• Which of the k objects are in this image?
– There may be more than one “correct” class label.

http://image-net.org/challenges/LSVRC/2013/

Independent Classifier Approach
• One way to build a multi-label classifier:
– Train a classifier for each label.

• Train a neural network that predicts +1 if the image contains a dog, and -1 otherwise.
• Train a neural network that predicts +1 if the image contains a cat, and -1 otherwise.
• …

– To make predictions for the k classes, concatenate predictions of the k models.

• Can think of this as a “product of independent classifiers”.

• Drawbacks:
– Lots of parameters: k*(number of parameters for base classifier).
– Each classifier needs to “relearn from scratch”.

• Each classifier needs to learn its own Gabor filters, how corners and light works, and so on.
• A lot of visual features for “dog” might also help us predict “cat”.

Encoding-Decoding for Multi-Label Classification
• Multi-label classification with an encoding-decoding approach:

– Input is connected to a hidden layer.
– Hidden layer is connected to multiple output units.

• Prediction: compute hidden layer, compute activations, compute output:

• Number of parameters and cost is O(dm + mk) for k classes and m hidden units.
– If we trained a separate network for each class, number of parameters and cost would be O(kdm) (for ‘W’ for each class)

• Might have multiple layers, convolution layers, and so on. And no need to have a “bottleneck” layer.

Encoding-Decoding for Multi-Label Classification

• We usually assume that the classes are independent given last layer:

– Conditioned on features/parameters, this is ultimately a fancy product of Bernoullis model:
• p(y1, y2,…,yk | x, W, V) = p(y1 | x, W, V)p(y2 | x, W, V)⋯p(yk | x, W, V), where p(yc = 1| x, W, V)= 𝜃! .
• This makes decoding and other inference problems easy: you do inference on each yc independently.

Encoding-Decoding for Multi-Label Classification
• The negative log-likelihood we optimize for MLE:

• Use backpropagation or AD to compute gradient, train by SGD.
– You randomly sample a training example i and compute gradient for all labels.
– The updates of W lead to features that are useful across classes.
– The updates of V focus on getting the class labels right given the features.

• Important:
– We assumed independence of labels given the last layer.
– But the last layer can reflect dependencies.

• If “dog” and “human” are frequently together, this should be reflected in the hidden layer.
– For example, 𝜃"#$%& might be higher when the features give a high value for 𝜃'().

Pre-Training for Multi-Label Classification
• Consider a scenario where we get a new class label.
– For example, we get new images that contain horses (not seen in training).

• Instead of training from scratch, we could:
– Add an extra set of weights vk+1 to the final layer for the new class.
– Train these weights with the encoding weights W fixed.

• This is a simple/convex logistic regression problem.
• If we already have “features” that are good for many classes,

we may be able to learn a new class with very-few training examples!

Pre-Training for Multi-Label Classification
• Using an existing network for new problems is called “pre-training”
– Typically, we start with a network trained on a large dataset.
– We use this network to give us features to fit a smaller dataset.

• “Few-shot learning”.

• Depending the setup, you may also update W and the other vc.
– Useful if you have a lot of data on the new class.
– In this case, would typically mix in new examples with old ones.

• Increasing trend in vision and language to using pre-training a lot.
– No need to learn everything about language for every language task!

Summary
• Convolutions are flexible class of signal/image

transformations.
– Can approximate derivatives and integrals at

different scales/orientations.
• Convolutional neural networks:

– Include layers that apply several (learned)
convolutions.

– Significantly decreases number of parameters.
– Achieves a degree of translation invariance.
– Often combined with pooling operations like max

pooling.
• Autoencoders:

– Neural network where the output is the input.
– Non-linear generalization of PCA.
– Encode data into a bottleneck layer, then decode

predict original input.
– Can be used for visualization, compression,

outlier detection, pre-training.

• Denoising autoencoders train to
uncorrupt/enhance images.
– Can be used for removing noise, adding colour,

super-resolution, and so on.
• Multi-label classification:

– Classification with more than one label per
example.

• Encoding-Decoding approach to multi-label
classification:
– Have all classes shared the same hidden layer(s).
– Reduces number of parameters.
– Models dependencies between classes, while

keeping inference easy.
• Pre-training:

– Use parameters from model trained a on large
diverse dataset, to initialize SGD for new dataset.

• Next time: helping teach fish to drive?

