CPSC 440/540: Machine Learning

Convnets, Autoencoders, Multi-label classification
Winter 2023



Motivation: X-Ray Abnormality Detection

o A

* Want to build a system that recognizes abnormalities in x-rays:

“Abnormality detected”
(binary classification)

* Applications:
— Fast detection of tuberculosis, pneumonia, lung cancer, and so on.

* Deep learning has led to incredible progress on computer vision tasks.
— Much of this progress has been driven by convolutional neural networks (CNNs).



Convolutional Neural Network (CNN) Motivation

Consider training neural networks on 500 pixel by 500 pixel images.
— So the number of inputs d to first layer is 250,000 (more if colour).

If first layer has k=10,000, then W has 2.5 billion parameters.

— We want to avoid this huge number (due to storage and overfitting).

CNNs drastically reduce the number of parameters by:
— Having activations only depend on a small number of inputs.

— Using the same parameters on the connections of many activations.

Done using layers that look like “convolutions” in signal processing.



lllustration of 2D Convolution

e 2D convolution:

— Inputs: an “input” image x and a “filter” image w.
— Output: new image z whose pixels are dot products of filter and image region).
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lllustration of 2D Convolution

e 2D convolution:

— Inputs: an “input” image x and a “filter” image w.

— Output: new image z whose pixels are dot products of filter and image region).
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lllustration of 2D Convolution

e 2D convolution:

— Inputs: an “input” image x and a “filter” image w.
— Output: new image z whose pixels are dot products of filter and image region).

e As aformula:
S oq_m M , .
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— Final image z can be written as usual z=W" x.
* W’ will be sparse, with filter values in W repeated.

e 3D convolution (for colour images):

— Weighted dot product across all
three dimensions.




IoonU\S.(
Formal Convolution Definition

We have defined the convolution as:

m
Z = Jémv‘f)' Xi+;
In other classes you may see it defined as: 5%
m
Z = Z wx, 4 = g“ﬁ"i‘icl(l

)==m

(revarses ! w) —

Cagsmes signal il e confina)
For simplicity we’re skipping the “reverse” step,
and assuming w and x are sampled at discrete points (not functions).

But keep this mind if you read about convolutions elsewhere.



el s 0 ;
e Convolutions

. Pret2012, people often designed the filters by hand.

— Filters can approximate “derivatives” or “integrals” of the image regions.
e Derivative filters will up to 0, integral filters will add up to 1.

— Three of the most-common filters that people used:

e Gaussian filters: integral filter, giving the average brightness in a region.
— Variance of the Gaussian controls the amount of smoothness.

— This produces a pixel feature that is less sensitive to noise than pixel’s raw value.

* Gabor filters: derivative filters, measuring changes in brightness along a direction.
— We typically compute these for different orientations and “frequencies”.
— This gives a set of features that is useful in describing edges in the image. »

* Laplacian of Gaussian filter: total second-derivative filter.
— Complements Gabor filters: helps describe if change is due to an edge, line, or continuous change.

— Similar filters may be used early in the eyes visual processing.
— | think of the results of convolutions as the “bag of words” making up images.



Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples Sipoed
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples
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Unsupervised Learning of Filters for Image Patches

e Consider building an unsupervised model of image patches:
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Ioonus.‘
Unsupervised Learning of Filters for Image Patches

* Some methods to do this generate Gaussian/LoG/Gabor filters:

— These filters are motivated from both neuroscience and ML experiments.

(c) With whitening - gray. (d) With whitening - RGB.

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf



Motivation for Convolutional Neural Networks

 (Classic vision methods uses fixed convolutions as features:

— Usually have different types/variances/orientations.
— Can do subsampling or take maxes across locations/orientations/scales.




Motivation for Convolutional Neural Networks

* Convolutional neural networks learn the convolutions:

— Learning W and v automatically chooses types/variances/orientations.
— Don’t pick from fixed convolutions but learn the elements of the filters.
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Motivation for Convolutional Neural Networks

* Convolutional neural networks learn the convolutions:

— Learning W and v automatically chooses types/variances/orientations.
— Can do multiple layers of convolution to get deep hierarchical features.

HOW NEURALNETWORKS RECOGNIZEA DOG IN A PHOTO

L)
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Convolutional Neural Networks

e (lassic architecture of a convolutional neural network:

~

’

INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN FULLY . J

CONNECTED 'ma,
Y

FEATURE LEARNING CLASSIFICATION

— a

=1

* Convolution layers:

— Apply convolution with several different filters.

— Sometimes these have a “stride”: skip several pixels between applying filter.
* Pooling layers:

— Aggregate regions to create smaller images (usually “max pooling”).
* Fully-connected layers: usual “multiplication by W" in layer.
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Max Pooling Example

* Max pooling: /1

over 2x 1

* Decreases size of hidden layer, so we need fewer parameters.

— Gives some local translation invariance:
* The precise location of max is not important.

* This is continuous and piecewise-linear but non-differentiable.
— Like RelLU, we can still optimize this type of objective with SGD.



LeNet Convolutional Neural Networks

Classic convolutional neural network (LeNet):
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* Visualizing the “activations”:
— http://scs.ryerson.ca/~aharley/vis/conv T S wi
— http://cs231n.stanford.edu



http://scs.ryerson.ca/~aharley/vis/conv
http://cs231n.stanford.edu/
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ImageNet Competition

ImageNet: Millions of labeled images, 1000 object classes.

— Task is to classify images into one of the 1000 class labels.
* We will discuss multi-class classification in Part 2 of the course.

— Everyone submits their “best” model, winners announced.
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AlexNet Convolutional Neural Network =

* Modern CNN era started with AlexNet (won 2012 competition):

— 15.4% error vs. 26.2% for closest competitor.

— 5 convolutional layers.

— 3 fully-connected layers.
— SG with momentum.

— ReLU non-linear functions.

— Data translation/reflection/
cropping.

— L2-regularization + Dropout.

— 5-6 days on two GPUs.

128 2048 2048 dense
\ 13

224 R R
\ ) 13 dense dense
N 1000
af N 192 192 128 Max L H
i 048 2048
224\ 16tride Max 128 Max pooling
Uof 4 pooling pooling
3 78

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440-186,624-64,896-64,896—43,264—
4096-4096—-1000.
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ImageNet Insights

* Filters and stride got smaller over time.

— Popular VGG approach uses 3x3 convolution layers with stride of 1.
e 3x3 followed by 3x3 simulates a 5x5, and another 3x3 simulates a 7x7, and so on.
e Speeds things up and reduces number of parameters.
e Also increases number of non-linear ReLU operations.
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ImageNet Insights

* Filters and stride got smaller over time.

— Popular VGG approach uses 3x3 convolution layers with stride of 1.

— GoogleNet used multiple filter sizes (“inception layer”), but not as popular.
e Eventual switch to “fully-convolutional” networks.

— No fully connected layers.

 ResNets allow easier training of deep networks.
— Won all 5 tasks in 2015, training 152 layers for 2-3 weeks on 8 GPUs.

Classification

 Ensembles help.

— 2016 winner combined predictions of previous networks.

o
N

Classification error
o

0.036

e Competition ended in 2017! e e

ILSVRC year




Discussion of CNNSs

Convolutional layers reduce the number of parameters in two different ways:
— Each hidden unit only depends on small number of inputs from previous layer.

— We use the same filters across the image.
* So we do not learn a different weight for each “connection” like in classic neural networks.

CNNs give some amount of translation invariance:

— Because the filters are used across the image, they can detect a pattern anywhere in the image.
* Eveninimage locations where the pattern has never been seen.

— The pooling layer can also give some local invariance, against small translations of the image.

CNNs are not only for images!
— Can use CNNs for 1D sequences like sound or language.
— Can use CNNs for 3D objects like videos or medical image volumes.
— Can use CNNs for graphs.

But you do need some notion of “neighbourhood” for convolutions to make sense.



Next Topic: Autoencoders



@ Autoencoders
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* Autoencoders are neural networks with same input and output.

— Includes a bottleneck layer: with dimension k smaller than input d.
— First layers “encode” the input into bottleneck.

— Last layers “decode” the bottleneck into a (hopefully valid) input.



@ Autoencoders
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* Thisis an unsupervised Iearnlng method.

— There are no labels y.
e Relationship to principal component analysis (PCA):

— With squared error and linear network, equivalent to PCA.
 Size of bottleneck layer gives number of latent factors k in PCA.

— With non-linear transforms: a non-linear/deep generalization of PCA.
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Encoder as Learning a Representation

* Consider the encoder part of the network: “'”"""* boyer

— Takes features x' and makes low-dimensional Z'.

* Ways you could use the encoder:
— Use Z' as compressed input (reduce memory needed) ""W" )
— Set bottleneck size to 2, and plot the Z' to visualize the data.
— Try to interpret what the bottleneck features z mean.

— Use the 7' as features for supervised learning.
* For the special case of PCA and regression with L2 loss, this is called “partial least squares”.

— You could add a supervised y' to final layer of trained autoencoder + fit with SGD.
e This is called “unsupervised pre-training”.

 If you use unlabeled data to do this initialization, an example of “self-supervised” learning.
— Usually it is easier to get a lot of unlabeled data than it is to get labeled data.




PCA vs. Deep Autoencoder (Document Data)
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(these days t-SNE is the usual way to make visualizations like this; see these guidelines)



https://distill.pub/2016/misread-tsne/

Decoder as Generative Model

* Consider the decoder part of the network: hitlreck” layor

)
— Takes low-dimensional z and makes features x'. O
X,
* Can be used for outlier detection: D @
— Check distance to original features to detect outliers. @
) ’ Aerlnﬁ&r " |

* Can be used to generate new data:

— The z close to training examples should generate new valid “samples.”
— But this is not actually sampling, since we aren’t modeling p(z) yet.
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Font Manifold -

* Going from encoding to decoding for different fonts:

Please drag the black and white circle around the heat map to explore the 2D font manifold.

g Select Character: |t

......

* Demo here.

— The above was generated by a Gaussian process and not an autoencoder.
— But the decoder part of autoencoders is trying to do something like this.


http://vecg.cs.ucl.ac.uk/Projects/projects_fonts/projects_fonts.html

Latent Space Interpolation

 Encode both ends; decode various points on a line between



Neural Networks with Multiple Outputs

Previous neural networks we have seen only have 1 output y.
In autoencoders, we have d outputs (one for each feature)

X, = v h (WAl h(')) O

N [
%o Wt hachwhd)  §ox = VWA h(w's)))
% =y (W A h(W'x))
For training, we add up the loss across all j:
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— Even though network has multiple outputs, f is a scalar so autodiff works as before.
— For images, may want to use convolution layers.

R)/ L In “y

,/)¢)/@

Fit with SGD (sampling random i), and usual deep learning tricks can be used.



Denoising Autoencoders

A common variation on autoencoders is denoising autoencoders:
— Use “corrupted” inputs, and learn to reconstruct uncorrupted originals.

Output

TensorFlow

<
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Encoder Decoder

— “Learn a model that removes the noise”. Easy to get lots of trafning data.
* You can apply the model to denoise new images.
* Do not necessarily need a “bottleneck” layer.



bonu\S.(
What Denoising Autoencoders Learn =

Theorem 1 Let p be the probability density function of the data. If we train a DAFE using the
expected quadratic loss and corruption noise N(x) = x + € with

e~ N (0,0°1),
then the optimal reconstruction function r*(x) will be given by

oy Eelple — e — o)
"= T E e o) @)

for values of x where p(z) # 0.

Moreover, if we consider how the optimal reconstruction function r}(x) behaves asymptoti-
cally as o — 0, we get that

,O0logp(x)
ox

Alain and Bengio (2012)

” (r}(x)—x)

—— ~ Vxlogp(x)
* Closely related to diffusion models (later in the course!)

ri(r)=x+o0

+0(c?) as o —0. (4)

e Can use to estimate “Hyvarinen score


https://arxiv.org/abs/1211.4246

P I

Colorado National Park, 19;171‘

VNG, J‘-:" -3 v . % s b :
Berry Field, June 1909 Hamilton, 1936

Textile Mill, June 1937

* Gallery: http://iizuka.cs.tsukuba.ac.jp/projects/colorization/extra.html
e Video: https://www.youtube.com/watch?v=ys5nM04Q0iY



http://iizuka.cs.tsukuba.ac.jp/projects/colorization/extra.html
https://www.youtube.com/watch?v=ys5nMO4Q0iY

Image Colourization

* |Instead of noisy inputs, you use de-coloured inputs:

HXW

Colorization
Mid-Level Features Network
Network H W

‘ Fusion layer  7%7
Low-Level %\’ =
-~

Features

HXW

Luminance
(Input image)

HXW

R H W
Network Sh?red 878 H | Upsampling
i weights X )
Chrominance
&
- @\* 20.60% Formal Garden
112x112 ol ===  Classification 16.13% Arch
56%x56 28%28 13.50% AbbeV

- Network 7.07% Botanical Garden
Global Features Network 6.53% Golf Course

 Another application is super-resolution:

Predicted labels

bon U\S.(

— Learn to output a high-resolution image based on low-resolution images.



Next Topic: Multi-Label Classification



Motivation: Multi-Label Classification

e Consider multi-label classification:

Coif 4«09 pesson char mouse

—~ “\ r~)~p|lp

n I Il B N
(

person

* Which of the k objects are in this image?

— There may be more than one “correct” class label.




Independent Classifier Approach

* One way to build a multi-label classifier:

— Train a classifier for each label.
* Train a neural network that predicts +1 if the image contains a dog, and -1 otherwise.
* Train a neural network that predicts +1 if the image contains a cat, and -1 otherwise.

— To make predictions for the k classes, concatenate predictions of the k models.

e Can think of this as a “product of independent classifiers”.

 Drawbacks:
— Lots of parameters: k*(number of parameters for base classifier).

— Each classifier needs to “relearn from scratch”.
* Each classifier needs to learn its own Gabor filters, how corners and light works, and so on.
* A lot of visual features for “dog” might also help us predict “cat”.



Encoding-Decoding for Multi-Label Classification

* Multi-label classification with an encoding-decoding approach:
— Input is connected to a hidden layer.
— Hidden layer is connected to multiple output units.

< @———v@ = v h(Ve)
@ 2 W @ \/A, - VzTMWK)

@ oo
oSS OB aT

* Prediction: compute hidden layer, compute activations, compute output:
N
\/ =Vh ( Wx)

 Number of parameters and cost is O(dm + mk) for k classes and m hidden units.
— If we trained a separate network for each class, number of parameters and cost would be O(kdm) (for ‘W’ for each class)

* Might have multiple layers, convolution layers, and so on. And no need to have a “bottleneck” layer.

T P




Encoding-Decoding for Multi-Label Classification
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* We usually assume that the classes are independent given last layer:
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— Conditioned on features/parameters, this is ultimately a fancy product of Bernoullis model:
* p(Ys YooY | % W, V) =plys | X, W, V)ply, | X, W, V)---ply | x, W, V), where p(y.= 1| x, W, V)= 6.
* This makes decoding and other inference problems easy: you do inference on each y. independently.
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Encoding-Decoding for Multi-Label Classification

* The negative log-likelihood we optimize for MLE:

n X
FwV)=27 | v (W
V)= B2ty
* Use backpropagation or AD to compute gradient, train by SGD.

— You randomly sample a training example i and compute gradient for all labels.

— The updates of W lead to features that are useful across classes.

— The updates of V focus on getting the class labels right given the features.

* Important:
— We assumed independence of labels given the last layer.

— But the last layer can reflect dependencies.

* If “dog” and “human” are frequently together, this should be reflected in the hidden layer.
— For example, 0y man Might be higher when the features give a high value for 64,.



Pre-Training for Multi-Label Classification

* Consider a scenario where we get a new class label.
— For example, we get new images that contain horses (not seen in training).

* Instead of training from scratch, we could:

— Add an extra set of weights v, to the final layer for the new class.

— Train these weights with the encoding weights W fixed.

* This is a simple/convex logistic regression problem.

* If we already have “features” that are good for many classes,
we may be able to learn a new class with very-few training examples!



Pre-Training for Multi-Label Classification

* Using an existing network for new problems is called “pre-training”

— Typically, we start with a network trained on a large dataset.
— We use this network to give us features to fit a smaller dataset.

* “Few-shot learning”.

* Depending the setup, you may also update W and the other v..
— Useful if you have a lot of data on the new class.
— In this case, would typically mix in new examples with old ones.

* |ncreasing trend in vision and language to using pre-training a lot.

— No need to learn everything about language for every language task!



Summary

Convolutions are flexible class of signal/image °

transformations.

— Can approximate derivatives and integrals at
different scales/orientations.

Convolutional neural networks:

— Include layers that apply several (learned)
convolutions.

— Significantly decreases number of parameters.
— Achieves a degree of translation invariance.

— Often combined with pooling operations like max

pooling.
Autoencoders:
— Neural network where the output is the input.
— Non-linear generalization of PCA.

— Encode data into a bottleneck layer, then decode
predict original input.

— Can be used for visualization, compression,
outlier detection, pre-training.

Denoising autoencoders train to
uncorrupt/enhance images.

— Can be used for removing noise, adding colour,
super-resolution, and so on.

Multi-label classification:

— Classification with more than one label per
example.

Encoding-Decoding approach to multi-label
classification:
— Have all classes shared the same hidden layer(s).

— Reduces number of parameters.

— Models dependencies between classes, while
keeping inference easy.

Pre-training:

— Use parameters from model trained a on large
diverse dataset, to initialize SGD for new dataset.

Next time: helping teach fish to drive?



