
CPSC 440/540: Machine Learning

Double Descent, Deep Learning, Autodiff
Winter 2023

Admin
• A1 deadline extended
– Sunday night
– Don’t wait to start!

• Office hours schedule posted (see Piazza).

• Last call for auditors.

2

Last Time: Neural Networks
• We discussed neural networks with one hidden layer:

– “Simultaneously learn the features and the linear model.”
– Often perform better with bias variables and/or residual/skip connections.
– They are universal approximators (but not the only ones).
– Leads to non-convex training objective, which we apply SGD to.

– Recent experimental observations:
• With enough hidden units, SGD often finds a global minimum.

– Even though training is NP-hard in general.
• And the global minima it fits does not overfit as much as we expect.

https://www.neyshabur.net/papers/inductive_bias_poster.pdf 3

Multiple Global Minima?
• For standard objectives, there is a global min function value f*:

4

Multiple Global Minima?
• For standard objectives, there is a global min function value f*:

• But this may be achieved by many different parameter values.
5

Multiple Global Minima?

• These training-error global minima may have very different test errors.
• Some of these global minima may be “more regularized” than others.

6

Implicit Regularization of (S)GD
• There is empirical evidence that using SGD regularizes parameters.
– We call this the “implicit regularization” of the optimization algorithm.

• Beyond empirical evidence, we know this happens in simpler cases.
• Example of implicit regularization:
– Consider a least squares problem where there exists a w where Xw=y.

• Residuals are all zero, we fit the data exactly.
• If d > n, there are infinitely many exact solutions.

– You run [stochastic] gradient descent starting from w=0, small learning rate
– Converges to the solution Xw=y that has the minimum L2-norm.

• Using (S)GD is equivalent to (infinitesimal) L2-regularization here; regularization is “implicit”.
• Using w = np.linalg.solve(X, y) gives you this same solution.

7

Implicit Regularization of GD for Linear Regression: Proof
Very much not
necessary to look
at, just wanted to
show you it can
be proved in one
slide (from 532D)

9

Min-norm solutions
in the Legendre basis

Nakkiran et al. blog post's companion notebook
10

https://windowsontheory.org/2019/12/05/deep-double-descent/
https://colab.research.google.com/drive/1oMuUz3_BOENSoaOVOymLoB2mHeYBex8S

Implicit Regularization of (S)GD
• Example of implicit regularization:
– Consider a logistic regression problem where data is linearly separable.

• A linear model can perfectly separate the data.
– You run gradient descent from any starting point.
– Converges to max-margin solution of the problem (minimum L2-norm solution).

• So using gradient descent is equivalent to encouraging large margin.

• Related results are known for (some cases of) non-separable logistic regression,
non-separable SVMs, boosting, matrix factorization, deep linear networks…11

Double Descent Curves

• What is going on???
https://openai.com/blog/deep-double-descent/ 12

Worst vs. Best “Global Minimum”

13

Worst vs. Best “Global Minimum”

• Learning theorists usually analyze the worst global min (in test error).
– Actual test error for many global minima may be better than worst case bound.
– Theory is correct, but maybe “worst overfitting possible” is too pessimistic?

14

Worst vs. Best “Global Minimum”

• Think about instead the global min with best test error.
– With small models, “minimize training error” leads to unique (or similar) global mins.
– With larger models, there is a lot of flexibility in the space of global mins (gap between best/worst).

• Gap between “worst” and “best” global min can grow with model complexity.
15

Worst vs. Best “Global Minimum”

• Can get “double descent” curve in practice if parameters roughly track “best” global min shape.
– One way (ish) to do this: increase regularization as you increase model size.

• Maybe “neural network trained with SGD” has “more implicit regularization for bigger models”?
– But this behavior is not specific to implicit regularization of SGD and not specific to neural networks.

16

Implicit Regularization of SGD (as function of size)

• Why would implicit regularization of SGD increase with dimension?
– Maybe SGD finds low-norm solutions?

• In higher-dimensions, there is flexibility in global mins to have a low norm?

– Maybe SGD stays closer to starting point as we increase dimension?
• This would be more like a regularizer of the form ||w – w0||.

https://rajatvd.github.io/NTK/ 17

Next Topic: Deep Learning

Deep Learning
• Deep learning models have more than one hidden layer:

• We transform our activations one or more times.
19

Why Multiple Layers?
• Historically, deep learning was motivated by “connectionist” ideas:
– Brain consists of network of highly-connected simple units.

• Same units repeated in various places.
• Computations are done in parallel.
• Information is stored in distributed way.
• Learning comes from updating of connection strengths.
• One learning algorithm used everywhere.

https://www.nytimes.com/2015/01/11/magazine/sebastian-seungs-quest-to-map-the-human-brain.html
20

Why Multiple Layers?
• And theories on the hierarchical organization of the visual system:

http://www.strokenetwork.org/newsletter/articles/vision.htm
https://en.wikibooks.org/wiki/Sensory_Systems/Visual_Signal_Processing 21

Why Multiple Layers?
• The idea of multi-layer designs appears in engineering too:
– Deep hierarchies in camera design:

http://www.argmin.net/2018/01/25/optics/
22

Why Multiple Layers?
• There are also mathematical motivations for using multiple layers:
– 1 layer gives us a universal approximator of any (reasonable) function.

• But this layer might need to be huge.

– With deep networks:
• Some functions can be approximated with exponentially-fewer parameters.

– Compared to a network with 1 hidden layer.

• So deep networks may need fewer parameters than “shallow but wide” networks.
– And hence may need less data to train.

• Watch this video:
– https://www.youtube.com/watch?v=aircAruvnKk

23

https://www.youtube.com/watch?v=aircAruvnKk

Inference In Deep Neural Networks
• The “textbook” choice for deep neural networks:
– Alternate between doing linear transformations and non-linear transforms.

– Each “layer” might have a different size.
• W1 is k1 x d.
• W2 is k2 x k1

.
• W3 is k3 x k2

.
• W4 is k4 x k3

.
• v is k4 x 1.

– We use the same non-linear transform, such as sigmoid, at each layer.
– Cost for prediction, which is called “forward propagation”:

• Cost of the matrix multiplies: O(k1d + k2k1 + k3k2 + k4k3)
• Cost of the non-linear transforms is O(k1 + k2 + k3 + k4), so does not change cost.

– Once you have !𝑦, inference works as it does for Bernoulli with 𝜃 = 1/(1+exp(- !𝑦)).
24

New Issue: Vanishing Gradients
• Consider the sigmoid function:

• Away from the origin, the gradient is nearly zero.
• The problem gets worse when you take the sigmoid of a sigmoid:

• In deep networks, many gradients can be nearly zero everywhere.
– And numerically they will be set to 0.

25

Rectified Linear Units (ReLU)
• Modern networks often replace sigmoid with ReLUs:

• Just sets negative values zic to zero.
– Reduces vanishing gradient problem (positive region is never flat).
– Gives sparser activations.
– Still gives a universal approximator if size of hidden layers grows with n.

26

Skip Connections in Deep Learning
• Skip connections can also reduce vanishing gradient problem:

• Makes “shortcuts” from input to output with fewer transformations.
– Many variations exist on skip connections locations and how they are used.

27

ResNet “Blocks”
• Residual networks (ResNets) are a variant on skip connections.
– Consist of repeated “blocks”, first methods that successfully used 100+ layers.

• Usual computation of activation based on previous 2 layers:

• ResNet “block”:
– Adds activations from “2 layers ago”.

• Differences from usual skip connections:
– Activations vectors al and al+2 must have the same size.
– No weights on al, so Wl and Wl+1 must focus on “updating” al (fit “residual”).

• If you use ReLU, then Wl=0 implies al+2=al.
https://en.wikipedia.org/wiki/Residual_neural_network
https://towardsdatascience.com/an-overview-of-resnet-and-its-variants-5281e2f56035

DenseNet
• More recent variation is “DenseNets”:
– Each layer can see all the values from many previous layers.
– Significantly reduces

vanishing gradients.

– May get same performance
with fewer parameters/layers.

https://arxiv.org/pdf/1512.03385v1.pdf

Learning in Deep Neural Networks
• Usual training procedure is again stochastic gradient descent (SGD).
– Deep networks are highly non-convex and notoriously difficult to tune.
– But we are discovering sets of tricks that often make things easier to tune.

• Data standardization (“centering” and “whitening”).
• Adding bias variables.
• Parameter initialization: “small but different", standardizing within layers.
• Step-size selection: “babysitting", Bottou trick.
• Momentum: heavy-ball and Nesterov-style modfications.
• Step size for each coordinate: AdaGrad, RMSprop, Adam.
• Rectified linear units (ReLU): replace sigmoid with max{0,h} to avoid gradients close to 0.

– Makes objective non-differentiable, but we now know SGD still converges in this setting.
• Batch normalization: adaptive standardizing within layers.

– Often allows sigmoid activations in deep networks.
• Residual/skip connections: connect layers to multiple previous layers.

– We now know that such connections make it more likely to converge to good minima.
• Neural architecture search: try to cleverly search through the space of hyper-parameters.

– This gets expensive!

Missing Theory Behind Training Deep Networks
• Unfortunately, we do not understand many of these tricks very well.

– Large portion of theory is on degenerate case of linear neural networks.
• Or other weird cases like “1 hidden unit per layer”.

– A lot of research is performed using “grad student descent”.
• Several variations are tried, ones that perform well empirically are kept.

• Popular Examples:
– Batch normalization originally proposed to fix “internal covariate shift”.

• Internal covariate shift not really defined in original paper, batch norm does seem to reduce it.
– Famously singled out as an example of “alchemy” in ML research.

• Like many heuristics, people use batch norm because they found that it often helps.
– Many people have worked on better explanations.

– Adam optimizer is a nice combination of ideas from several existing algorithms.
• Such as “momentum” and “AdaGrad”, both of which are well-understood theoretically.

– Theory in the original paper was incorrect; Adam fails at solving some very-simple optimization problems.

• But is Adam is often used because it is amazing at training some networks.
– It’s been hypothesized that we “converged” towards networks that are easier for current SGD methods like Adam.

Regularization in Deep Neural Networks
• Some common tricks to reduce overfitting:
– Standard L2-regularization or L1-regularization (“weight decay”).

• Sometimes with different 𝜆 for each layer.
• Recent work shows this can introduce bad local optima.

– Early stopping of the optimization based on validation accuracy.
– Dropout: randomly zeroes activations z values to discourage dependence.
– Implicit regularization from using SGD.
– Special architectures like convolutional neural networks.

Next Topic: Automatic Differentiation

More-Complicated Layers
• Modern networks often have more complicated structures:

– Each step might be doing a different operation.
– This makes coding up the gradient both time-consuming and prone to errors.

• Developing networks like this is made easier using automatic differentiation.
http://iizuka.cs.tsukuba.ac.jp/projects/colorization/en/

Automatic Differentiation (AD)
• Automatic differentiation (AD):
– Input: code computing a function.
– Output: code to compute one or more derivatives of the function.

• No loss in accuracy, unlike finite-difference approximations.
• The output code has the same asymptotic runtime as the input code.
• Does not give you a “formula” for the derivative, just code that computes it.

https://en.wikipedia.org/wiki/Automatic_differentiation

“Reverse Mode” Automatic Differentiation (AD)
• In machine learning, we typically use “reverse mode” AD.
– Gives code for computing the gradient of a differentiable function.

• The slides will exclusively talk about “reverse mode”. For “forward mode”, see bonus.
– AD can compute gradient of any differentiable layer you can implement.

• Use this gradient to train the via SGD.

• Has a close connection to backpropagation.
– Classic algorithm to compute the gradient of neural network parameters.

• “Apply the chain rule, store the redundant calculations”.
– When you implement backpropagation,

it uses the same sequence of operations as AD.
– AD basically just writes every operation as instance of the chain rule.

Automatic Differentiation – Single Input+Output

• Consider the function f(x) = 10*log(1+exp(-2*x)).
• We write the function as a series of compositions: f5(f4(f3(f2(f1(x))))).
– f1(x) = -2*x, f2(z) = exp(z), f3(z) = 1+z, f4(z) = log(z), f5(z) = 10*x.

• So we have f1’(x) = -2, f2’(z) = exp(z), f3’(z) = 1, f4’(z) = 1/z, f5’(z) = 10.
– These all cost O(1).

• Recursively applying the chain rule we get:
– f’(x) = f5’(f4(f3(f2(f1(x)))))*f4’(f3(f2(f1(x))))*f3’(f2(f1(x)))*f2’(f1(x))f1’(x).

Automatic Differentiation – Single Input+Output
• Our function written as a set of compositions:
– f5(f4(f3(f2(f1(x))))).

• The derivative written using the chain rule::
– f’(x) = f5’(f4(f3(f2(f1(x)))))*f4’(f3(f2(f1(x))))*f3’(f2(f1(x)))*f2’(f1(x))f1’(x).

• Notice that this leads to repeated calculations.
– For example, we use f1(x) four different times.
– We can use dynamic programming to avoid redundant calculations.

• First, the “forward pass” will compute and store the expressions:
• 𝛼!= f1(x), 𝛼" = f2(𝛼!), 𝛼# = f3(𝛼"), 𝛼$ = f4(𝛼#), 𝛼% = f5(𝛼$) = f(x).

• Next, the “backward pass” uses stored 𝛼" values and fi’ functions:
• 𝛽% = 1*f5’(𝛼$), 𝛽$= 𝛽%*f4’(𝛼#), 𝛽# = 𝛽$*f3’(𝛼"), 𝛽" = 𝛽#*f2’(𝛼!), 𝛽! = 𝛽"*f1’(x) = f’(x).

• A generic method to make code computing f’(x) for same cost as f(x).

Automatic Differentiation – Multiple Parameters
• In ML problems, we often have more than 1 parameter.
– And we want to compute the gradient for the same cost as the function.

• To generalize AD to this case, we define a computation graph:
– A directed acyclic graph (DAG).
– Root nodes are the parameters (and inputs).
– Intermediate nodes are computed values (𝛼 values).
– Leaf node is the function value.

• Computing the gradient with AD:
– The forward pass evaluates the function and stores intermediate values.

• Going from the roots through the intermediate nodes to the leaf.
– The backward pass applies the fi’ functions to the 𝛼 values.

• Accumulating the needed pieces of the chain rule until each root has its partial derivative.

Automatic Differentiation – Multiple Parameters

• Wikipedia’s example of a computation graph:
– For computing the gradient of f(x1,x2) = sin(x1) + x1x2.
– Using w for 𝛼, "𝑤 for 𝛽.

https://en.wikipedia.org/wiki/Automatic_differentiation

Automatic Differentiation - Discussion
• AD is amazing – get gradient for the same cost as the function.

– You can try out lots of stuff, and enjoy thoroughly overfitting validation set!
– Modern AD codes have lots of features, like built-in derivatives of matrix operations.

• But reverse-mode AD has some drawbacks:
– Need to store all intermediate calculations, so requires a lot of storage.

• For basic deep neural networks, hand-written code would only need to store the activations.
– Modern code has some of these space savings built in.

• For other functions, the storage cost of AD is much higher than handwritten derivative code.
– “Checkpointing” exists to reduce storage, but increases computational cost.

– Has the same cost as computing the function, which is a pro and a con.
• For basic deep neural networks, these have the same cost so this is what we want.
• For other functions, the gradient might be possible to compute at a lower cost than the function value.

– May miss opportunities for parallelism, or miss tricks to avoid numerical problems.

• AD only makes sense at points where the function is differentiable.
– TensorFlow and PyTorch can give incorrect “subderivatives” at non-differentiable ReLU points.
– AD cannot (directly) do things like “take the derivative of a function of a sample from the distribution”.

Summary
• Implicit regularization and double

descent curves.
– Possible explanations for why deep

networks often generalize well.
• Deep learning:
– Neural nets with many hidden layers.
– Can allow learning with smaller models

and less data than “wide” networks.
• Vanishing gradient in deep networks

(gradient may be close to 0).
– Can reduce with rectified linear units

(ReLU) as non-linear transform.
– Can reduce with skip connections.

• Overview of neural network training
heuristics.

• Automatic differentiation:
– Decomposing code using the chain rule,

to make derivative code.
– Can compute gradient for same cost as

objective function.
– But has some disadvantages compared

to human-written code.

• Next time: convolutions and the
Great Computer Vision Revolution.

42

Forward-Mode Automatic Differentiation
• We discussed “reverse-mode” automatic differentiation.
– Given a function, writes code to compute its gradient.
– Has same cost as original function.
– But has high memory requirements.

• Since you need to store all the intermediate calculations.

• There is also “forward-mode” automatic differentiation.
– Given a function, writes code to compute a directional derivative.

• Scalar value measuring how much the function changes in one direction.
– Has same memory requirements as original function.
– But has high cost if you want the gradient.

• Need to use it once per partial derivative.

• Forward-mode can be better if output dim > input dim
• “Mixed mode” also possible

Failure of AD on ReLUs

https://arxiv.org/pdf/1809.08530.pdf

