
CPSC 440/540: Machine Learning

Generative and Discriminative Classifiers, Neural Nets
Winter 2023

Admin
• A1 due Friday
– I’ll post notice of updates as followups in the pinned Piazza post:

was one earlier today (typo in softmax gradient for Q7)
• First tutorial today, 5-6pm, DMP 201
– Also Wednesday, 5-6pm, DMP 101
– Also Friday, 4-5pm, DMP 101 (after A1 deadline)
– All three will usually be same content + same TA (Justin)
– Sometimes we’ll do “bonus” tutorials that might differ, will announce those

• Office hours schedule to be announced tonight
• Auditors: I think I’ve signed all forms I’ve gotten
– Email me again, or bring me a paper form after class Wednesday

2

CPSC 320 Prereq
• To grad students who haven’t taken CPSC 320,

what do you actually need to know from it?
– Dynamic programming
– Working with graphs (mathematically + as data structures)
– Being very comfortable with big-O notation

• If you haven’t it or a course like it, strongly consider taking it
– Mark says people who he bugged to take it for background for this course

“later thanked me for bugging them to take it”

3

Very briefly
• Obviously not a Canadian holiday,

but want to acknowledge Martin Luther King, Jr day
• Letter from a Birmingham Jail (and other writings/speeches)

still extremely relevant today, in Canada and around the world

4

https://www.csuchico.edu/iege/_assets/documents/susi-letter-from-birmingham-jail.pdf

Last Time: Product of Bernoullis
• We discussed multivariate binary density estimation:

– Input: ‘n’ IID samples of binary vectors x1, x2, x3,…, xn from population.
– Output: model giving probability for any assignment of values x1,x2,…,xd.

• We discussed the product of Bernoullis model:
– Assumes xj are mutually independent (strong assumption, easy computation).

• We started discussing generative classifiers:
– Supervised learning methods that model p(x1, x2,…,xd, y).

• Compute p(y | x1, x2,…,xd) to make predictions.

X =

Inter 1 Inter 2 Inter 3 Inter 4 Inter 5 Inter 6 Inter 7 Inter 8 Inter 9
0 1 0 1 1 1 0 0 1

0 1 0 1 1 1 0 0 1

0 0 1 1 0 0 0 0 0

0 1 0 1 1 1 0 0 0

Pr(X1 = 0, X2 = 1, X3 = 0, X4 = 1, X5 = 1, X6 = 1, X7 = 0, X8 = 0, X9 = 1) = 0.11

5

Naïve Bayes Generative Classifier
• Naïve Bayes: generative classifier, used for spam detection in 90s.
• Naïve Bayes Assumes features xj are mutually independent given y:
– p(x1, x2, …, xd | y) = p(x1 | y) p(x2 | y) ⋯ p(xd | y).

• Unlike product of Bernoullis where we all variables are mutually independent.

– “We assume the features are independent within each class.”
• Another view: we use a different product of Bernoullis for each class.

• How it this used within a generative classifier?

6

Naïve Bayes Generative Classifier
• Naïve Bayes inference:
– We have that p(x1, x2, …, xd, y) = p(x1 | y) p(x2 | y) ⋯ p(xd | y) p(y).

– Use p(y | x1,x2,…,xd) ∝ p(x1,x2,…,xd, y) (definition of conditional prob),
to determine if p(y = 1 | x1,x2,…,xd) > p(y = 0 | x1,x2,…,xd).

– You could also do other inference tasks:
• Normalization:

– Sum up p(x1,x2,…,xd,y) for y=1 and y=0 to get p(x1,x2,…,xd) by the marginalzation rule.

• Conditional mode decoding:
– Find “most spammy” features possible: argmaxx1,…,xd p(x1,…,xd | y = 1).

• Find fewest words to add to your spam message that make it appear as non-spam.
7

Conditional Binary Density Estimation
• To train naïve Bayes, we want to build a model of p(xj | y).
– “Probability of this xj, given the class label y”.

• For binary xj and y, can parameterize as conditionally Bernoulli:

– This has two parameters for each feature j:
• 𝜃!": probability of Xj being 1 when in class k.

– Given the y value, this is a Bernoulli distribution.
• Value of y causes you to “pick” between the two Bernoulli distributions.
• With a fixed y, inference will work as it did for Bernoullis.

– MLE is given by (exercise):
8

Generative Classifier: Implementation
• Training phase for a generative classifier:

1. Fit parameters of p(y).
• For binary y, use Bernoulli and do MLE/MAP.

2. For each class k:
• Fit parameters of p(x1, x2,…, xd | y = k) using examples in class k.

– For naïve Bayes, fit p(x1 | y = k), then fit p(x2 | y = k),…, and finally fit p(xd | y = k).
» Can view as fitting a product of Bernoullis model for each class.

• Cost for naïve Bayes is O(nd):
– O(n) to fit p(y), O(n) to fit each of the d parameters of p(x | y = k).
– Can be reduced to O(z) if X only has z non-zeroes.

• Inference phase for generative classifier:
– Use p(y | x) ∝ p(x, y) to get probabilities for different classes.

9

Naïve Bayes on MNIST
• Consider fitting naïve Bayes on MNIST digits to distinguish “1” vs. “2”.
– Binary supervised learning problem.

• There are 6742 “1” examples and 5958 “2” examples.
– So with MLE we have: p(y=1) = 6742/(6742+5958), or p(y=1) ≈ 0.53.

• Visualizing the p(xj | y) parameters for each class:

– These are the product of Bernoullis models for each class.
https://www.kaggle.com/tarunkr/digit-recognition-tutorial-cnn-99-67-accuracy

10

Naïve Bayes on MNIST
• To sample from naïve Bayes model:
– Sample a value #𝑦 from p(y), then independently sample each xj from p(xj | #𝑦).

• “First sample whether the number will be a 1 or 2, then sample each pixel independently.”
• This is “ancestral sampling” – we’ll talk in detail about why this works later.

• Two samples from a naïve Bayes model:

• Still a bad model, but they at least now look a bit like digits.
– For naïve Bayes to classify well, we don’t need a perfect density estimator.

• It might have learned enough to say that images of 2s are more likely to be 2s than 1s,
even though it does not have a perfect model of either class.

• This is why naïve Bayes could accurately classify e-mail spam,
even though the product of Bernoullis model is one of the worst density estimators. 11

Generative Classifiers - Discussion
• At the moment, generative classifiers aren’t very popular.
– Historically, you need to make a strong assumption like in naïve Bayes.

• For “real” images, independence assumption makes the model basically useless.

• Instead of modeling p(x1, x2,…,xd, y) (“generative model”), we usually
directly model p(y | x1, x2,…,xd) (“discriminative model”, next).
– And usually use a neural network to learn a non-linear mapping (next next).

• But this might change in the future:
– May be able to learn effective classifiers with less data.

• Discriminative: “find a way to combine the pixels to explain why this is a dog.”
• Generative: “this is an image of a dog, explain every pixel in the image”.

– Modern density estimation methods work much better than classic methods. 12

Next Topic: Discriminative Classifiers

Discriminative Classifiers
• Discriminative classifiers directly model p(y | x1, x2,…,xd).

– Might be easier than modeling p(x1, x2,…,xd, y) as done in generative classifiers.

• Key advantage:
– Only need to figure out how features affect the label.

• Do not need to model the features, which themselves could be complicated.
• Do not model p(y) either, we only focus on the mapping from x to y.

• Simple example: a dataset with a binary label and one binary feature.
• For example, predict “hospitalization” based on “vaccinated”.

– We only focus on predicting “hospitalization” with a known value of “vaccinated”, and ignore p(“vaccinated”).
– Conditional binary parameterization (like we did with naïve Bayes):

• p(y = 1 | x = 1) = 𝜃!.
• p(y = 1 | x = 0) = 𝜃".
• Feature ‘x’ “switches” between 2 Bernoulli distributions for y.

– Fit with MLE/MAP, compute p(y | x) for new examples directly from relevant Bernoulli.
• But can’t do inference about x, since we don’t model x at all.

14

Tabular Parameterization of Conditionals
• Now consider a dataset with binary label and 2 binary features.
– For example, predict “hospitalization” based on “vaccinated” and “Paxlovid”.
– The tabular parameterization of the conditional probability:

• p(y = 1 | x1 = 0, x2 = 0) = 𝜃##.
• p(y = 1 | x1 = 0, x2 = 1) = 𝜃#$.
• p(y = 1 | x1 = 1, x2 = 0) = 𝜃$#.
• p(y = 1 | x1 = 1, x2 = 1) = 𝜃$$.
• Makes a different Bernoulli for each combination of x values.

– Basic probability question: why do we need 4 parameters here and not only 3?
• Advantage of tabular representation:
– Can represent any binary conditional (no restriction on distribution).

• Disadvantage of tabular representation:
– With d features we need 2d parameters.

15

Linear Parameterization of Conditionals
• Tabular parameterization will overfit when you have many features.
– You might not see some of the 2d combinations of features in training data.

• Common solution: use a “parsimonious” parameterization.
– “Parsimonious”: has fewer parameters.
– Hope to need less data by giving up the ability to model any conditional.

• Standard choice parameterizes a linear combination of features:

16

Sigmoid Function and Logistic Regression
• Sigmoid function is a common choice for mapping (-∞,∞) to [0,1]:

• Using sigmoid to model conditional based on linear combination:

• This model is called logistic regression.
– Usually fit with MLE or MAP.
– Works well in many applications (usually beats naïve Bayes).

https://en.wikipedia.org/wiki/Sigmoid_function
https://www.youtube.com/watch?v=Zc7ouSD0DEQ

17

Inference in Logistic Regression
• For fixed w and x, logistic gives binary distribution over yi values:

– Cost for one example is O(d), due to the inner product wTx.
• You can treat this value as the parameter “𝜃” in a Bernoulli.
– If wTx > 0 then 𝜃 > 0.5, and if wTx < 0 then 𝜃 < 0.5.
– Usually we just take the mode of this distribution to predict most likely y.
– But you could then do inference conditioned on the values of the features x.

• Sample values of y given this value of x.
• Compute probability of seeing 5 examples with y=1 among 10 examples for this x.
• Compute the number of samples with these features before expect to get one with y=1.
• Use “decision theory” to make predictions that maximize utility.
• And so on.

18

Maximum Likelihood or Conditional Likelihood?

• MLE in generative compared to discriminative models:
– In generative models, MLE maximizes p(X, y | w).
– In discriminative models, MLE maximizes p(y | X, w).

• We maximize the conditional likelihood of y (conditioning on features).
– And we treat the features X as fixed.

• Logistic regression can use binary or continuous features in x.
– Even though it only uses binary probabilities.

• This is different than we saw with naïve Bayes:
– Naïve Bayes needed independence assumption even for binary features.

• Naïve Bayes would need to model continuous probabilities for continuous features.
19

Review: Logistic “Negative Log-Likelihood”
• With n training examples, logistic regression NLL is:

– For binary linear classifiers, usually convenient to assume yi ∈ {−1,+1}, instead of {0,1}.
– NLL equivalent to what some people call “binary cross entropy”.
– Cost is O(nd); bottleneck is computing the n wTxi values for O(d) each.

• Code to compute f and its gradient g:
– The wTxi values are computed via matrix multiplication “X*w”.

• This is a convex function, so if 𝛻f(w) = 0 then w is a global minimum.
• Setting 𝛻f(w) = 0 does not lead to closed-form solution for w (in general).
• But since f is differentiable and convex,

we can converge to a w with 𝛻f(w) = 0 with gradient descent.
– Or stochastic gradient descent, or other optimization algorithms…
– Best choice depends on n, desired accuracy, computational setup, …. 20

Binary Naïve Bayes is a Linear Model

21

Non-probabilistic predictors
• There are also non-probabilistic discriminative models that directly learn a map from x to y

– Support vector machines (SVMS), usual decision trees, …

• Accuracy is often (not always) higher as you model fewer steps
– Vladimir Vapnik: “When solving a problem of interest, do not solve a more general problem as an

intermediate step.”
– But number of inference tasks you can do gets more limited.

• Discriminative models can’t answer questions involving p(x, y).
• “Pure classifiers” can’t answer questions involving p(y | x). 22

Review: Regularization and MAP
• Common to add a regularizer, such as L2-regularization, to the NLL:

– Typically gives better test error with appropriate hyper-parameter 𝜆 > 0.
– L2-regularization corresponds to MAP estimation with a Gaussian prior.

• We’ll cover Gaussians later.

• In both generative/discriminative cases, MAP maximizes posterior:

23

Recap: Tabular Conditional vs. Logistic Regression

• Our two discriminative models for binary classification:
– Tabular parameterization:

• Has 2d parameters.
• Can model any binary conditional probability.
• Tends to overfit unless d is tiny.

– Logistic regression:
• Has d parameters (or d+1 if you add a “bias” variable).
• Can only model a limited class of binary conditional probabilities.
• Tends to underfit unless d is large.

• Classical “learning theory” results explore how factors like
“number of parameters” and “model class limits” affect test error.

24

Review: Fundamental Trade-Off
• Tabular and logistic are on different parts of fundamental trade-off:

1. Etrain: how small you can make the training error.
vs.

2. Egeneralization: how well training error approximates the test error (overfitting).

• Simple models (like logistic regression with few features):
– Eapprox is low (not very sensitive to training set).
– But Etrain might be high (cannot fit data very well).

• Complex models (like tabular conditionals with many features):
– Etrain can be low (can fit data very well).
– But Eapprox might be high (very sensitive to training set). 25

Review: Non-Linear Feature Transformations
• We can explore models between tabular and logistic:
– For example, apply logistic regression with non-linear feature transforms:

1. Transform each feature vector xi into a new feature vector zi.
2. Train regression weights v using the features zi as the data.
3. At test time, do the same transformation for the test features.

– Examples:
• Polynomials, radial basis functions (RBFs), interaction terms, periodic functions.

• Effect on fundamental trade-off:
– Adding features makes training error decrease.
– But generalization gap might increase.

• Regularized logistic regression with linear or
Gaussian RBF features, and using a validation
set to choose 𝜆 (and 𝜎), is often hard to beat.

26

Next Topic: Neural Networks

Neural Networks: Motivation
• Many domains require non-linear transforms of the features.
– But, it may be obvious which transform to use.

• Neural network models try to learn good transformations.
– Optimize the “parameters of the features”.

• And choose a class of features that have the ability to represent many functions.

• We’ll start with a special case: “one hidden layer”.
– Then we’ll move onto “deep learning,” with uses multiple layers.

28

Neural Network History
• Popularity of neural networks has come in waves over the years.

– Currently, it is one of the hottest topics in science.

• Recent popularity due to unprecedented performance on some difficult tasks.
– Speech recognition.
– Computer vision.
– Machine translation.
– Natural language modeling.

• There are mainly due to big datasets, deep models, and tons of computation.
– Plus tweaks to classic models and focus on structures networks (CNNs, LSTMs).

• For a NY Times article discussing some of the history/successes/issues, see:
– https://mobile.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html

29

https://mobile.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html

Neural Network with One Hidden Layer
• Classic neural network structure with one hidden layer:

30

Neural Network with One Hidden Layer
• As a picture:

• As a function:

31

Neural Network with One Hidden Layer
• As a function:

• Parameters: the “k times d” matrix W, and length-k vector v.
– Using k as “number of activations”.

32

Neural Network with One Hidden Layer
• As a function:

• Linear transformation z=Wx: can think of like doing PCA.
– Mixes together the features in a way that we learn.

• Non-linear transform h might be sigmoid (or others),
applied element-wise.
– Without a non-linear transformation it degenerates to a linear model:

• vT(Wx) = (vTW)x = wTx, for w=WTv.
33

Neural Network with One Hidden Layer
• As a function:

• Second linear transformation vTh(z) gives final value.
– This is like using a linear model with non-linear feature transformations.

• But in this case we learned the features.

• Cost of computing "𝑦 is O(kd).
– O(kd) to compute Wx, O(k) to apply h, then O(k) to multiply by v.

34

Neural Network with One Hiden Layer
• As a function:

• You then use "𝑦 for inference.
– For binary classification, you could use the sigmoid function:

– This is like logistic regression with optimized features.
35

• Recall fitting linear models with a bias variable (so $𝑦 ≠ 0 when x=0).

– We often implement this by adding a column of ones to X.
• In neural networks we often include biases on each zc:

– As before, we could implement this by adding a column of ones to X.
• We also probably want a bias on the output:

– For sigmoids, you could equivalently fix one row of wc to be equal to 0.
• This gives vch(wc

Tx) = vch(0) = vc/2, so the value 2vc will give the bias 𝛽.

Adding Bias Variables

36

Universal Approximation with One Hidden Layer
• Classic choice of “activation” function is the sigmoid function.
• With enough hidden “units”, this is a “universal approximator.”

– Any continuous function can be approximated arbitrarily well (on bounded domain).

• But this result is for a non-parametric setting of the parameters:
– The number of hidden “units” must be a function of n.
– A fixed-size network is not a universal approximator.

• Other universal approximators (always non-parametric):
– K-nearest neighbours.

• Need to have k depending on n (but this model is always non-parametric anyway).
– Linear models on polynomial feature transformations.

• Need degree of the polynomial to grow with n.
– Linear models with Gaussian RBFs as non-linear features.

• With on basis function centered on each xi.
37

Is Training Neural Networks Scary?
• Learning:
– For binary classification, the NLL under the sigmoid loss is:

• With W fixed this is convex, but with W and v as variables it is non-convex.
• And finding the global optimum is NP-hard in general.

– Nearly always trained with variations on stochastic gradient descent (SGD).

• Many variations exist (adding “momentum”, AdaGrad, Adam, and so on).
• SGD is not guaranteed to reach a global minimum for non-convex problems.

• Is non-convexity a big drawback compared to logistic regression?
– And if k is large, is this likely to overfit? 38

Neural Networks ≥ Logistic Regression
• Consider a neural network with one hidden layer and connections from input to output layer.

– The extra connections are called “skip” connections.

• You could first set v=0, then optimize w using logistic regression.
– This is a convex optimization problem that gives you the logistic regression model.

• You could then set W and v to small random values, and start SGD from the logistic regression model.
– Even though this is non-convex, the neural network can only improve on logistic regression (improves “residual” error).

• And if you are worried about overfitting, you could stop SGD by checking performance on validation set.
– This is called regularization by “early stopping”.

• In practice, we typically optimize everything at once (which usually works better than the above).
39

Next Topic: Implicit Regularization

“Hidden” Regularization in Neural Networks
• Fitting single-layer neural network with SGD and no regularization:

• On each step of the x-axis, the network is re-trained from scratch.
• Training goes to 0 with enough units: we’re finding a global min.
• What should happen to training and test error for larger #hidden?

https://www.neyshabur.net/papers/inductive_bias_poster.pdf 41

“Hidden” Regularization in Neural Networks
• Fitting single-layer neural network with SGD and no regularization:

• Test error continues to go down!?! Where is fundamental trade-off??
– Is it is still fundamental, but FTO focuses on the “worst” global minimum.

• There do exist global mins with large #hidden units have test error = 1.
– But among the global minima, SGD is somehow converging to “good” ones.

https://www.neyshabur.net/papers/inductive_bias_poster.pdf 42

Summary
• Naïve Bayes:

– Generative classifier, p(x|y) a product of
Bernoullis

• Discriminative Classifiers:
– Directly model p(y | x) rather than p(x ,y).
– Most of modern machine learning is based on

discriminative classifiers.
• Tabular parameterization:

– Fit a parameter for p(y=1 |x) for each possible
value of ‘x’.

– Can model any conditional, but overfits unless
‘d’ is small.

• Logistic regression:
– Write p(y | x) using the sigmoid function.
– MLE is a convex optimization problem.
– Trained using variations on gradient descent.
– Cannot model any conditional, but tends not

to overfit (especially with regularization).

• Fundamental Trade-Off:
– Simple models can underfit (high train error);
– complex models usually overfit (high gen. gap).

• Neural networks with one layer:
– Simultaneous learn a linear model and its

features.
– Universal approximator if size of layer grows

with number of examples ‘n’.
– Training is a non-convex optimization problem.

• Empirical “good news” for training neural
networks with SGD:
– With enough hidden units, SGD often finds a

global minimum.

• Next time: we descend deeper (twice).

43

Logistic Regression Training Code
• Gradient descent for logistic regression:

• Simple method for setting the step size:
– If f(wk+1) > f(wk), divide 𝛼 in half and see if that decreases ‘f’.

• There are much-more clever ways to set the step size (for example, Barzilai-Borwein method in assignment code).
• There are also better “directions” than using the gradient, such as quasi-Newton and Hessian-free Newton.
• For stochastic gradient descent, you need a decreasing set of step sizes to guarantee convergence.

• Deciding when to stop:
– Check if ||𝛻 f(w) || ≤ 𝜖 for some small 𝜖.
– Or check for progress in function/iteration values, and “give up” if you no longer are making progress.

• Cost is O(nd) per iteration.
– Computing each of ‘n’ inner-product wTxi costs O(d), giving O(nd).
– Computing XTr in the gradient costs O(nd).
– Updating w given the gradient costs O(d) so does not increase cost.

• If the matrix ‘X’ only has ‘z’ non-zero values, can be implemented in O(z).
• Cost is only O(d) for stochastic gradient descent, but you will spend a lot of time tuning step sizes.

44

