CPSC 440/540: Machine Learning

Generative and Discriminative Classifiers, Neural Nets
Winter 2023

Admin

Al due Friday

— I'll post notice of updates as followups in the pinned Piazza post:
was one earlier today (typo in softmax gradient for Q7)

First tutorial today, 5-6pm, DMP 201

— Also Wednesday, 5-6pm, DMP 101

— Also Friday, 4-5pm, DMP 101 (after A1l deadline)

— All three will usually be same content + same TA (Justin)

— Sometimes we’ll do “bonus” tutorials that might differ, will announce those

Office hours schedule to be announced tonight

Auditors: | think I've signed all forms I've gotten
— Email me again, or bring me a paper form after class Wednesday

odmin
——T ™

CPSC 320 Prereq

* To grad students who haven’t taken CPSC 320,
what do you actually need to know from it?

— Dynamic programming
— Working with graphs (mathematically + as data structures)
— Being very comfortable with big-O notation

* |f you haven’t it or a course like it, strongly consider taking it

— Mark says people who he bugged to take it for background for this course
“later thanked me for bugging them to take it”

odmin
——T ™

Very briefly

Obviously not a Canadian holiday,
but want to acknowledge Martin Luther King, Jr day

» Letter from a Birmingham Jail (and other writings/speeches)
still extremely relevant today, in Canada and around the world

‘, ,QK guabucchu £ Ben Rosen
| @jaboukie m‘; @ben_rosen

“Be nice to racist people — MLK” big day for MLK quotes with
— white people on mlk day weird ellipses in the middle

Q.2K AN/ An 19 DND4 a1t A 910 AM - Jan 1 7. 2022 - Twitter Web AbpD
8:35 AM - Jan 18, 2021 - Twitter for iPhone 9:10 AM - Jan 1/, 2022 Wi V\ ADD

https://www.csuchico.edu/iege/_assets/documents/susi-letter-from-birmingham-jail.pdf

Last Time: Product of Bernoullis

* We discussed multivariate binary density estimation:
— Input: ‘n’ IID samples of binary vectors x%, x2, x3,..., x" from population.
— Output: model giving probability for any assighnment of values x;,x,,...,Xy4.

mmmmmmmm

1
1
0
1

o O o o

 We discussed the product of Bernoullis model:

o B O O

1
1
1
1

1
1
0
1

1
1
0
1

o

0
0

o O o o

o O B BB

Pr(X;,=0,X;=

1, X; =

0, X, =

1, Xs =

1, Xg =

1, X, =

0, Xg =

0, Xo =

1) =0.11

(ésf/'mafPS /,,0,/,,,4,-/“7 fir ol ?7 (/or/(m)

— Assumes x; are mutually independent (strong assumption, easy computation).

y(m %y X ’((7,7(%7'--,(,(4) = @\"(l~ 6)"

* We started discussing generative classifiers:

— Supervised learning methods that model p(xy, X,,...,X4, V)

* Compute p(y | Xy, X5,...,X4) to make predictions.

(')z)ri (’\ 92)"7.1 L 6);9

()

)-
_04) X

Naive Bayes Generative Classifier

* Naive Bayes: generative classifier, used for spam detection in 90s.
* Naive Bayes Assumes features x; are mutually independent given y:
— PlXy, X, ey Xg [V) =p(X1 | Y) PO | Y) == p(Xq | Y).

e Unlike product of Bernoullis where we all variables are mutually independent.

— “We assume the features are independent within each class.”

* Another view: we use a different product of Bernoullis for each class.

 How it this used within a generative classifier?

F(”n YJ\"')Xd)y7 i f{”n 2y Xy ’/)f(}’) (f)/oojw‘* m/e\

- f()('lt/\ r(b,y)f(x.,’y)f(y) (V\\/\(/lJ/ Nave B‘l)'fs QSSMMf/,.d’\)
o Anis 0wt Aol

. , _ (
Con c(__l-' lorarl Uuniy o]ql' Ap:i\4J](1~qf:0“ is @ W n \,af‘d"f i

Naive Bayes Generative Classifier

* Naive Bayes inference:
— We have that p(xy, Xy, ..., Xg, Y) = p(Xy | y) p(xy | y) == p(x4 | y) ply).

— Use p(y | X1,X5,...,Xg) X p(X1,X5,...,%q, V) (definition of conditional prob),
to determine if p(y =1 | X{,X5,...,Xg) > Py =0 | X{,X5,...,Xg).

— You could also do other inference tasks:

* Normalization:
— Sum up p(x1,X,...,Xg,Y) for y=1 and y=0 to get p(x4,X,,...,Xg) by the marginalzation rule.

* Conditional mode decoding:

ey

* Find fewest words to add to your spam message that make it appear as non-spam.

Conditional Binary Density Estimation

* To train naive Bayes, we want to build a model of p(x; | y).
— “Probability of this x;, given the class label y”.

* For binary x; and y, can parameterize as conditionally Bernoulli:

f bl)y'”b olz Y
- — =l g
,4 \y‘-0> JO . n ﬁf mfo””‘fwééﬁh
F o S fo)" g
. . f{y =0/ y /) / 0
— This has two parameters for each feature j:
* Ojk: probability of X; being 1 when in class k.
— Given the y value, this is a Bernoulli distribution.
* Value of y causes you to “pick” between the two Bernoulli distributions.
* With a fixed y, inference will work as it did for Bernoullis. { L of 171""5.0
— MLE is given by (exercise): 2~ _ .., £ ““”,"(4’.:6:.,4 ':/w, A < N oe"x !

T 7, o of Jiner
@"‘ n, < mw&w Ff }linos y» I 0 ho & b)(:89

Generative Classifier: Implementation

* Training phase for a generative classifier:

1.

2.

* Cost for naive Bayes is O(nd):

Fit parameters of p(y).
* For binary y, use Bernoulli and do MLE/MAP.

For each class k:

* Fit parameters of p(xy, X5,..., X4 | y = k) using examples in class k.

— For naive Bayes, fit p(x; | y = k), then fit p(x, | y = k)

,,,,,

and finally fit p(x4 | y = k).

» Can view as fitting a product of Bernoullis model for each class.

0@%
Olul)

U(/)(S

— O(n) to fit p(y), O(n) to fit each of the d parameters of p(x | y = k).
— Can be reduced to O(z) if X only has z non-zeroes.

* |Inference phase for generative classifier:
— Use p(y | x) o< p(x, y) to get probabilities for different classes.

for i in la
if yli)==1
-y *71
(”J CnJ
fr j m |d
fr i in ln
if yLi =18 (i)t
r— xYCS) ’) “':'
eled y(iyez03 Xtij)-|
f’"’cbol 4=
MJM‘
end
P-¥y(51) /= -y
l"x‘lc:)27 Ve S~y
P~y -/= n

Naive Bayes on MNIST

/‘/l/l///;'l

12 .22:) -?.Ia?l
z*‘&i LA i LR
aaaa 2222

QA22
2332 AArdId 2

* There are 6742 “1” examples and 5958 “2” examples
— So with MLE we have: p(y=1) = 6742/(6742+5958), or p(y=1) = 0.53.

* Visualizing the p(x; | y) parameters for each class:

— These are the product of Bernoullis models for each class.

Naive Bayes on MNIST

* To sample from naive Bayes model:
— Sample a value y from p(y), then independently sample each x; from p(x; | ¥).
* “First sample whether the number will be a 1 or 2, then sample each pixel independently.”

* This is “ancestral sampling” — we’ll talk in detail about why this works later.

 Two samples from a naive Bayes model:

 Still a bad model, but they at least now look a bit like digits.

— For naive Bayes to classify well, we don’t need a perfect density estimator.
* It might have learned enough to say that images of 2s are more likely to be 2s than 1s,
even though it does not have a perfect model of either class.

* This is why naive Bayes could accurately classify e-mail spam,
even though the product of Bernoullis model is one of the worst density estimators.

Generative Classifiers - Discussion

* At the moment, generative classifiers aren’t very popular.

— Historically, you need to make a strong assumption like in naive Bayes.

* For “real” images, independence assumption makes the model basically useless.

* Instead of modeling p(xy, x,,...,Xy, y) (“generative model”), we usually
directly model p(y | x4, X5,...,X4) (“discriminative model”, next).

— And usually use a neural network to learn a non-linear mapping (next next).

* But this might change in the future:

— May be able to learn effective classifiers with less data.

* Discriminative: “find a way to combine the pixels to explain why this is a dog.”
* Generative: “this is an image of a dog, explain every pixel in the image”.

— Modern density estimation methods work much better than classic methods.

12

Next Topic: Discriminative Classifiers

Discriminative Classifiers

Discriminative classifiers directly model p(y | x4, X5,...,X4).
— Might be easier than modeling p(x4, X5,...,X4,) @s done in generative classifiers.

Key advantage:

— Only need to figure out how features affect the label.

* Do not need to model the features, which themselves could be complicated.
* Do not model p(y) either, we only focus on the mapping from x to y.

Simple example: a dataset with a binary label and one binary feature.

* For example, predict “hospitalization” based on “vaccinated”.
— We only focus on predicting “hospitalization” with a known value of “vaccinated”, and ignore p(“vaccinated”).

— Conditional binary parameterization (like we did with naive Bayes):
* ply=1]x=1)=6,.
* ply=1]x=0)=86,.

* Feature X’ “switches” between 2 Bernoulli distributions fory.

— Fit with MLE/MAP, compute p(y | x) for new examples directly from relevant Bernoulli.
* But can’t do inference about x, since we don’t model x at all.

14

Tabular Parameterization of Conditionals

 Now consider a dataset with binary label and 2 binary features.

— For example, predict “hospitalization” based on “vaccinated” and “Paxlovid”.

— The tabular parameterization of the conditional probability:
* ply=1]x;=0,%=0)=060.
* ply=1]x,=0,%=1)=00.
* ply=1]x;=1,x%x=0)=04.
* ply=1]x=1,%=1)=04;.
* Makes a different Bernoulli for each combination of x values.
— Basic probability question: why do we need 4 parameters here and not only 3?

* Advantage of tabular representation:
— Can represent any binary conditional (no restriction on distribution).

e Disadvantage of tabular representation:
— With d features we need 29 parameters.

Linear Parameterization of Conditionals

* Tabular parameterization will overfit when you have many features.

— You might not see some of the 2¢ combinations of features in training data.

« Common solution: use a “parsimonious” parameterization.

— “Parsimonious”: has fewer parameters.
— Hope to need less data by giving up the ability to model any conditional.

e Standard choice parameterizes a linear combination of features:
ply=1 [anryypagnd = F G vign et wgr) = f,7))
A \
Fm\pﬁy\ {f\ 'WW*/ Q’PWM""#‘”‘ WS fhe //14/6’39‘\1'\ on W,
from reals R o [0)[] .

Sigmoid Function and Logistic Regression

e Sigmoid function is a common choice for mapping (-c0,) to [0,1]:

(z — . l ﬁ e
.F) H’Q(P("Z) J — _¥ >

2
e Using sigmoid to model conditional based on linear combination:

|
f y)W) ":(\A« X> / . @xf(- WT)() “‘ﬁ"

* This model is called logistic regression. - "
— Usually fit with MLE or MAP. (Greg Shaklmarovit]
— Works well in many applications (usually beats naive Bayes).

17

Inference in Logistic Regression

* For fixed w and x, logistic gives binary distribution over y' values:
n

s) =
prt 5=)
k./-,w'}/
(%
— Cost for one example is O(d), due to the inner product w'x.
* You can treat this value as the parameter “6” in a Bernoulli.

— If wix>0then 8 >0.5, and if wix <0 then 8 <0.5. 0 = 1/(l+exp(-X[i,:]*w))

— Usually we just take the mode of this distribution to predict most likely y.

— But you could then do inference conditioned on the values of the features x.
e Sample values of y given this value of x.

Compute probability of seeing 5 examples with y=1 among 10 examples for this x.

Compute the number of samples with these features before expect to get one with y=1.

Use “decision theory” to make predictions that maximize utility.
And so on.

18

Maximum Likelihood or Conditional Likelihood?

* MLE in generative compared to discriminative models:

— In generative models, MLE maximizes p(X, y | w).
— In discriminative models, MLE maximizes p(y | X, w).

* We maximize the conditional likelihood of y (conditioning on features).
— And we treat the features X as fixed.

e Logistic regression can use binary or continuous features in x.
— Even though it only uses binary probabilities.
* This is different than we saw with naive Bayes:

— Naive Bayes needed independence assumption even for binary features.

* Naive Bayes would need to model continuous probabilities for continuous features.

19

(eview
/——\./

Review: Logistic “Negative Log-Likelihood”

* With n training examples, logistic regression NLL is:

'F(W) = ? Iag(/ tep(=y'u'y))

— For binary linear classifiers, usually convenient to assume y' € {—1, +1}, instead of {0,1}.
— NLL equivalent to what some people call “binary cross entropy”.

— Cost is O(nd); bottleneck is computing the n wx' values for O(d) each.
* Code to compute fand its gradient g: e et

yXw = y.*(X*w)
— The w'x values are computed via matrix multiplication “X*w”. f = sun(log. (1 .+ exp.(-yXxw)))

g = -X'"*(y./(1 .+ exp.(yXw)))
return (f,g)

* This is a convex function, so if Vf(w) = 0 then w is a global minimum.
e Setting /'f(w) = 0 does not lead to closed-form solution for w (in general).

* But since fis differentiable and convex,
we can converge to a w with VVf(w) = 0 with gradient descent.
— Or stochastic gradient descent, or other optimization algorithmes...
— Best choice depends on n, desired accuracy, computational setup,

Binary Naive Bayes is a Linear Model
Pxly=1y o (y=1)

P(y | [r) = ,ocx[y,l),o(y) + Pxly=g) P (y=o)

[_ bonuS‘
_ - - -)f{){zD gt
— P(XJ«O) ply=e) = — | Plly=! = >
- e el 1Y Rty)

A : -
B L (% ’Z:'ﬂ 4 \OKY"__U)
G(JZ\ 'Y P (y=o) g P (y=0)
&y ([AN ply="
- 5[0% Oj 8,5 (1-63' -if i "\’j }OCy—oJ)

. G 1—65 ’0(7"‘)
‘% X) "’3%7 + (=% log =5 ' +[)PC7"03>

‘ JO

— o

. - (1= e\)U) - Qj (}"5‘)
— o—'(JE';T v [Oj (-85 Gjo T 2 lo'9 "eJD s [0_3 Ply=o

Wy b
=g (wx +hb) 8

bon U\S.(

/—\

Non-probabilistic predictors

 There are also non-probabilistic discriminative models that directly learn a map from xto y
— Support vector machines (SVMS), usual decision trees, ...

P(*;ﬁ /\/ ()(\/ | x) N Fx—y
/ J/ S/ (neie U,

\/ \/ (/()9157'/(/\0/\’»}4»;)
/ (sum)

Generative

bob: \i5fee
Piscriminetive provbitete X
mﬂ—rmhﬁ(isﬂ‘o X X

e Accuracy is often (not always) higher as you model fewer steps

— Vladimir Vapnik: “When solving a problem of interest, do not solve a more general problem as an
intermediate step.”
— But number of inference tasks you can do gets more limited.

* Discriminative models can’t answer questions involving p(x, y).
* “Pure classifiers” can’t answer questions involving p(y | x).

Ceview
/——_/

Review: Regularization and MAP

e Common to add a regularizer, such as L2-regularization, to the NLL:

F()= 2 log(Uten(-yls)) + 2 1))’

— Typically gives better test error with appropriate hyper-parameter 4 > 0.
— L2-regularization corresponds to MAP estimation with a Gaussian prior.

 We’ll cover Gaussians later.

* In both generative/discriminative cases, MAP maximizes posterior:

w € anpad plol X))

.o Hve
Jywrﬁ/"w \A..;(uwwa)(v

= argmerd Oy X 1)ofu)f = ageer § oy 1000) ()5 (?,,’f,;f,}i,f)f&)

Recap: Tabular Conditional vs. Logistic Regression

* Our two discriminative models for binary classification:

— Tabular parameterization:
* Has 29 parameters.
e Can model any binary conditional probability.
* Tends to overfit unless d is tiny.
— Logistic regression:
* Has d parameters (or d+1 if you add a “bias” variable).
e Can only model a limited class of binary conditional probabilities.
* Tends to underfit unless d is large.

e Classical “learning theory” results explore how factors like
“number of parameters” and “model class limits” affect test error.

24

(eview
/——\./

Review: Fundamental Trade-Off

* Tabular and logistic are on different parts of fundamental trade-off:

1. E,.,: how small you can make the training error.
VS.

2. Egeneralization: how well training error approximates the test error (overfitting).

* Simple models (like logistic regression with few features):
— Epprox IS low (not very sensitive to training set).

— But E,,.;, might be high (cannot fit data very well).
 Complex models (like tabular conditionals with many features):

— E,..i, can be low (can fit data very well).
— But E,, 10« Might be high (very sensitive to training set).

Ceview
/"—\./
Review: Non-Linear Feature Transformations

* We can explore models between tabular and logistic:

— For example, apply logistic regression with non-linear feature transforms:
1. Transform each feature vector x' into a new feature vector z'.
2. Train regression weights v using the features z' as the data.
3. At test time, do the same transformation for the test features.

— Examples:
* Polynomials, radial basis functions (RBFs), interaction terms, periodic functions.
* Effect on fundamental trade-off: |

— Adding features makes training error decrease. test error

— But generalization gap might increase.
* Regularized logistic regression with linear or

Gaussian RBF features, and using a validation
set to choose A (and o), is often hard to beat.

z fqmrox

'
[
[
(
I

— : I/"'ﬂii"”'m) errr
F("a for QS

Next Topic: Neural Networks

Neural Networks: Motivation

* Many domains require non-linear transforms of the features.

— But, it may be obvious which transform to use.

* Neural network models try to learn good transformations.

— Optimize the “parameters of the features”.

* And choose a class of features that have the ability to represent many functions.

 We'll start with a special case: “one hidden layer”.

— Then we’ll move onto “deep learning,” with uses multiple layers.

28

Neural Network History

Popularity of neural networks has come in waves over the years.
— Currently, it is one of the hottest topics in science.

Recent popularity due to unprecedented performance on some difficult tasks.
— Speech recognition.

— Computer vision.

— Machine translation.

— Natural language modeling.

There are mainly due to big datasets, deep models, and tons of computation.
— Plus tweaks to classic models and focus on structures networks (CNNs, LSTMs).

For a NY Times article discussing some of the history/successes/issues, see:
— https://mobile.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html

https://mobile.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html

Neural Network with One Hidden Layer

* Classic neural network structure with one hidden layer:

30

Neural Network with One Hidden Layer
* As a picture: @ (z)— @

 As a function: ;/ — V—T ;.)(W .

v
L
Lihoaf ¢ owblng 1/ ,/Vo,cl/‘pa.\/ "3\ Viesr ¢ oplindTion
. t " ‘Ifqr\s ﬁﬂﬂ'\‘lflllﬂ O{‘ OF /n Vlf
01\ a] ival imns P

. ' \
the “aclivations’

31

Neural Network with One Hidden Layer

e As a function:

y = /v(\/\/)

'w’
L’hotf (M.Ltﬂﬂ, /VOI\ I/ﬁé‘l/ ’ 'mea/' (o,y.bnﬂfl(m
I\ ’de‘w 'Irqy\s ﬁwmﬂan o'F Ur mr
0 ac Qqct\ Z ('a”l’

J)
1 he “acl /\/aflUI‘S

* Parameters: the “k times d” matrix W, and length-k vector v.

— Using k as “number of activations”.

WT —_ v, ’\
L v=| W2
W: "2 ‘ ."
; |

—w— - VK -

kxJ k|

Neural Network with One Hidden Layer

* As a function:
y = /w(W x)

L’hoaf (M.L[Mf/ ‘I /1{0n I/{w/f ’ 'u?uf (ombnﬂfltm
o ‘aclivdiss" rins ‘weraflon o of inpul

Qqc‘\ Z-’ (a”’

e “aclivati
e Linear transformation z=V\/x can ’E’ﬁmk of like doing PCA.

— Mixes together the features in a way that we learn.

* Non-linear transform h might be sigmoid (or others),
applied element-wise.

— Without a non-linear transformation it degenerates to a linear model:

e vI(Wx) = (VIW)x = w'x, for w=W'v.

33

Neural Network with One Hidden Layer

e As a function:

y = /w(W %)

L’honf (M.LL,,,{, Non- lma«/ 2" lihesr (o,y.bmfwn
£] ival i s ‘Ir"" Cormation of of mr
0 ac Qqc‘\ Z (,J’o

J)
1 he “a (1 /\/aflUI‘S

* Second linear transformation v'h(z) gives final value.

— This is like using a linear model with non-linear feature transformations.

 But in this case we learned the features.

* Cost of computing y is O(kd).
— O(kd) to compute Wx, O(k) to apply h, then O(k) to multiply by v.

34

Neural Network with One Hiden Layer

e As a function:

y = /w(W %)

L’honf (M.LL,,,{, Non- lma«/ 2" lihesr (o,v.bmfwn
£] ival i s ‘Ir"" Cormation of of mr
0 ac Qqc‘\ Z (‘,J’o

J)
‘“e a('f l\/aTIUI‘S

* You then use y for inference.

— For binary classification, you could use the sigmoid function:

(v | x. W) = /
P/ X) ! H Pxf(‘y\/ h(Wx))

— This is like logistic regression with optlmlzed features.

35

Adding Bias Variables

* Recall fitting linear models with a bias variable (so ¥ # 0 when x=0).
A4
Y= Zwx +p
J=!

— We often implement this by adding a column of ones to X.
* In neural networks we often include biases on each z:

i
9: ? v, L(w:x th)

— As before, we could implement this by adding a column of ones to X.
 We also probably want a bias on the output:

9:%\/‘“%7)(*&)*,3

— For sigmoids, you could equivalently fix one row of w. to be equal to 0.
* This gives v.h(w.x) = v.h(0) = v./2, so the value 2v, will give the bias £.

Universal Approximation with One Hidden Layer

Classic choice of “activation” function is the sigmoid function.

With enough hidden “units”, this is a “universal approximator.”
— Any continuous function can be approximated arbitrarily well (on bounded domain).

But this result is for a non-parametric setting of the parameters:
— The number of hidden “units” must be a function of n.
— A fixed-size network is not a universal approximator.

Other universal approximators (always non-parametric):
— K-nearest neighbours.
* Need to have k depending on n (but this model is always non-parametric anyway).
— Linear models on polynomial feature transformations.
* Need degree of the polynomial to grow with n.
— Linear models with Gaussian RBFs as non-linear features.
* With on basis function centered on each x'.

37

Is Training Neural Networks Scary?

* Learning:
— For binary classification, the NLL under the sigmoid loss is:

(W)= zw(mm yvhw/m

W y
* With W fixed this is convex, but with W and v as varlables it is non-convex.
* And finding the global optimum is NP-hard in general.

— Nearly always trained with variations on stochastic gradient descent (SGD).

W/("/: W/r /fv {w
Sl - kmr(;%

* Many variations exist (adding ‘momentum”, AdaGrad, Adam, and so on).

Iy s a N

Vimy e*q"‘f4 (6'97'\

bn L
" ar,v,/’, /qm/w”

* SGD is not guaranteed to reach a global minimum for non-convex problems.
* |s non-convexity a big drawback compared to logistic regression?

— And if k is large, is this likely to overfit?

38

Neural Networks = Logistic Regression

* Consider a neural network with one hidden layer and connections from input to output layer.
— The extra connections are called “skip” connections.

+ VT l‘\(Wx >
| inewr \-’V“/

Muk/ Newral HW(VLMI’

b
N

You could first set v=0, then optimize w using logistic regression.
— This is a convex optimization problem that gives you the logistic regression model.
You could then set W and v to small random values, and start SGD from the logistic regression model.
— Even though this is non-convex, the neural network can only improve on logistic regression (improves “residual” error).
And if you are worried about overfitting, you could stop SGD by checking performance on validation set.
— This is called regularization by “early stopping”.
In practice, we typically optimize everything at once (which usually works better than the above).

Next Topic: Implicit Regularization

“Hidden” Regularization in Neural Networks

* Fitting single-layer neural network with SGD and no regularization:

MNIST CIFAR-10
0.06f —Training H —Training
—Test (at convergence) 0.6 —Test (at convergence)
0.05¢]
0.5f i
0.04¢ 1
§ § 0.41
[0.03f T o 4l
0.02 0.2}
0.01} 01l
94 8 16 32 64 128 256 512 1K 2K 4K 92 8 16 32 64 128 256 512 1K 2K 4K
Hidden Units # Hidden Units

* On each step of the x-axis, the network is re-trained from scratch.
* Training goes to 0 with enough units: we’re finding a global min.
 What should happen to training and test error for larger #hidden?

“Hidden” Regularization in Neural Networks

Fitting single-layer neural network with SGD and no regularization:

MNIST CIFAR-10
0.06f —Training H —Training
—Test (at convergence) 0.6 —Test (at convergence))|
0.05¢ |
0.5¢]
0.04 1
§ § 0.41 1
(g 0.03} L 0.3l
0.02 0.2
0.01f 0.1}
1 ! | h o 1 1 ! ! 1 !
04 8 16 32 64 128 256 512 1K 2K 4K 4 8 16 32 64 128 256 512 1K 2K 4K
Hidden Units # Hidden Units

Test error continues to go down!?! Where is fundamental trade-off??
— Is it is still fundamental, but FTO focuses on the “worst” global minimum.

There do exist global mins with large #hidden units have test error = 1.

— But among the global minima, SGD is somehow converging to “good” ones.

42

Summary

Naive Bayes:

— Generative classifier, p(x|y) a product of
Bernoullis

Discriminative Classifiers:
— Directly model p(y | x) rather than p(x,y).

— Most of modern machine learning is based on
discriminative classifiers.

Tabular parameterization:

— Fit a parameter for p(y=1 |x) for each possible
value of x’.

— Can model any conditional, but overfits unless
‘d’ is small.

Logistic regression:

— Write p(y | x) using the sigmoid function.

— MLE is a convex optimization problem.

— Trained using variations on gradient descent.

— Cannot model any conditional, but tends not
to overfit (especially with regularization).

Fundamental Trade-Off:
— Simple models can underfit (high train error);
— complex models usually overfit (high gen. gap).

Neural networks with one layer:

— Simultaneous learn a linear model and its
features.

— Universal approximator if size of layer grows
with number of examples ‘n’.

— Training is a non-convex optimization problem.

Empirical “good news” for training neural
networks with SGD:

— With enough hidden units, SGD often finds a
global minimum.

Next time: we descend deeper (twice).

Logistic Regression Training Code
Gradient descent for logistic regression:

W= W e oL TFLE)
k/?\/ h rz =/

’4 (lr(\/:""

)

Simple method for setting the step size:

— If f(w**1) > f(wk), divide in half and see if that decreases ‘f’.
* There are much-more clever ways to set the step size (for example, Barzilai-Borwein method in assighment code).
* There are also better “directions” than using the gradient, such as quasi-Newton and Hessian-free Newton.
* For stochastic gradient descent, you need a decreasing set of step sizes to guarantee convergence.

Deciding when to stop:

— Checkif | |V f(w) || < € for some small €.

— Or check for progress in function/iteration values, and “give up” if you no longer are making progress.
Cost is O(nd) per iteration.

— Computing each of ‘n’ inner-product w'x' costs O(d), giving O(nd).

— Computing Xr in the gradient costs O(nd).

— Updating w given the gradient costs O(d) so does not increase cost.
If the matrix X’ only has ‘z’ non-zero values, can be implemented in O(z).

Cost is only O(d) for stochastic gradient descent, but you will spend a lot of time tuning step sizes.

bonMSf

