CPSC 440/540: Advanced Machine Learning Image Generative Models + Course Wrap-Up

Danica Sutherland

University of British Columbia

Winter 2023

Generative Image Models

- Given $x^1, \ldots, x^n \stackrel{\text{iid}}{\sim} p_{\text{target}}$, we'd like to fit a model $p_{\theta} \approx p_{\text{target}}$, to:
 - Discover underlying structure in the data
 - Find representative data points / modes
 - Detect outliers, anomalies
 - Impute missing values (in-painting)
 - Produce "more samples"
 - Use as a prior for semi-supervised learning, guided sampling, ...
 - . . .

https://www.reddit.com/r/midjourney/comments/

120vhdc/the_pope_drip/

Last Time: Variational Auto-encoders

- Deep latent variable model: $p_{\theta}(x) = \int p_{\theta}(x \mid z) p_{\theta}(z) dz$
 - Prior distribution over latent codes $p_{\theta}(z)$; usually $\mathcal{N}(0, I)$, $\dim(z) \approx 200$
 - Decoder network $p_{\theta}(x \mid z)$: usually $\mathcal{N}(f_{\theta}(z), \sigma^2 I)$ for deterministic net f_{θ}
- Hard to do the 200-dimensional integral to compute likelihoods (e.g. for MLE)
 - Encoder network $q_{\phi}(z \mid x)$ "amortizes inference"
 - Usually $\mathcal{N}(\mu_{\phi}(x), \Sigma_{\phi}(x))$, with $\Sigma_{\phi}(x)$ typically diagonal
- For approximate MLE, maximize the average ELBO:

$$\text{ELBO}_{\theta,\phi}(x) = \underbrace{\mathbb{E}}_{z \sim q_{\phi}(z|x)} [\log p_{\theta}(x \mid z)] - \text{KL}(q_{\phi}(z \mid x) \parallel p_{\theta}(z)) \le \log p_{\theta}(x)$$

Monte Carlo est. with reparameterization trick

usually closed-form for given x, ϕ

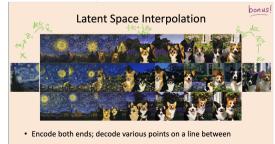
Last Time: Variational Auto-Encoders

• e.g. VQ-VAE-2: discrete hierarchical latents, learned autoregressive prior

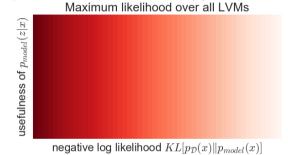
Figure 1: Class-conditional 256x256 image samples from a two-level model trained on ImageNet

https://arxiv.org/pdf/1906.00446.pdf

• Latents sometimes "meaningful" (especially "disentangled": β -VAE/TC-VAE/...)



- We'd often like a "useful" $p_{\theta}(z \mid x)$
- Maximum likelihood minimizes KL between target and $p_{\theta}(x) = \int p_{\theta}(x, z) dz$
- Objective wants a good fit for $p_{\theta}(x)$; doesn't care about usefulness at all
 - True for any objective that only cares about $p_{\theta}(x)$, not just MLE



https://www.inference.vc/maximum-likelihood-for-representation-learning-2/

- We'd often like a "useful" $p_{\theta}(z \mid x)$
- Maximum likelihood minimizes KL between target and $p_{\theta}(x) = \int p_{\theta}(x, z) dz$
- Objective wants a good fit for $p_{\theta}(x)$; doesn't care about usefulness at all
 - True for any objective that only cares about $p_{\theta}(x),$ not just MLE
- But we don't actually maximize over all latent variable models

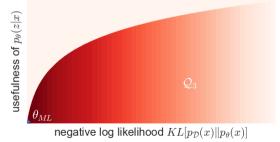
Maximum likelihood within model class \mathcal{Q}

https://www.inference.vc/maximum-likelihood-for-representation-learning-2/

- We'd often like a "useful" $p_{\theta}(z \mid x)$
- Maximum likelihood minimizes KL between target and $p_{\theta}(x) = \int p_{\theta}(x,z) \mathrm{d}z$
- Objective wants a good fit for $p_{\theta}(x)$; doesn't care about usefulness at all
 - True for any objective that only cares about $p_{\theta}(x)$, not just MLE
- But we don't actually maximize over all latent variable models
- This relies on our model class (or really, learning process...) aligning well

Maximum likelihood in model class \mathcal{Q}_2

- We'd often like a "useful" $p_{\theta}(z \mid x)$
- Maximum likelihood minimizes KL between target and $p_{\theta}(x) = \int p_{\theta}(x, z) dz$
- Objective wants a good fit for $p_{\theta}(x)$; doesn't care about usefulness at all
 - True for any objective that only cares about $p_{\theta}(x)$, not just MLE
- But we don't actually maximize over all latent variable models
- This relies on our model class (or really, learning process...) aligning well
- Real(ish) case: if $p_{\theta}(x \mid z)$ is too powerful, can ignore z, i.e. useless representation Max. likelihood with overly flexible $p_{\theta}(x|z)$



https://www.inference.vc/maximum-likelihood-for-representation-learning-2/

Representation Learning with VAEs

• Maximizing the ELBO isn't *just* MLE...

$$\max_{\phi} \sum_{i} \text{ELBO}_{\theta,\phi}(x^{i}) = \log p_{\theta}(\mathbf{X}) - \min_{\phi} \sum_{i} \text{KL}(q_{\phi}(z^{i} \mid x^{i}) \parallel p_{\theta}(z^{i} \mid x^{i}))$$

- If ϕ is perfect, it's just the MLE
- ullet Otherwise, we prefer the kinds of distributions that q_ϕ can successfully reconstruct
- And, to emphasize again, training a VAE isn't just minimizing the ELBO
 - Implicit bias of SGD training procedure likely plays a very important role
 - Likely even more true for complex models, e.g. transformer-based

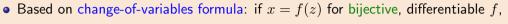
Outline

A Quick Tour of (Image) Generative Models

2 Diffusion Models

Some Things We Didn't Cover

Normalizing Flows



$$p(x) = p(z) \left| \det(\nabla_z f^{-1}(z)) \right|$$

- Limit layers to be invertible (and square) with easy det; get exact likelihoods
- Some variants: original, Real NVP, MAF, GLOW, FFJORD, Residual Flows

Real Data

Residual Flow

Figure 14: Random samples from 5bit CelebA-HQ 256 $\times 256.$ Most visually appealing batch out of five was chosen.

bonusl

Autoregressive Models

- Use $p(x) = p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_1, x_2) \cdots p(x_d \mid x_{1:d-1})$
 - Just a fully-connected DAG model
- Model each $p(x_j \mid x_{1:j-1})$ using some kind of neural net
- Some variants: RNADE, PixelRNN, PixelCNN, WaveNet, MADE
- First models with really good likelihoods and samples for complex datasets
- Slow: go through an image pixel-by-pixel

Figure 5: Linear interpolations in the embedding space decoded by the PixelCNN. Embeddings from leftmost and rightmost images are used for endpoints of the interpolation.

https://arxiv.org/abs/1606.05328

• Note: can have interesting behaviour with zero-probability prompts

Energy-Based Models

- General term for models like $p_{\theta}(x) = \frac{1}{Z_{\theta}} \exp(-\mathcal{E}_{\theta}(x))$; \mathcal{E}_{θ} is "energy"
 - Important example: product of experts $p_1(x)p_2(x)$ has energy $\mathcal{E}_1(x)+\mathcal{E}_2(x)$
- Super-broad category (... essentially any distribution)
- Maximum likelihood: like exponential families, $\nabla_{\theta} \log \frac{1}{Z_{\theta}} = \mathbb{E}_{x \sim p_{\theta}} \nabla_{\theta} \mathcal{E}_{\theta}(x)$
 - $\bullet\,$ Can estimate with MCMC sample, e.g. contrastive divergence / Younes algorithm
- Can also fit without estimating Z_{θ} using score matching, noise-contrastive estimation, Stein discrepancy, adversarial training, ...

Score Matching

- A way to fit unnormalized generative models
- Hyvärinen score is $s_{\theta}(x) = \nabla_x \log p_{\theta}(x) = \nabla_x \log \tilde{p}_{\theta}(x) \underbrace{\nabla_x \log Z_{\theta}}_{x \to y}$
 - Or we can just learn a function s_{θ} directly
- Score matching tries to match s_{θ} to target's Hyvärinen score:

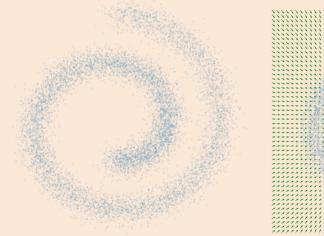
$$\underset{\theta}{\arg\min} \underset{x \sim p_{\mathsf{target}}}{\mathbb{E}} \| s_{\theta}(x) - \nabla_x \log p_{\mathsf{target}}(x) \|^2$$

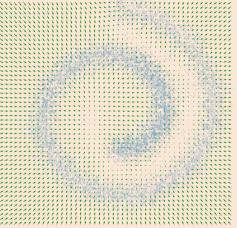
• Under some conditions (using integration by parts), this is equivalent to

$$\arg\min_{\theta} \mathbb{E}_{x \sim p_{\text{target}}} \frac{1}{2} \|s_{\theta}(x)\|^2 + \text{Tr}(\nabla_x s_{\theta}(x))$$

- Denoising score matching, sliced score matching to help with second derivative
- Close connection to contrastive divergence (see PML2 24.3.4)

Score matching a Swiss roll





Generative Adversarial Networks (GANs)

- Generator network $G_{ heta}(z)$ produces samples based on $p_{ heta}(z)$
 - Train $G_{ heta}$ to trick a discriminator $D_{\phi}(x)$ that tries to classify real vs. fake
 - Adversarial game, $\min_{\theta} \max_{\phi}$; tricky to optimize
 - Sort of minimizes Jensen-Shannon, $\frac{1}{2} \operatorname{KL}(p_{\theta} \parallel \frac{p_{\theta} + p_{\text{target}}}{2}) + \frac{1}{2} \operatorname{KL}(p_{\text{target}} \parallel \frac{p_{\theta} + p_{\text{target}}}{2})$
 - Variants sort of minimize Wasserstein-1 or other distributional losses

• Not probabilistic – no attempt at computing $\int G_{\theta}(z)p_{\theta}(z)\mathrm{d}z$, only sampling

What's the best way to train?

- It's not necessarily clear that $MLE = \arg \min_{\theta} KL(p_{target} \parallel p_{\theta})$ is best
 - MLE has some nice asymptotic properties, given some (strong!) assumptions
 - Classical results assume there is some θ^* where $p_{\rm target} = p_{\theta^*}$

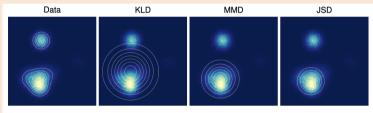


Figure 1: An isotropic Gaussian distribution was fit to data drawn from a mixture of Gaussians by either minimizing Kullback-Leibler divergence (KLD), maximum mean discrepancy (MMD), or Jensen-Shannon divergence (JSD). The different fits demonstrate different tradeoffs made by the three measures of distance between distributions.

https://arxiv.org/abs/1511.01844

• Which one you want depends a lot on what you're using it for

How do we tell if a generative model is any good anyway?

• Held-out log-likelihood would be the usual thing to do for generative models

- GANs can't do; VAEs under-estimate; energy-based models typically over-estimate
 - (Happens by Jensen's inequality; see this paper, section 3.2, to estimate by how much)

bonusl

- Images are usually in $\{0,1,\ldots,255\}^d:$ continuous models can get infinite likelihoods
 - $\bullet\,$ Usually de-quantize by adding uniform noise from $[0,1)^d$
 - Under-estimates log-likelihood of discrete model with $p_{\text{discrete}}(x) = \int_{[0,1)^d} p_{\theta}(x+u) du$ (Jensen's again; see this paper, section 3.1)
- Connection to sample quality is tenuous in high dimensions
 - Break samples, barely change log-likelihood: $p(x) = 0.001 p_{\theta}(x) + 0.999$ $\underline{a}(x)$

•
$$\log p(x) \ge \log(0.001p_{\theta}) > \log p_{\theta}(x) - \sqrt{7}$$

- On 64×64 ImageNet, PixelCNN beats PixelRNN by 511 nats/img, Conv Draw by 4,514
- Break log-likelihood, barely change samples: $p = \frac{1}{N} \sum_{i=1}^{N} \mathcal{N}(\tilde{x}^i, \varepsilon^2 I)$ for $\tilde{x}^i \stackrel{\text{iid}}{\sim} p_{\theta}$
 - If N is big and ε tiny, unlikely to see duplicates, but it's a way-overfit KDE

How do we tell if a generative model is any good anyway?

How do we tell if a generative model is any good anyway?

- Most common sample evaluation method: Fréchet Inception Distance (FID)
 - Estimate mean, covariance of featurizer pretrained on ImageNet
 - Squared FID: $\|\hat{\mu}_{\mathsf{model}} \hat{\mu}_{\mathsf{target}}\|^2 + \operatorname{Tr}(\hat{\Sigma}_{\mathsf{model}}) + \operatorname{Tr}(\hat{\Sigma}_{\mathsf{target}}) 2\operatorname{Tr}\left((\hat{\Sigma}_{\mathsf{model}}\hat{\Sigma}_{\mathsf{target}})^{\frac{1}{2}}\right)$

bonust

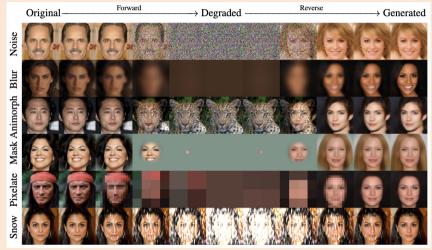
- Motivated as Wasserstein-2 (Fréchet) distance between Gaussians
- Estimator has low variance but high bias (this paper, section 4 / appendix D)
- Precision/Recall, Density/Coverage metrics
 - Try to disambiguate "all samples look reasonable" versus "covering all the data"
- Classification Accuracy Score
 - Train a classifier on (class-conditional) model samples; see how it does on real data
- All of these have issues with "overfitting" by just reproducing training set

Outline

1 A Quick Tour of (Image) Generative Models

- 2 Diffusion Models
- Some Things We Didn't Cover

Diffusion Processes



https://arxiv.org/abs/2208.09392

• Non-random ("cold diffusion") processes not well understood yet

Diffusion Models as Hierarchical VAEs

- Start with data point x_0 , add noise to get x_1 , add noise to get x_2, \ldots
- Forward process is (\approx)fixed; should choose so $q(x_T \mid x_0) \approx p(x_T)$
- Reverse process $p_{ heta}(x_{t-1} \mid x_t)$ to remove the noise
- Normal ELBO would give us (see (34) to (45) in this note)

$$\log p_{\theta}(x_{0}) \geq \underbrace{\frac{\mathbb{E}}{q(x_{1}|x_{0})} \log p_{\theta}(x_{0} \mid x_{1})}_{T-1} - \underbrace{\frac{\mathbb{E}}{q(x_{T-1}|x_{0})} \operatorname{KL}(q(x_{T} \mid x_{T-1}) \parallel p(x_{T}))}_{-\sum_{t=1}^{T-1} \underbrace{\mathbb{E}}_{q(x_{t-1}, x_{t+1}|x_{0})} \operatorname{KL}(q(x_{t} \mid x_{t-1}) \parallel p_{\theta}(x_{t} \mid x_{t+1}))}_{\operatorname{consistency}}$$

Diffusion Models as Hierarchical VAEs

- Start with data point x_0 , add noise to get x_1 , add noise to get x_2, \ldots
- Forward process is (\approx)fixed; should choose so $q(x_T \mid x_0) \approx p(x_T)$
- Reverse process $p_{\theta}(x_{t-1} \mid x_t)$ to remove the noise
- Nicer ELBO (see (46) to (58) in this note) cancels tons of stuff:

$$\log p_{\theta}(x_{0}) \geq \underbrace{\mathbb{E}_{q(x_{1}|x_{0})} \log p_{\theta}(x_{0} \mid x_{1})}_{T-1} - \underbrace{\operatorname{KL}(q(x_{T} \mid x_{0}) \parallel p(x_{T}))}_{\mathbb{E}_{q(x_{t}|x_{0})}} - \sum_{t=1}^{T-1} \underbrace{\mathbb{E}_{q(x_{t}|x_{0})} \operatorname{KL}(q(x_{t-1} \mid x_{t}, x_{0}) \parallel p_{\theta}(x_{t-1} \mid x_{t}))}_{p_{\theta} \text{ should match true denoising process}}$$

• Recovers standard VAE ELBO if ${\cal T}=1$

Diffusion Models as Hierarchical VAEs

$$\arg\max_{\theta} \mathbb{E}_{q(x_{1}|x_{0})} \log p_{\theta}(x_{0} \mid x_{1}) - \mathrm{KL}(q(x_{T} \mid x_{0}) \parallel p(x_{T})) - \sum_{t=1}^{T-1} \mathbb{E}_{q(x_{t}|x_{0})} \mathrm{KL}(q(x_{t-1} \mid x_{t}, x_{0}) \parallel p_{\theta}(x_{t-1} \mid x_{t}))$$

- Usual case is fixed normal noise: $q(x_t \mid x_{t-1}) = \mathcal{N}(x_t; \sqrt{1 \beta_t} x_{t-1}, \beta_t I)$
 - Implies $q(x_t \mid x_0) = \mathcal{N}(x_t; \sqrt{\bar{\alpha}_t}x_0, (1 \bar{\alpha}_t)I)$ for $\bar{\alpha}_t = \prod_{\tau=1}^t (1 \beta_{\tau})$
 - Choose T, β_t such that $\bar{\alpha}_T \approx 0$, so $q(x_T \mid x_0) \approx \mathcal{N}(0, I)$
 - Get that $q(x_{t-1} \mid x_t, x_0) = \mathcal{N}\left(x_{t-1}; \gamma_t x_t + \delta_t x_0, \sigma_t^2 I\right); \gamma_t, \delta_t, \sigma_t$ depend only on β_t s
 - We can just choose $p_{\theta}(x_{t-1} \mid x_t) = \mathcal{N}(x_{t-1}; \gamma_t x_t + \delta_t \hat{x}_{\theta}(x_t, t), \sigma_t^2 I)!$
 - KL, reconstruction terms simplify a lot: get

$$\underset{\theta}{\arg\min} \underset{t \sim \text{Unif}\{1, \dots, T\}}{\mathbb{E}} \begin{bmatrix} \mathbb{E} \\ x_t \sim \mathcal{N}\left(\sqrt{\bar{\alpha}_t} x_0, (1 - \bar{\alpha}_t)I\right) \end{bmatrix} \begin{bmatrix} \frac{\delta_t^2}{2\sigma_t^2} \begin{cases} \|\hat{x}_{\theta}(x_1, 1) - x_0 - \gamma_1 x_1\|^2 & \text{if } t = 1 \\ \|\hat{x}_{\theta}(x_t, t) - x_0\|^2 & \text{otherwise} \end{bmatrix} \end{bmatrix}$$

• Empirically can choose to ignore weighting δ_t^2/σ_t^2 and the t=1 special case:

$$\arg\min_{\substack{\theta \\ t \sim \text{Unif}\{1,...,T\}}} \mathbb{E}_{x_t \sim \mathcal{N}\left(\sqrt{\bar{\alpha}_t} x_0, (1-\bar{\alpha}_t)I\right)} \left[\|\hat{x}_{\theta}(x_t, t) - x_0\|^2 \right]$$

- Can view essentially same objective as denoising score matching.
- Or as stacked denoising auto-encoders.
- Helpful descriptions by: Yang Song, Lilian Weng, Calvin Luo, and PML2 25

"Plain" Diffusion Samples

Samples from the NCSNv2 [18] model. From left to right: FFHQ 256x256, LSUN bedroom 128x128, LSUN tower 128x128, LSUN church_outdoor 96x96, and CelebA 64x64.

https://yang-song.net/blog/2021/score/

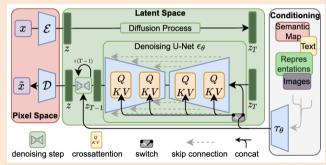
Infinitely many noise levels

- $\bullet\,$ Can take the $T=\infty$ limit based on stochastic differential equations
 - See Yang Song's blog post
- Gives exact log-likelihoods and better ability to condition

Image inpainting with a time-dependent score-based model trained on LSUN bedroom. The leftmost column is ground-truth. The second column shows masked images (y in our framework). The rest columns show different inpainted images, generated by solving the conditional reverse-time SDE.

Stable Diffusion

- Train a fancy, high-quality auto-encoder
- Run diffusion model on the code distribution
- Condition the decoder on text embeddings



ControlNet

• Allows "post-processing" to add new kinds of conditioning to pretrained model



https://www.reddit.com/r/StableDiffusion/comments/1281iva/new_controlnet_face_model/

ARTIFICIAL INTELLIGENCE / TECH / LAW

Getty Images is suing the creators of Al art tool Stable Diffusion for scraping its content

An image created by Stable Diffusion showing a recreation of Getty Images' watermark. Image: The Verge / Stable Diffusion

/ Getty Images claims Stability AI 'unlawfully' scraped millions of images from its site. It's a significant escalation in the developing legal battles between generative AI firms and content creators.

By JAMES VINCENT Jan 17, 2023, 2:30 AM PST | 18 Comments / 18 New

Training Set

Caption: Living in the light with Ann Graham Lotz

Generated Image

Prompt: Ann Graham Lotz

Figure 1: Diffusion models memorize individual training examples and generate them at test time. Left: an image from Stable Diffusion's training set (licensed CC BY-SA 3.0, see [49]). **Right:** a Stable Diffusion generation when prompted with "Ann Graham Lotz". The reconstruction is nearly identical (ℓ_2 distance = 0.031).

Outline

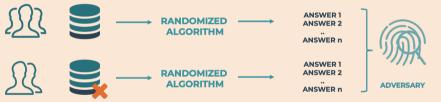
1 A Quick Tour of (Image) Generative Models

2 Diffusion Models

Some Things We Didn't Cover

Privacy

- How can we prevent models from memorizing individual data points?
- Leading framework is differential privacy



https://2021.ai/machine-learning-differential-privacy-overview/

• CPSC grad courses: 532P by Mijung Park, sometimes 538L by Mathias Lecuyer

Fairness, Accountability, Transparency

- Tons of issues around ML models / applications
- Some have technical (partial) solutions
- Some can only be handled socially
- "Sociotechnical systems" (STS)
- FAccT and AIES conferences
- New undergrad course coming in DSCI, focusing mostly on fairness

Causality

- 532Y: Causal ML by Mathias Lecuyer
- Math 605D by Elina Robeva (sometimes)
- Closely related to fairness
- More related things to be aware of:
 - Disentanglement
 - Independent components analysis
 - Out-of-distribution generalization, domain adaptation

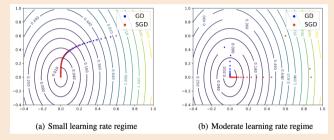
More Deep Learning: NLP

- Big, super-fast thing is large language models
 - GPT4 since we last talked about them...
 - We May be Surprised Again: Why I take LLMs seriously
- CPSC 436N: NLP (likely W1)
- CPSC 532V: Commonsense Reasoning in NLP by Vered Shwartz (planned W2)
- 532G (dialogue models) by Giuseppe Carenini
- courses by Muhammad Abdul-Mageed
- 532S: Multimodal Learning with Vision, Language and Sound

- Lots of vision to do beyond what was in this course!
- CPSC 425: Computer Vision
- 533Y: Visual Geometry with Deep Learning by Kwang Moo Yi (planned W1)
- 533R: Visual AI by Helge Rhodin (planned W2)
- 533V: Learning to Move by Michiel van de Panne (planned W2)

Theory

• Why/when do ML models / optimizers work, mathematically?



https://arxiv.org/abs/2011.02538

- 532D: Modern Statistical Learning Theory by me (planned W1)
- 406 and 536M by Michael Friedlander (planned W1)
- 5XX by Mark Schmidt (semi-ongoing plus maybe W2)
- EECE 571Z Convex Optimization by Christos Thrampoulidis
- Various stat courses

Probabilistic/Bayesian/...ML

- Probabilistic programming: 532W by Frank Wood
- Stat 520A: Bayesian analysis by Alexandre Bouchard-Côté
- Stat 520B: Variational Bayes by Trevor Campbell
- Stat 547S: Topics on Symmetry by Benjamin Bloem-Reddy
- ECE 571F: Deep Learning with Structures by Renjie Liao
- Various more stat courses
- Some more things to be aware of:
 - Mutual information/dependence estimation
 - Graph neural networks, deep sets, other structured data
 - Particle filters
 - Bayesian neural networks

Reinforcement learning

- 322, 422 logic, more graphical models, search, planning, some RL
- 522 by David Poole (PGMs, some RL)
- 532J: Never Ending Reinforcement Learning by Jeff Clune
- 533V: Learning to Move by Michiel van de Panne (planned W2)
- Some more things to be aware of:
 - Meta-learning
 - Online learning
 - Active learning
 - Multi-armed bandits
 - Auto-ML

Other stuff

- 532C: Human-Centred AI by Cristina Conati (planned W2)
- Somewhat relevant: 539L: Automated Testing by Caroline Lemieux
- 532L: Modes of Strategic Behaviour by Kevin Leyton-Brown
- Math 605D: Tensor decompositions by Elina Robeva (sometimes)
- Math 555: Compressed Sensing by Yaniv Plan
- Possible courses by
 - Shengjia Zhao (new in CS; information theory / econ / LLMs)
 - Geoff Pleiss (new in Stat; Gaussian processes)
 - Xiaxio Li (ECE; federated learning)
 - Lele Wang (ECE; coding theory)
- Reading groups: https://ml.ubc.ca/reading-groups/
- Talks: CAIDA (AI broadly), MILD ("mathematical" ML)

bonus!

Midjourney Bot Store Today at 12:57 PM

high-res photo of a computer science professor thanking her students for the term, and wishing them luck on their upcoming finals and projects. the professor is an early-30s white trans woman, full-figured, with wavy brown hair, and wearing black, facing towards the students. the students are sitting in an auditorium-style lecture hall, filling about 1/4 of the seats. 4k HD photo, dramatic lighting, happy vibes, highresolution, sharp details --v 5 - Image #1 @danica

3D CGI render of a korean female professor thanking the class on the last day

most insue f

