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Generative Image Models

Given x1, . . . , xn
iid∼ ptarget,

we’d like to fit a model pθ ≈ ptarget, to:

Discover underlying structure in the data
Find representative data points / modes
Detect outliers, anomalies
Impute missing values (in-painting)
Produce “more samples”
Use as a prior for semi-supervised learning,
guided sampling, . . .
. . .

https://www.reddit.com/r/midjourney/comments/

120vhdc/the_pope_drip/

https://www.reddit.com/r/midjourney/comments/120vhdc/the_pope_drip/
https://www.reddit.com/r/midjourney/comments/120vhdc/the_pope_drip/


Last Time: Variational Auto-encoders

Deep latent variable model: pθ(x) =
∫
pθ(x | z) pθ(z) dz

Prior distribution over latent codes pθ(z); usually N (0, I), dim(z) ≈ 200
Decoder network pθ(x | z): usually N (fθ(z), σ

2I) for deterministic net fθ

Hard to do the 200-dimensional integral to compute likelihoods (e.g. for MLE)
Encoder network qϕ(z | x) “amortizes inference”

Usually N (µϕ(x),Σϕ(x)), with Σϕ(x) typically diagonal

For approximate MLE, maximize the average ELBO:

ELBOθ,ϕ(x) = E
z∼qϕ(z|x)

[log pθ(x | z)]︸ ︷︷ ︸
Monte Carlo est. with reparameterization trick

−KL(qϕ(z | x) ∥ pθ(z))︸ ︷︷ ︸
usually closed-form for given x, ϕ

≤ log pθ(x)



Last Time: Variational Auto-Encoders
e.g. VQ-VAE-2: discrete hierarchical latents, learned autoregressive prior

https://arxiv.org/pdf/1906.00446.pdf

Latents sometimes “meaningful” (especially “disentangled”: β-VAE/TC-VAE/. . . )

https://arxiv.org/pdf/1906.00446.pdf


Representation Learning with Latent Variable Models
We’d often like a “useful” pθ(z | x)
Maximum likelihood minimizes KL between target and pθ(x) =

∫
pθ(x, z)dz

Objective wants a good fit for pθ(x); doesn’t care about usefulness at all
True for any objective that only cares about pθ(x), not just MLE

https://www.inference.vc/maximum-likelihood-for-representation-learning-2/

But we don’t actually maximize over all latent variable models

This relies on our model class (or really, learning process. . . ) aligning well

Real(ish) case: if pθ(x | z) is too powerful, can ignore z, i.e. useless representation

https://www.inference.vc/maximum-likelihood-for-representation-learning-2/
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Representation Learning with VAEs

Maximizing the ELBO isn’t just MLE. . .

max
ϕ

∑
i

ELBOθ,ϕ(x
i) = log pθ(X)−min

ϕ

∑
i

KL(qϕ(z
i | xi) ∥ pθ(z

i | xi))

If ϕ is perfect, it’s just the MLE
Otherwise, we prefer the kinds of distributions that qϕ can successfully reconstruct

And, to emphasize again, training a VAE isn’t just minimizing the ELBO

Implicit bias of SGD training procedure likely plays a very important role
Likely even more true for complex models, e.g. transformer-based



Outline

1 A Quick Tour of (Image) Generative Models

2 Diffusion Models

3 Some Things We Didn’t Cover



Normalizing Flows

Based on change-of-variables formula: if x = f(z) for bijective, differentiable f ,

p(x) = p(z) |det(∇zf
−1(z))|

Limit layers to be invertible (and square) with easy det; get exact likelihoods
Some variants: original, Real NVP, MAF, GLOW, FFJORD, Residual Flows

https://arxiv.org/abs/1906.02735

https://arxiv.org/abs/1505.05770
https://arxiv.org/abs/1605.08803
https://arxiv.org/abs/1705.07057
https://arxiv.org/abs/1807.03039
https://arxiv.org/abs/1810.01367
https://arxiv.org/abs/1906.02735
https://arxiv.org/abs/1906.02735


Autoregressive Models

Use p(x) = p(x1)p(x2 | x1)p(x3 | x1, x2) · · · p(xd | x1:d−1)
Just a fully-connected DAG model

Model each p(xj | x1:j−1) using some kind of neural net

Some variants: RNADE, PixelRNN, PixelCNN, WaveNet, MADE

First models with really good likelihoods and samples for complex datasets

Slow: go through an image pixel-by-pixel

https://arxiv.org/abs/1606.05328

Note: can have interesting behaviour with zero-probability prompts

https://arxiv.org/abs/1306.0186
https://arxiv.org/abs/1601.06759
https://arxiv.org/abs/1606.05328
https://arxiv.org/abs/1609.03499
https://arxiv.org/abs/1705.07057
https://arxiv.org/abs/1606.05328
https://www.inference.vc/autoregressive-models-in-out-of-distribution/


Energy-Based Models

General term for models like pθ(x) =
1
Zθ

exp(−Eθ(x)); Eθ is “energy”

Important example: product of experts p1(x)p2(x) has energy E1(x) + E2(x)
Super-broad category (. . . essentially any distribution)

Maximum likelihood: like exponential families, ∇θ log
1
Zθ

= Ex∼pθ ∇θEθ(x)
Can estimate with MCMC sample, e.g. contrastive divergence / Younes algorithm

Can also fit without estimating Zθ using score matching, noise-contrastive
estimation, Stein discrepancy, adversarial training, . . .



Score Matching

A way to fit unnormalized generative models

Hyvärinen score is sθ(x) = ∇x log pθ(x) = ∇x log p̃θ(x)−∇x logZθ︸ ︷︷ ︸
0

Or we can just learn a function sθ directly

Score matching tries to match sθ to target’s Hyvärinen score:

argmin
θ

E
x∼ptarget

∥sθ(x)−∇x log ptarget(x)∥2

Under some conditions (using integration by parts), this is equivalent to

argmin
θ

E
x∼ptarget

1
2∥sθ(x)∥

2 +Tr(∇xsθ(x))

Denoising score matching, sliced score matching to help with second derivative

Close connection to contrastive divergence (see PML2 24.3.4)



Score matching a Swiss roll

PML2’s score matching swiss roll.ipynb



Generative Adversarial Networks (GANs)

Generator network Gθ(z) produces samples based on pθ(z)

Train Gθ to trick a discriminator Dϕ(x) that tries to classify real vs. fake
Adversarial game, minθ maxϕ; tricky to optimize

Sort of minimizes Jensen-Shannon, 1
2 KL(pθ ∥ pθ+ptarget

2 ) + 1
2 KL(ptarget ∥ pθ+ptarget

2 )

Variants sort of minimize Wasserstein-1 or other distributional losses

Not probabilistic – no attempt at computing
∫
Gθ(z)pθ(z)dz, only sampling

https://arxiv.org/abs/2202.00273

https://arxiv.org/abs/2103.01678
https://arxiv.org/abs/2202.00273


What’s the best way to train?

It’s not necessarily clear that MLE = argminθ KL(ptarget ∥ pθ) is best
MLE has some nice asymptotic properties, given some (strong!) assumptions

Classical results assume there is some θ∗ where ptarget = pθ∗

https://arxiv.org/abs/1511.01844

Which one you want depends a lot on what you’re using it for

https://arxiv.org/abs/1511.01844


How do we tell if a generative model is any good anyway?

Held-out log-likelihood would be the usual thing to do for generative models
GANs can’t do; VAEs under-estimate; energy-based models typically over-estimate

(Happens by Jensen’s inequality; see this paper, section 3.2, to estimate by how much)

Images are usually in {0, 1, . . . , 255}d: continuous models can get infinite likelihoods

Usually de-quantize by adding uniform noise from [0, 1)d

Under-estimates log-likelihood of discrete model with pdiscrete(x) =
∫
[0,1)d

pθ(x+ u)du

(Jensen’s again; see this paper, section 3.1)

Connection to sample quality is tenuous in high dimensions
Break samples, barely change log-likelihood: p(x) = 0.001pθ(x) + 0.999 (x)

log p(x) ≥ log(0.001pθ) > log pθ(x)︸ ︷︷ ︸
scales with d

− 7︸︷︷︸
doesn’t

On 64× 64 ImageNet, PixelCNN beats PixelRNN by 511 nats/img, Conv Draw by 4,514

Break log-likelihood, barely change samples: p = 1
N

∑N
i=1 N (x̃i, ε2I) for x̃i iid∼ pθ

If N is big and ε tiny, unlikely to see duplicates, but it’s a way-overfit KDE

https://arxiv.org/abs/1811.08357
https://arxiv.org/abs/1511.01844


How do we tell if a generative model is any good anyway?



How do we tell if a generative model is any good anyway?

Most common sample evaluation method: Fréchet Inception Distance (FID)

Estimate mean, covariance of featurizer pretrained on ImageNet

Squared FID: ∥µ̂model − µ̂target∥2 +Tr(Σ̂model) +Tr(Σ̂target)− 2Tr
(
(Σ̂modelΣ̂target)

1
2

)
Motivated as Wasserstein-2 (Fréchet) distance between Gaussians
Estimator has low variance but high bias (this paper, section 4 / appendix D)

Precision/Recall, Density/Coverage metrics

Try to disambiguate “all samples look reasonable” versus “covering all the data”

Classification Accuracy Score

Train a classifier on (class-conditional) model samples; see how it does on real data

All of these have issues with “overfitting” by just reproducing training set

https://arxiv.org/abs/1801.01401
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Diffusion Processes

https://arxiv.org/abs/2208.09392

Non-random (“cold diffusion”) processes not well understood yet

https://arxiv.org/abs/2208.09392


Diffusion Models as Hierarchical VAEs

Start with data point x0, add noise to get x1, add noise to get x2, . . .
Forward process is (≈)fixed; should choose so q(xT | x0) ≈ p(xT )
Reverse process pθ(xt−1 | xt) to remove the noise
Normal ELBO would give us (see (34) to (45) in this note)

log pθ(x0) ≥
reconstruction︷ ︸︸ ︷

E
q(x1|x0)

log pθ(x0 | x1)−
prior matching; doesn’t depend on θ︷ ︸︸ ︷
E

q(xT−1|x0)
KL(q(xT | xT−1) ∥ p(xT ))

−
T−1∑
t=1

E
q(xt−1,xt+1|x0)

KL(q(xt | xt−1) ∥ pθ(xt | xt+1))︸ ︷︷ ︸
consistency

Nicer ELBO (see (46) to (58) in this note) cancels tons of stuff:

log pθ(x0) ≥
reconstruction︷ ︸︸ ︷

E
q(x1|x0)

log pθ(x0 | x1)−
prior matching; no θ︷ ︸︸ ︷

KL(q(xT | x0) ∥ p(xT ))

−
T−1∑
t=1

E
q(xt|x0)

KL(q(xt−1 | xt, x0) ∥ pθ(xt−1 | xt))︸ ︷︷ ︸
pθ should match true denoising process

Recovers standard VAE ELBO if T = 1

https://arxiv.org/pdf/2208.11970.pdf
https://arxiv.org/pdf/2208.11970.pdf
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Diffusion Models as Hierarchical VAEs

argmax
θ

E
q(x1|x0)

log pθ(x0 | x1)−KL(q(xT | x0) ∥ p(xT ))−
T−1∑
t=1

E
q(xt|x0)

KL(q(xt−1 | xt, x0) ∥ pθ(xt−1 | xt))

Usual case is fixed normal noise: q(xt | xt−1) = N (xt;
√
1− βtxt−1, βtI)

Implies q(xt | x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) for ᾱt =

∏t
τ=1(1− βτ )

Choose T , βt such that ᾱT ≈ 0, so q(xT | x0) ≈ N (0, I)
Get that q(xt−1 | xt, x0) = N

(
xt−1; γtxt + δtx0, σ

2
t I

)
; γt, δt, σt depend only on βts

We can just choose pθ(xt−1 | xt) = N (xt−1; γtxt + δtx̂θ(xt, t), σ
2
t I)!

KL, reconstruction terms simplify a lot: get

argmin
θ

E
x0∼ptarget

t∼Unif{1,...,T}

[
E

xt∼N(
√
ᾱtx0,(1−ᾱt)I)

[
δ2t
2σ2

t

{
∥x̂θ(x1, 1)− x0 − γ1x1∥2 if t = 1

∥x̂θ(xt, t)− x0∥2 otherwise

]]

Empirically can choose to ignore weighting δ2t /σ
2
t and the t = 1 special case:

argmin
θ

E
x0∼ptarget

t∼Unif{1,...,T}

[
E

xt∼N(
√
ᾱtx0,(1−ᾱt)I)

[
∥x̂θ(xt, t)− x0∥2

]]



Other views of Diffusion Models

Can view essentially same objective as denoising score matching.

Or as stacked denoising auto-encoders.

Helpful descriptions by: Yang Song, Lilian Weng, Calvin Luo, and PML2 25

https://yang-song.net/blog/2021/score/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://arxiv.org/pdf/2208.11970.pdf


“Plain” Diffusion Samples

https://yang-song.net/blog/2021/score/

https://yang-song.net/blog/2021/score/


Infinitely many noise levels

Can take the T = ∞ limit based on stochastic differential equations

See Yang Song’s blog post

Gives exact log-likelihoods and better ability to condition

https://yang-song.net/blog/2021/score/

https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/


Stable Diffusion

Train a fancy, high-quality auto-encoder

Run diffusion model on the code distribution

Condition the decoder on text embeddings

https://arxiv.org/abs/2112.10752

https://arxiv.org/abs/2112.10752


ControlNet

Allows “post-processing” to add new kinds of conditioning to pretrained model

https://www.reddit.com/r/StableDiffusion/comments/1281iva/new_controlnet_face_model/

https://www.reddit.com/r/StableDiffusion/comments/1281iva/new_controlnet_face_model/


https://www.theverge.com/2023/1/17/23558516/ai-art-copyright-stable-diffusion-getty-images-lawsuit

https://www.theverge.com/2023/1/17/23558516/ai-art-copyright-stable-diffusion-getty-images-lawsuit


https://arxiv.org/abs/2301.13188

https://arxiv.org/abs/2301.13188
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Privacy

How can we prevent models from memorizing individual data points?

Leading framework is differential privacy

https://2021.ai/machine-learning-differential-privacy-overview/

CPSC grad courses: 532P by Mijung Park,
sometimes 538L by Mathias Lecuyer

https://2021.ai/machine-learning-differential-privacy-overview/
https://sites.google.com/view/cpsc532p2022w1/home
https://m-lecuyer.github.io/538L/


Fairness, Accountability, Transparency

Tons of issues around ML models / applications

Some have technical (partial) solutions

Some can only be handled socially

“Sociotechnical systems” (STS)

FAccT and AIES conferences

New undergrad course coming in DSCI, focusing mostly on fairness

https://facctconference.org
https://www.aies-conference.com/


Causality

532Y: Causal ML by Mathias Lecuyer

Math 605D by Elina Robeva (sometimes)

Closely related to fairness

More related things to be aware of:

Disentanglement
Independent components analysis
Out-of-distribution generalization, domain adaptation

https://m-lecuyer.github.io/532Y-538L-CausalInference/
https://sites.google.com/view/ubc-math-605d-causality/


More Deep Learning: NLP

Big, super-fast thing is large language models

GPT4 since we last talked about them. . .
We May be Surprised Again: Why I take LLMs seriously

CPSC 436N: NLP (likely W1)

CPSC 532V: Commonsense Reasoning in NLP by Vered Shwartz (planned W2)

532G (dialogue models) by Giuseppe Carenini

courses by Muhammad Abdul-Mageed

532S: Multimodal Learning with Vision, Language and Sound

https://www.inference.vc/we-may-be-surprised-again/
https://www.cs.ubc.ca/~vshwartz/courses/CPSC436N-22/index.html
https://www.cs.ubc.ca/~vshwartz/courses/CPSC532V-23/index.html
https://mageed.arts.ubc.ca/teaching/
https://www.cs.ubc.ca/~lsigal/teaching22_Term1.html


More Deep Learning: Vision/Graphics

Lots of vision to do beyond what was in this course!

CPSC 425: Computer Vision

533Y: Visual Geometry with Deep Learning by Kwang Moo Yi (planned W1)

533R: Visual AI by Helge Rhodin (planned W2)

533V: Learning to Move by Michiel van de Panne (planned W2)

https://www.cs.ubc.ca/~lsigal/teaching22_Term2.html
https://www.cs.ubc.ca/~rhodin/2022_2023_CPSC_533R/
https://www.cs.ubc.ca/~van/cpsc533V/


Theory

Why/when do ML models / optimizers work, mathematically?

https://arxiv.org/abs/2011.02538

532D: Modern Statistical Learning Theory by me (planned W1)

406 and 536M by Michael Friedlander (planned W1)

5XX by Mark Schmidt (semi-ongoing plus maybe W2)

EECE 571Z Convex Optimization by Christos Thrampoulidis

Various stat courses

https://arxiv.org/abs/2011.02538
https://www.cs.ubc.ca/~dsuth/532D/
https://friedlander.io/ubc-cpsc-406/
https://friedlander.io/teaching/20t1-cpsc536m/
https://www.cs.ubc.ca/~schmidtm/Courses/5XX-S22/


Probabilistic/Bayesian/. . .ML

Probabilistic programming: 532W by Frank Wood

Stat 520A: Bayesian analysis by Alexandre Bouchard-Côté

Stat 520B: Variational Bayes by Trevor Campbell

Stat 547S: Topics on Symmetry by Benjamin Bloem-Reddy

ECE 571F: Deep Learning with Structures by Renjie Liao

Various more stat courses

Some more things to be aware of:

Mutual information/dependence estimation
Graph neural networks, deep sets, other structured data
Particle filters
Bayesian neural networks

https://www.cs.ubc.ca/~fwood/CS532W-539W/
https://www.stat.ubc.ca/~bouchard/courses/stat520-sp2021-22/index.html
https://www.stat.ubc.ca/~benbr/assets/notes/stat547s-notes.pdf
https://lrjconan.github.io/UBC-EECE571F-DL-Structures/


Reinforcement learning

322, 422 – logic, more graphical models, search, planning, some RL

522 by David Poole (PGMs, some RL)

532J: Never Ending Reinforcement Learning by Jeff Clune

533V: Learning to Move by Michiel van de Panne (planned W2)

Some more things to be aware of:

Meta-learning
Online learning
Active learning
Multi-armed bandits
Auto-ML

https://www.cs.ubc.ca/~poole/cs522/2023/
https://www.cs.ubc.ca/~van/cpsc533V/


Other stuff

532C: Human-Centred AI by Cristina Conati (planned W2)

Somewhat relevant: 539L: Automated Testing by Caroline Lemieux

532L: Modes of Strategic Behaviour by Kevin Leyton-Brown

Math 605D: Tensor decompositions by Elina Robeva (sometimes)

Math 555: Compressed Sensing by Yaniv Plan

Possible courses by

Shengjia Zhao (new in CS; information theory / econ / LLMs)
Geoff Pleiss (new in Stat; Gaussian processes)
Xiaxio Li (ECE; federated learning)
Lele Wang (ECE; coding theory)

Reading groups: https://ml.ubc.ca/reading-groups/

Talks: CAIDA (AI broadly), MILD (“mathematical” ML)

https://www.carolemieux.com/teaching/CPSC539L_2022w1.html
https://www.cs.ubc.ca/~kevinlb/teaching/cs532l/
https://sites.google.com/view/math-605d-tensors-2022/
https://www.yanivplan.com/__trashed
https://szhao.me/
https://geoffpleiss.com/
https://xxlya.github.io/xiaoxiao/
https://sites.google.com/site/wanglele1986/
https://ml.ubc.ca/reading-groups/
https://caida.ubc.ca/events
https://mild.ubc.ca/events
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