
CPSC 440/540: Advanced Machine Learning
Image Generative Models + Course Wrap-Up

Danica Sutherland

University of British Columbia

Winter 2023

Generative Image Models

Given x1, . . . , xn
iid∼ ptarget,

we’d like to fit a model pθ ≈ ptarget, to:

Discover underlying structure in the data
Find representative data points / modes
Detect outliers, anomalies
Impute missing values (in-painting)
Produce “more samples”
Use as a prior for semi-supervised learning,
guided sampling, . . .
. . .

https://www.reddit.com/r/midjourney/comments/

120vhdc/the_pope_drip/

https://www.reddit.com/r/midjourney/comments/120vhdc/the_pope_drip/
https://www.reddit.com/r/midjourney/comments/120vhdc/the_pope_drip/

Last Time: Variational Auto-encoders

Deep latent variable model: pθ(x) =
∫
pθ(x | z) pθ(z) dz

Prior distribution over latent codes pθ(z); usually N (0, I), dim(z) ≈ 200
Decoder network pθ(x | z): usually N (fθ(z), σ

2I) for deterministic net fθ

Hard to do the 200-dimensional integral to compute likelihoods (e.g. for MLE)
Encoder network qϕ(z | x) “amortizes inference”

Usually N (µϕ(x),Σϕ(x)), with Σϕ(x) typically diagonal

For approximate MLE, maximize the average ELBO:

ELBOθ,ϕ(x) = E
z∼qϕ(z|x)

[log pθ(x | z)]︸ ︷︷ ︸
Monte Carlo est. with reparameterization trick

−KL(qϕ(z | x) ∥ pθ(z))︸ ︷︷ ︸
usually closed-form for given x, ϕ

≤ log pθ(x)

Last Time: Variational Auto-Encoders
e.g. VQ-VAE-2: discrete hierarchical latents, learned autoregressive prior

https://arxiv.org/pdf/1906.00446.pdf

Latents sometimes “meaningful” (especially “disentangled”: β-VAE/TC-VAE/. . .)

https://arxiv.org/pdf/1906.00446.pdf

Representation Learning with Latent Variable Models
We’d often like a “useful” pθ(z | x)
Maximum likelihood minimizes KL between target and pθ(x) =

∫
pθ(x, z)dz

Objective wants a good fit for pθ(x); doesn’t care about usefulness at all
True for any objective that only cares about pθ(x), not just MLE

https://www.inference.vc/maximum-likelihood-for-representation-learning-2/

But we don’t actually maximize over all latent variable models

This relies on our model class (or really, learning process. . .) aligning well

Real(ish) case: if pθ(x | z) is too powerful, can ignore z, i.e. useless representation

https://www.inference.vc/maximum-likelihood-for-representation-learning-2/

Representation Learning with Latent Variable Models
We’d often like a “useful” pθ(z | x)
Maximum likelihood minimizes KL between target and pθ(x) =

∫
pθ(x, z)dz

Objective wants a good fit for pθ(x); doesn’t care about usefulness at all
True for any objective that only cares about pθ(x), not just MLE

But we don’t actually maximize over all latent variable models

https://www.inference.vc/maximum-likelihood-for-representation-learning-2/

This relies on our model class (or really, learning process. . .) aligning well

Real(ish) case: if pθ(x | z) is too powerful, can ignore z, i.e. useless representation

https://www.inference.vc/maximum-likelihood-for-representation-learning-2/

Representation Learning with Latent Variable Models
We’d often like a “useful” pθ(z | x)
Maximum likelihood minimizes KL between target and pθ(x) =

∫
pθ(x, z)dz

Objective wants a good fit for pθ(x); doesn’t care about usefulness at all
True for any objective that only cares about pθ(x), not just MLE

But we don’t actually maximize over all latent variable models
This relies on our model class (or really, learning process. . .) aligning well

https://www.inference.vc/maximum-likelihood-for-representation-learning-2/

Real(ish) case: if pθ(x | z) is too powerful, can ignore z, i.e. useless representation

https://www.inference.vc/maximum-likelihood-for-representation-learning-2/

Representation Learning with Latent Variable Models
We’d often like a “useful” pθ(z | x)
Maximum likelihood minimizes KL between target and pθ(x) =

∫
pθ(x, z)dz

Objective wants a good fit for pθ(x); doesn’t care about usefulness at all
True for any objective that only cares about pθ(x), not just MLE

But we don’t actually maximize over all latent variable models

This relies on our model class (or really, learning process. . .) aligning well

Real(ish) case: if pθ(x | z) is too powerful, can ignore z, i.e. useless representation

https://www.inference.vc/maximum-likelihood-for-representation-learning-2/

https://www.inference.vc/maximum-likelihood-for-representation-learning-2/

Representation Learning with VAEs

Maximizing the ELBO isn’t just MLE. . .

max
ϕ

∑
i

ELBOθ,ϕ(x
i) = log pθ(X)−min

ϕ

∑
i

KL(qϕ(z
i | xi) ∥ pθ(z

i | xi))

If ϕ is perfect, it’s just the MLE
Otherwise, we prefer the kinds of distributions that qϕ can successfully reconstruct

And, to emphasize again, training a VAE isn’t just minimizing the ELBO

Implicit bias of SGD training procedure likely plays a very important role
Likely even more true for complex models, e.g. transformer-based

Outline

1 A Quick Tour of (Image) Generative Models

2 Diffusion Models

3 Some Things We Didn’t Cover

Normalizing Flows

Based on change-of-variables formula: if x = f(z) for bijective, differentiable f ,

p(x) = p(z) |det(∇zf
−1(z))|

Limit layers to be invertible (and square) with easy det; get exact likelihoods
Some variants: original, Real NVP, MAF, GLOW, FFJORD, Residual Flows

https://arxiv.org/abs/1906.02735

https://arxiv.org/abs/1505.05770
https://arxiv.org/abs/1605.08803
https://arxiv.org/abs/1705.07057
https://arxiv.org/abs/1807.03039
https://arxiv.org/abs/1810.01367
https://arxiv.org/abs/1906.02735
https://arxiv.org/abs/1906.02735

Autoregressive Models

Use p(x) = p(x1)p(x2 | x1)p(x3 | x1, x2) · · · p(xd | x1:d−1)
Just a fully-connected DAG model

Model each p(xj | x1:j−1) using some kind of neural net

Some variants: RNADE, PixelRNN, PixelCNN, WaveNet, MADE

First models with really good likelihoods and samples for complex datasets

Slow: go through an image pixel-by-pixel

https://arxiv.org/abs/1606.05328

Note: can have interesting behaviour with zero-probability prompts

https://arxiv.org/abs/1306.0186
https://arxiv.org/abs/1601.06759
https://arxiv.org/abs/1606.05328
https://arxiv.org/abs/1609.03499
https://arxiv.org/abs/1705.07057
https://arxiv.org/abs/1606.05328
https://www.inference.vc/autoregressive-models-in-out-of-distribution/

Energy-Based Models

General term for models like pθ(x) =
1
Zθ

exp(−Eθ(x)); Eθ is “energy”

Important example: product of experts p1(x)p2(x) has energy E1(x) + E2(x)
Super-broad category (. . . essentially any distribution)

Maximum likelihood: like exponential families, ∇θ log
1
Zθ

= Ex∼pθ ∇θEθ(x)
Can estimate with MCMC sample, e.g. contrastive divergence / Younes algorithm

Can also fit without estimating Zθ using score matching, noise-contrastive
estimation, Stein discrepancy, adversarial training, . . .

Score Matching

A way to fit unnormalized generative models

Hyvärinen score is sθ(x) = ∇x log pθ(x) = ∇x log p̃θ(x)−∇x logZθ︸ ︷︷ ︸
0

Or we can just learn a function sθ directly

Score matching tries to match sθ to target’s Hyvärinen score:

argmin
θ

E
x∼ptarget

∥sθ(x)−∇x log ptarget(x)∥2

Under some conditions (using integration by parts), this is equivalent to

argmin
θ

E
x∼ptarget

1
2∥sθ(x)∥

2 +Tr(∇xsθ(x))

Denoising score matching, sliced score matching to help with second derivative

Close connection to contrastive divergence (see PML2 24.3.4)

Score matching a Swiss roll

PML2’s score matching swiss roll.ipynb

Generative Adversarial Networks (GANs)

Generator network Gθ(z) produces samples based on pθ(z)

Train Gθ to trick a discriminator Dϕ(x) that tries to classify real vs. fake
Adversarial game, minθ maxϕ; tricky to optimize

Sort of minimizes Jensen-Shannon, 1
2 KL(pθ ∥ pθ+ptarget

2) + 1
2 KL(ptarget ∥ pθ+ptarget

2)

Variants sort of minimize Wasserstein-1 or other distributional losses

Not probabilistic – no attempt at computing
∫
Gθ(z)pθ(z)dz, only sampling

https://arxiv.org/abs/2202.00273

https://arxiv.org/abs/2103.01678
https://arxiv.org/abs/2202.00273

What’s the best way to train?

It’s not necessarily clear that MLE = argminθ KL(ptarget ∥ pθ) is best
MLE has some nice asymptotic properties, given some (strong!) assumptions

Classical results assume there is some θ∗ where ptarget = pθ∗

https://arxiv.org/abs/1511.01844

Which one you want depends a lot on what you’re using it for

https://arxiv.org/abs/1511.01844

How do we tell if a generative model is any good anyway?

Held-out log-likelihood would be the usual thing to do for generative models
GANs can’t do; VAEs under-estimate; energy-based models typically over-estimate

(Happens by Jensen’s inequality; see this paper, section 3.2, to estimate by how much)

Images are usually in {0, 1, . . . , 255}d: continuous models can get infinite likelihoods

Usually de-quantize by adding uniform noise from [0, 1)d

Under-estimates log-likelihood of discrete model with pdiscrete(x) =
∫
[0,1)d

pθ(x+ u)du

(Jensen’s again; see this paper, section 3.1)

Connection to sample quality is tenuous in high dimensions
Break samples, barely change log-likelihood: p(x) = 0.001pθ(x) + 0.999 (x)

log p(x) ≥ log(0.001pθ) > log pθ(x)︸ ︷︷ ︸
scales with d

− 7︸︷︷︸
doesn’t

On 64× 64 ImageNet, PixelCNN beats PixelRNN by 511 nats/img, Conv Draw by 4,514

Break log-likelihood, barely change samples: p = 1
N

∑N
i=1 N (x̃i, ε2I) for x̃i iid∼ pθ

If N is big and ε tiny, unlikely to see duplicates, but it’s a way-overfit KDE

https://arxiv.org/abs/1811.08357
https://arxiv.org/abs/1511.01844

How do we tell if a generative model is any good anyway?

How do we tell if a generative model is any good anyway?

Most common sample evaluation method: Fréchet Inception Distance (FID)

Estimate mean, covariance of featurizer pretrained on ImageNet

Squared FID: ∥µ̂model − µ̂target∥2 +Tr(Σ̂model) +Tr(Σ̂target)− 2Tr
(
(Σ̂modelΣ̂target)

1
2

)
Motivated as Wasserstein-2 (Fréchet) distance between Gaussians
Estimator has low variance but high bias (this paper, section 4 / appendix D)

Precision/Recall, Density/Coverage metrics

Try to disambiguate “all samples look reasonable” versus “covering all the data”

Classification Accuracy Score

Train a classifier on (class-conditional) model samples; see how it does on real data

All of these have issues with “overfitting” by just reproducing training set

https://arxiv.org/abs/1801.01401

Outline

1 A Quick Tour of (Image) Generative Models

2 Diffusion Models

3 Some Things We Didn’t Cover

Diffusion Processes

https://arxiv.org/abs/2208.09392

Non-random (“cold diffusion”) processes not well understood yet

https://arxiv.org/abs/2208.09392

Diffusion Models as Hierarchical VAEs

Start with data point x0, add noise to get x1, add noise to get x2, . . .
Forward process is (≈)fixed; should choose so q(xT | x0) ≈ p(xT)
Reverse process pθ(xt−1 | xt) to remove the noise
Normal ELBO would give us (see (34) to (45) in this note)

log pθ(x0) ≥
reconstruction︷ ︸︸ ︷

E
q(x1|x0)

log pθ(x0 | x1)−
prior matching; doesn’t depend on θ︷ ︸︸ ︷
E

q(xT−1|x0)
KL(q(xT | xT−1) ∥ p(xT))

−
T−1∑
t=1

E
q(xt−1,xt+1|x0)

KL(q(xt | xt−1) ∥ pθ(xt | xt+1))︸ ︷︷ ︸
consistency

Nicer ELBO (see (46) to (58) in this note) cancels tons of stuff:

log pθ(x0) ≥
reconstruction︷ ︸︸ ︷

E
q(x1|x0)

log pθ(x0 | x1)−
prior matching; no θ︷ ︸︸ ︷

KL(q(xT | x0) ∥ p(xT))

−
T−1∑
t=1

E
q(xt|x0)

KL(q(xt−1 | xt, x0) ∥ pθ(xt−1 | xt))︸ ︷︷ ︸
pθ should match true denoising process

Recovers standard VAE ELBO if T = 1

https://arxiv.org/pdf/2208.11970.pdf
https://arxiv.org/pdf/2208.11970.pdf

Diffusion Models as Hierarchical VAEs

Start with data point x0, add noise to get x1, add noise to get x2, . . .

Forward process is (≈)fixed; should choose so q(xT | x0) ≈ p(xT)

Reverse process pθ(xt−1 | xt) to remove the noise

Nicer ELBO (see (46) to (58) in this note) cancels tons of stuff:

log pθ(x0) ≥
reconstruction︷ ︸︸ ︷

E
q(x1|x0)

log pθ(x0 | x1)−
prior matching; no θ︷ ︸︸ ︷

KL(q(xT | x0) ∥ p(xT))

−
T−1∑
t=1

E
q(xt|x0)

KL(q(xt−1 | xt, x0) ∥ pθ(xt−1 | xt))︸ ︷︷ ︸
pθ should match true denoising process

Recovers standard VAE ELBO if T = 1

https://arxiv.org/pdf/2208.11970.pdf

Diffusion Models as Hierarchical VAEs

argmax
θ

E
q(x1|x0)

log pθ(x0 | x1)−KL(q(xT | x0) ∥ p(xT))−
T−1∑
t=1

E
q(xt|x0)

KL(q(xt−1 | xt, x0) ∥ pθ(xt−1 | xt))

Usual case is fixed normal noise: q(xt | xt−1) = N (xt;
√
1− βtxt−1, βtI)

Implies q(xt | x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) for ᾱt =

∏t
τ=1(1− βτ)

Choose T , βt such that ᾱT ≈ 0, so q(xT | x0) ≈ N (0, I)
Get that q(xt−1 | xt, x0) = N

(
xt−1; γtxt + δtx0, σ

2
t I

)
; γt, δt, σt depend only on βts

We can just choose pθ(xt−1 | xt) = N (xt−1; γtxt + δtx̂θ(xt, t), σ
2
t I)!

KL, reconstruction terms simplify a lot: get

argmin
θ

E
x0∼ptarget

t∼Unif{1,...,T}

[
E

xt∼N(
√
ᾱtx0,(1−ᾱt)I)

[
δ2t
2σ2

t

{
∥x̂θ(x1, 1)− x0 − γ1x1∥2 if t = 1

∥x̂θ(xt, t)− x0∥2 otherwise

]]

Empirically can choose to ignore weighting δ2t /σ
2
t and the t = 1 special case:

argmin
θ

E
x0∼ptarget

t∼Unif{1,...,T}

[
E

xt∼N(
√
ᾱtx0,(1−ᾱt)I)

[
∥x̂θ(xt, t)− x0∥2

]]

Other views of Diffusion Models

Can view essentially same objective as denoising score matching.

Or as stacked denoising auto-encoders.

Helpful descriptions by: Yang Song, Lilian Weng, Calvin Luo, and PML2 25

https://yang-song.net/blog/2021/score/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://arxiv.org/pdf/2208.11970.pdf

“Plain” Diffusion Samples

https://yang-song.net/blog/2021/score/

https://yang-song.net/blog/2021/score/

Infinitely many noise levels

Can take the T = ∞ limit based on stochastic differential equations

See Yang Song’s blog post

Gives exact log-likelihoods and better ability to condition

https://yang-song.net/blog/2021/score/

https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/

Stable Diffusion

Train a fancy, high-quality auto-encoder

Run diffusion model on the code distribution

Condition the decoder on text embeddings

https://arxiv.org/abs/2112.10752

https://arxiv.org/abs/2112.10752

ControlNet

Allows “post-processing” to add new kinds of conditioning to pretrained model

https://www.reddit.com/r/StableDiffusion/comments/1281iva/new_controlnet_face_model/

https://www.reddit.com/r/StableDiffusion/comments/1281iva/new_controlnet_face_model/

https://www.theverge.com/2023/1/17/23558516/ai-art-copyright-stable-diffusion-getty-images-lawsuit

https://www.theverge.com/2023/1/17/23558516/ai-art-copyright-stable-diffusion-getty-images-lawsuit

https://arxiv.org/abs/2301.13188

https://arxiv.org/abs/2301.13188

Outline

1 A Quick Tour of (Image) Generative Models

2 Diffusion Models

3 Some Things We Didn’t Cover

Privacy

How can we prevent models from memorizing individual data points?

Leading framework is differential privacy

https://2021.ai/machine-learning-differential-privacy-overview/

CPSC grad courses: 532P by Mijung Park,
sometimes 538L by Mathias Lecuyer

https://2021.ai/machine-learning-differential-privacy-overview/
https://sites.google.com/view/cpsc532p2022w1/home
https://m-lecuyer.github.io/538L/

Fairness, Accountability, Transparency

Tons of issues around ML models / applications

Some have technical (partial) solutions

Some can only be handled socially

“Sociotechnical systems” (STS)

FAccT and AIES conferences

New undergrad course coming in DSCI, focusing mostly on fairness

https://facctconference.org
https://www.aies-conference.com/

Causality

532Y: Causal ML by Mathias Lecuyer

Math 605D by Elina Robeva (sometimes)

Closely related to fairness

More related things to be aware of:

Disentanglement
Independent components analysis
Out-of-distribution generalization, domain adaptation

https://m-lecuyer.github.io/532Y-538L-CausalInference/
https://sites.google.com/view/ubc-math-605d-causality/

More Deep Learning: NLP

Big, super-fast thing is large language models

GPT4 since we last talked about them. . .
We May be Surprised Again: Why I take LLMs seriously

CPSC 436N: NLP (likely W1)

CPSC 532V: Commonsense Reasoning in NLP by Vered Shwartz (planned W2)

532G (dialogue models) by Giuseppe Carenini

courses by Muhammad Abdul-Mageed

532S: Multimodal Learning with Vision, Language and Sound

https://www.inference.vc/we-may-be-surprised-again/
https://www.cs.ubc.ca/~vshwartz/courses/CPSC436N-22/index.html
https://www.cs.ubc.ca/~vshwartz/courses/CPSC532V-23/index.html
https://mageed.arts.ubc.ca/teaching/
https://www.cs.ubc.ca/~lsigal/teaching22_Term1.html

More Deep Learning: Vision/Graphics

Lots of vision to do beyond what was in this course!

CPSC 425: Computer Vision

533Y: Visual Geometry with Deep Learning by Kwang Moo Yi (planned W1)

533R: Visual AI by Helge Rhodin (planned W2)

533V: Learning to Move by Michiel van de Panne (planned W2)

https://www.cs.ubc.ca/~lsigal/teaching22_Term2.html
https://www.cs.ubc.ca/~rhodin/2022_2023_CPSC_533R/
https://www.cs.ubc.ca/~van/cpsc533V/

Theory

Why/when do ML models / optimizers work, mathematically?

https://arxiv.org/abs/2011.02538

532D: Modern Statistical Learning Theory by me (planned W1)

406 and 536M by Michael Friedlander (planned W1)

5XX by Mark Schmidt (semi-ongoing plus maybe W2)

EECE 571Z Convex Optimization by Christos Thrampoulidis

Various stat courses

https://arxiv.org/abs/2011.02538
https://www.cs.ubc.ca/~dsuth/532D/
https://friedlander.io/ubc-cpsc-406/
https://friedlander.io/teaching/20t1-cpsc536m/
https://www.cs.ubc.ca/~schmidtm/Courses/5XX-S22/

Probabilistic/Bayesian/. . .ML

Probabilistic programming: 532W by Frank Wood

Stat 520A: Bayesian analysis by Alexandre Bouchard-Côté

Stat 520B: Variational Bayes by Trevor Campbell

Stat 547S: Topics on Symmetry by Benjamin Bloem-Reddy

ECE 571F: Deep Learning with Structures by Renjie Liao

Various more stat courses

Some more things to be aware of:

Mutual information/dependence estimation
Graph neural networks, deep sets, other structured data
Particle filters
Bayesian neural networks

https://www.cs.ubc.ca/~fwood/CS532W-539W/
https://www.stat.ubc.ca/~bouchard/courses/stat520-sp2021-22/index.html
https://www.stat.ubc.ca/~benbr/assets/notes/stat547s-notes.pdf
https://lrjconan.github.io/UBC-EECE571F-DL-Structures/

Reinforcement learning

322, 422 – logic, more graphical models, search, planning, some RL

522 by David Poole (PGMs, some RL)

532J: Never Ending Reinforcement Learning by Jeff Clune

533V: Learning to Move by Michiel van de Panne (planned W2)

Some more things to be aware of:

Meta-learning
Online learning
Active learning
Multi-armed bandits
Auto-ML

https://www.cs.ubc.ca/~poole/cs522/2023/
https://www.cs.ubc.ca/~van/cpsc533V/

Other stuff

532C: Human-Centred AI by Cristina Conati (planned W2)

Somewhat relevant: 539L: Automated Testing by Caroline Lemieux

532L: Modes of Strategic Behaviour by Kevin Leyton-Brown

Math 605D: Tensor decompositions by Elina Robeva (sometimes)

Math 555: Compressed Sensing by Yaniv Plan

Possible courses by

Shengjia Zhao (new in CS; information theory / econ / LLMs)
Geoff Pleiss (new in Stat; Gaussian processes)
Xiaxio Li (ECE; federated learning)
Lele Wang (ECE; coding theory)

Reading groups: https://ml.ubc.ca/reading-groups/

Talks: CAIDA (AI broadly), MILD (“mathematical” ML)

https://www.carolemieux.com/teaching/CPSC539L_2022w1.html
https://www.cs.ubc.ca/~kevinlb/teaching/cs532l/
https://sites.google.com/view/math-605d-tensors-2022/
https://www.yanivplan.com/__trashed
https://szhao.me/
https://geoffpleiss.com/
https://xxlya.github.io/xiaoxiao/
https://sites.google.com/site/wanglele1986/
https://ml.ubc.ca/reading-groups/
https://caida.ubc.ca/events
https://mild.ubc.ca/events

	A Quick Tour of (Image) Generative Models
	Diffusion Models
	Some Things We Didn't Cover

