
CPSC 440/540: Advanced Machine Learning
Variational Inference and VAEs

Danica Sutherland (building on materials from Mark Schmidt)

University of British Columbia

Winter 2023



Outline

1 Variational Inference

2 Variational Auto-encoders



Need for Approximate Inference

We have seen a variety of models where inference can be intractable:

Bayesian logistic regression.
Markov chains with non-Gaussians continuous states.
Non-forest graphical models.
LDA topic modeling.

Monte Carlo methods can solve these problems, but it’s so slow and fiddly.

Most common alternative is variational methods.



Monte Carlo vs. Variational Inference

Two main strategies for approximate inference:
1 Monte Carlo methods:

Approximate p with the empirical distribution of samples,

p(x) ≈ 1

n

n∑
i=1

1[xi = x].

Turns inference into sampling.

2 Variational methods:

Approximate p with “closest” distribution q from a tractable family,

p(x) ≈ q(x).

E.g., Gaussian, independent Bernoulli, or tree UGM.
(or mixtures of these simple distributions)

Turns inference into optimization.



Variational Inference Illustration

Approximate non-Gaussian p by a Gaussian q:

Approximate loopy UGM by independent distribution or tree-structed UGM:

Variational methods try to find simple distribution q that is closest to target p.

This isn’t consistent like MCMC is, but it can be very fast.



Kullback-Leibler (KL) Divergence
How do we define “closeness” between a distribution p and q?

A common measure is Kullback-Leibler (KL) divergence between p and q:

KL(p ∥ q) =

∫
p(x) log

p(x)

q(x)
dx.

As usual, integral becomes a sum for discrete distributions.

Also called information gain: “information lost when p is approximated by q.”
If p and q are the same, we have KL(p ∥ q) = 0 (no information lost).
Otherwise, KL(p ∥ q) grows as it becomes hard to predict p from q.

Note that KL is not symmetric: in general, KL(p ∥ q) ̸= KL(q ∥ p).

Maximum likelihood is the same as minimizing KL(ptrue ∥ pθ) (see bonus slide).

Unfortunately, this requires summing/integrating over p.
. . . and that’s exactly the problem we’re trying to solve.



Minimizing Reverse KL Divergence

Most variational methods minimize “reverse KL,”

KL(q ∥ p) =

∫
q(x) log

q(x)

p(x)
dx =

∫
q(x) log

(
q(x)

p̃(x)
Z

)
dx.

Not intuitive: “how much information is lost when we approximate q by p”.

“Reverse” KL only needs unnormalized distribution p̃ and expectations over q.

KL(q ∥ p) =

∫
q(x) log q(x)dx−

∫
q(x) log p̃(x)dx+

∫
q(x) log(Z)dx

= E
x∼q

[log q(x)]− E
x∼q

[log p̃(x)] + log(Z)︸ ︷︷ ︸
const. in q

.



Variational Approximation with a Multivariate Gaussian

We want to find minq Ex∼q[log q(x)]− Ex∼q[log p̃(x)].

First term is minus the differential entropy, H[q] = −
∫
q(x) log q(x)dx.

For multivariate Gaussians, we have H[q] = 1
2 log detΣ + d

2 + d
2 log(2π).

So to find the best multivariate Gaussian approximation, we need to find

argmax
µ,Σ

1
2 log detΣ+ E

x∼N (µ,Σ)
log p̃(x) = argmax

µ,L
log detL+ E

z∼N (0,I)
log p̃(µ+Lz).

End up with q = N (µ,LLT).

If L is lower-triangular with Ljj > 0 (Cholesky factor), then detL =
∏

j Ljj is easy.

One instance of the “reparamaterization trick” to optimize an expectation.

Can take samples for z and run SGD to optimize (but note it’s non-convex).



Coordinate Optimization: Mean Field Approximation

Another common scheme is coordinate optimization with an appropriate q.

Consider minimizing reverse KL when q is a product of independent qj ,

q(x) =

d∏
j=1

qj(xj),

where we choose q to be discrete or conjugate (e.g. Gaussian).

If we fix q−j and optimize the functional qj we obtain (see PML2 10.2)

qj(xj) ∝ exp

(
E
q−j

[log p̃(x)]

)
,

which we can use to update qj for a particular j.



Coordinate Optimization: Mean Field Approximation

Each iteration we choose a j and set q based on mean (of neighbours),

qj(xj) ∝ exp

(
E
q−j

[log p̃(x)]

)
.

This improves the (non-convex) reverse KL on each iteration.

Applying this update is called:

Mean field method (graphical models).
Variational Bayes (Bayesian inference).



Three Coordinate-Wise Algorithms

Gibbs sampling is a coordinate-wise method for approximate sampling:

Choose a coordinate j to update.
Sample xj keeping other variables fixed.

ICM is a coordinate-wise method for approximate decoding:

Iterated Conditional Mode; it’s in the lecture 20 bonus slides.
Choose a coordinate j to update.
Maximize xj keeping other variables fixed.

Mean field is a coordinate-wise method for approximate marginalization:

Choose a coordinate j to update.
Update marginal qj(xj)︸ ︷︷ ︸

for all xj

keeping other variables fixed (qj(xj) approximates pj(xj)).



Three Coordinate-Wise Algorithms
Consider a pairwise discrete UGM:

p(x1, x2, . . . , xd) ∝

 d∏
j=1

ϕj(xj)

 ∏
(i,j)∈E

ϕij(xi, xj)

 ,

ICM for updating a node j with 2 neighbours (i and k).
1 Compute Mj(xj) = ϕj(xj)ϕij(xi, xj)ϕjk(xj , xk) for all xj .
2 Set xj to the largest value of Mj(xj).

Gibbs for updating a node j with 2 neighbours (i and k).
1 Compute Mj(xj) = ϕj(xj)ϕij(xi, xj)ϕjk(xj , xk) for all xj .
2 Sample xj proportional to Mj(xj).

Mean field for updating a node j with 2 neighbours (i and k).
1 Compute Mj(xj) = ϕj(xj) exp

(∑
xi

qj(xi) log ϕij(xi, xj) +
∑

xk
qk(xk) log ϕjk(xj , xk)

)
.

2 Set qj(xj) proportional to Mj(xj).



Structure Mean Field

Common variant is structured mean field: q function includes some of the edges.

http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf

http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf

Original LDA paper proposed a structured mean field approximation.

http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf
http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf


Variational vs. Monte Carlo

Compared to MCMC, variational methods are typically:

more complicated.
not consistent (q doesn’t converge to p if we run the algorithm forever).
harder to parallelize.
better approximations for a given amount of computation.

Variational methods typically have similar cost to MAP.

Combinations of variational inference and stochastic methods:

Stochastic variational inference (SVI): use SGD to speed up variational methods.
Can initialize MCMC parameters based on a variational estimate.
Variational MCMC: use Metropolis-Hastings with proposals from a variational q.



Previously: Belief Propagation

Generalization of forward-backward to forests is belief propagation.
(undirected graphs with no loops, which must be pairwise)

https://www.quora.com/

Probabilistic-graphical-models-what-are-the-relationships-between-sum-product-algorithm-belief-propagation-and-junction-tree-algorithm

Defines “messages” that can be sent along each edge.

https://www.quora.com/Probabilistic-graphical-models-what-are-the-relationships-between-sum-product-algorithm-belief-propagation-and-junction-tree-algorithm
https://www.quora.com/Probabilistic-graphical-models-what-are-the-relationships-between-sum-product-algorithm-belief-propagation-and-junction-tree-algorithm


Loopy Belief Propagation

In pairwise UGM, belief propagation “message” from parent p to child c is gven by

Mpc(xc) ∝
∑
xp

ϕi(xp)ϕpc(xp, xc)Mjp(xp)Mkp(xp),

assuming that parent p has parents j and k.

We get marginals by multiplying all incoming messages with local potentials.

Loopy belief propagation: a “hacker” approach to approximate marginals:

Choose an edge ic to update.
Update messages Mic(xc) keeping all other messages fixed.
Repeat until “convergence”.

We approximate marginals by multiplying all incoming messages with local potentials.

Empirically much better than mean field; we’ve spent 20+ years figuring out why.



Discussion of Loopy Belief Propagation

Loopy BP decoding is used for “error correction” in 3G/4G, NASA missions. . . .
Called “turbo codes” in information theory.

Loopy BP is not optimizing an objective function.
Convergence of loopy BP is hard to characterize: does not converge in general.

If it converges, loopy BP finds fixed point of “Bethe free energy”:
Instead of “Gibbs mean-field free-energy” for mean field, which lower bounds Z.
Bethe typically gives better approximation than mean field, but not a bound.

There are convex variants that upper bound Z.
Tree-reweighted belief propagation.
Variations that are guaranteed to converge.

Convex variants are more consistent but often give worse approximations.

Messages only have closed-form update for conjugate models.
Can approximate non-conjugate models using expectation propagation.



Convex Relaxations

We’ve overviewed a view of variational methods as minimizing non-convex reverse
KL.

Alternate view: write exact inference as constrained convex optimization.
Writing inference as maximizing entropy with constraints on marginals.

See bonus slides from the exponential family lecture.

Different methods correspond to different entropy/constraint approximations.

Mean field and loopy belief propagation relax entropy and marginals in different ways.
Weirdly, these approximations are non-convex even though original problem is convex.

There are also convex relaxations that approximate with linear programs (or SDPs).

For an overview of these ideas, see:
https://people.eecs.berkeley.edu/~wainwrig/Papers/WaiJor08_FTML.pdf

https://people.eecs.berkeley.edu/~wainwrig/Papers/WaiJor08_FTML.pdf


Outline

1 Variational Inference

2 Variational Auto-encoders



Autoencoders

Way back in lecture 5, we talked about auto-encoders:



Autoencoders

Way back in lecture 5, we talked about auto-encoders:

Let’s fix that “not actually sampling” part, to get a real generative model.



Variational Auto-encoders

VAEs choose to make everything probabilistic:

https://danijar.com/building-variational-auto-encoders-in-tensorflow/

Encoder network qϕ(z | x) gives a distribution over latent codes for x
Decoder network pθ(x | z) gives an x for a given z
Prior distribution pθ(z) is usually N (0, I)

Another view: fitting the distribution pθ(x) =
∫
pθ(x | z)pθ(z)dz to data

Plus a “recognition” network qϕ(z | x) ≈ pθ(z | x) = pθ(x|z)pθ(z)
pθ(x)

“Amortized inference” – we amortize the work of conducting (intractable) inference

We can sample from pθ ancestrally: z ∼ pθ(z), x ∼ pθ(x | z).

https://danijar.com/building-variational-auto-encoders-in-tensorflow/


ELBO
We’d like to maximize the sample average of pθ(x) =

∫
pθ(x | z)pθ(z)dz

log pθ(x) = E
z∼qϕ(z|x)

[log pθ(x)]

= E
z∼qϕ(z|x)

[
log

pθ(x, z)

pθ(z | x)

]
= E

z∼qϕ(z|x)

[
log

pθ(x, z) qϕ(z | x)
qϕ(z | x) pθ(z | x)

]
= E

z∼qϕ(z|x)

[
log

pθ(x, z)

qϕ(z | x)

]
+ E

z∼qϕ(z|x)

[
qϕ(z | x)
pθ(z | x)

]
= ELBOθ,ϕ(x) + KL(qϕ(z | x) ∥ pθ(z | x))

Since KL ≥ 0, ELBOθ,ϕ(x) = log pθ(x)−KL(qϕ(z | x) ∥ pθ(z | x)) ≤ log pθ(x).
ELBO is the Evidence Lower BOund.

Maximizing Ex ELBOθ,ϕ(x) over ϕ, the bound gets tighter for these x.

Maximizing Ex ELBOθ,ϕ(x) over θ moves towards maximizing likelihood for pθ.



ELBO as regularized approximate likelihood

We can rewrite the ELBO as

ELBOθ,ϕ(x) = E
z∼qϕ(z|x)

[
log

pθ(x, z)

qϕ(z | x)

]
= E

z∼qϕ(z|x)

[
log

pθ(x | z)pθ(z)
qϕ(z | x)

]
= E

z∼qϕ(z|x)
[log pθ(x | z)]−KL(qϕ(z | x) ∥ pθ(z)).

If qϕ ≈ pθ, the first term is approximately pθ(x).

The second term regularizes qϕ(z | x) to stay “near” pθ(z).



Computing the ELBO and its gradient: KL term

We want to maximize the average of

ELBOθ,ϕ(x) = E
z∼qϕ(z|x)

[log pθ(x | z)]−KL(qϕ(z | x) ∥ p(z)).

KL term for a given x is often available in closed form.

Typically we choose pθ(z) to be just N (0, I).
Typically we choose qϕ(z | x) to be N (µϕ(x),Σϕ(x)).
In this case, we get that the KL term is just (see PML2 eq 5.80)

KL(N (µϕ(x),Σϕ(x)) ∥ N (0, I)) = 1
2

(
∥µϕ(x)∥2 +TrΣϕ(x)− log detΣϕ(x)− d

)
.

Most of the time we also choose Σϕ(x) to be diagonal; determinant is easy.
This is just an expression in terms of ϕ that we can autodiff.



Optimizing the ELBO and its gradient: the reparameterization trick

We want to maximize the average of

ELBOθ,ϕ(x) = E
z∼qϕ(z|x)

[log pθ(x | z)]−KL(qϕ(z | x) ∥ p(z)).

KL term for a given x is available in closed form if p(z), qϕ(z | x) are Gaussian.

For the other term, we need Monte Carlo.

Usually pθ(x | z) is N (fθ(z), σ
2I), so log pθ(x | z) = − 1

σ2 ∥x− fθ(z)∥2 + const.
We need Ez∼qϕ(z|x) log pθ(x | z).

Can estimate this with Monte Carlo, usually just with a single sample for simplicity.

But how do we take ∇ϕ of this expectation? Use reparameterization trick again:

E
z∼qϕ(z|x)

[log pθ(x | z)] = E
ξ∼N (0,I)

log pθ(x | z = µϕ(x) + Σϕ(x)
1
2 ξ).

Take a Monte Carlo sample for ξ; now have something we can autodiff.

Now just do SGD to maximize 1
n

∑n
i=1 ÊLBOθ,ϕ(x

i).



A VAE

https://arxiv.org/pdf/1606.05908.pdf

https://arxiv.org/pdf/1606.05908.pdf


A VAE on MNIST

https://danijar.com/building-variational-auto-encoders-in-tensorflow/

https://danijar.com/building-variational-auto-encoders-in-tensorflow/


Conditional VAE

https://arxiv.org/pdf/1606.05908.pdf

https://arxiv.org/pdf/1606.05908.pdf


Conditional VAE to “in-paint” on MNIST

https://papers.nips.cc/paper_files/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf

https://papers.nips.cc/paper_files/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf


Posterior collapse

What if we use a really powerful decoder pθ(x | z)?
For example, an autoregressive model based on

pθ(x | z) = pθ(x1 | z)pθ(x2 | x1, z) · · · pθ(xd | x1, . . . , xd−1, z).

If you try this, get great samples. . . that tend to ignore z entirely.

Remember ELBOθ,ϕ(x) = Ez∼qϕ(z|x) [log pθ(x | z)]−KL(qϕ(z | x) ∥ p(z)).

If pθ(x | z) ignores z, qϕ(z | x) can be just pθ(z) and KL becomes 0.



VQ-VAE

One way to avoid this: vector quantized VAE uses a discrete latent space.

Encoder maps to a single discrete value of the latent; learn a prior on them.

Autoregressive decoder is encouraged to “commit” to a latent.

VQ-VAE-2 uses two-layer hierarchical latents
Autoregressive prior on the latents, but a fast feed-forward decoder.

https://arxiv.org/pdf/1906.00446.pdf

https://arxiv.org/abs/1906.00446
https://arxiv.org/abs/1906.00446
https://arxiv.org/pdf/1906.00446.pdf


β-VAE

Put a weight β > 1 in front of the KL term in the ELBO

https://arxiv.org/pdf/1804.03599.pdf

Refined version: see TC-VAE.

https://arxiv.org/pdf/1804.03599.pdf
https://arxiv.org/abs/1802.04942


Wasserstein Auto-Encoder

Different framing for an auto-encoder-based generative model

Avoids “motivation” for posterior collapse

Simple version with deterministic encoder/decoder:

min
θ,ϕ

1

n

n∑
i=1

∥xi − decθ(encϕ(x
i))∥2 + λD

(
prior(z),

1

n

n∑
i=1

1
(
z = encϕ(x

i)
))

where D is some distance between probability distributions (kernel MMD, GAN)

Only makes marginal distribution of zs match the prior, not each one like VAEs

Can show approximately minimizes Wasserstein distance between model and data



Summary

Variational methods approximate p with a simpler distribution q.

Mean field approximation minimizes reverse KL divergence with independent q.
Loopy belief propagation is a heuristic that often works well.

Variational auto-encoders (VAEs) do this for a “deep latent variable model.”

Next lecture: how DALLE-2 / Midjourney / Stable Diffusion work.



Maximum likelihood minimizes KL

argmin
θ

KL(ptrue ∥ pθ) = argmin
θ

∫
ptrue(x) log

ptrue(x)

pθ(x)
dx

= argmin
θ

∫
ptrue(x) log ptrue(x)dx−

∫
ptrue(x) log pθ(x)dx

= argmin
θ

−
∫

ptrue(x) log pθ(x)dx

= argmax
θ

E
x∼ptrue

log pθ(x)

≈ argmax
θ

1

n

n∑
i=1

log pθ(x
i)



Difficulty of Variational Formulation

In exponential family bonus slides, we write inference as a convex optimization:

log(Z) = sup
µ∈M

{wTµ+H(pµ)},

Did this make anything easier?

Computing entropy H(pµ) seems as hard as inference.
Characterizing marginal polytope M becomes hard with loops.

Practical variational methods:

Work with approximation/bound on entropy H.
Work with approximation to marginal polytope M.



Mean Field Approximation

Mean field approximation assumes

µij,st = µi,sµj,t,

for all edges, which means

p(xi = s, xj = t) = p(xi = s)p(xj = t),

and that variables are independent.

Entropy is simple under mean field approximation:∑
X

p(X) log p(X) =
∑
i

∑
xi

p(xi) log p(xi).

Marginal polytope is also simple:

MF = {µ | µi,s ≥ 0,
∑
s

µi,s = 1, µij,st = µi,sµj,t}.



Entropy of Mean Field Approximation

Entropy form is from distributive law and probabilities sum to 1:

∑
X

p(X) log p(X) =
∑
X

p(X) log(
∏
i

p(xi))

=
∑
X

p(X)
∑
i

log(p(xi))

=
∑
i

∑
X

p(X) log p(xi)

=
∑
i

∑
X

∏
j

p(xj) log p(xi)

=
∑
i

∑
X

p(xi) log p(xi)
∏
j ̸=i

p(xj)

=
∑
i

∑
xi

p(xi) log p(xi)
∑

xj |j ̸=i

∏
j ̸=i

p(xj)

=
∑
i

∑
xi

p(xi) log p(xi).



Mean Field as Non-Convex Lower Bound

Since MF ⊆ M, yields a lower bound on log(Z):

sup
µ∈MF

{wTµ+H(pµ)} ≤ sup
µ∈M

{wTµ+H(pµ)} = log(Z).

Since MF ⊆ M, it is an inner approximation:

Constraints µij,st = µi,sµj,t make it non-convex.

Mean field algorithm is coordinate descent on wTµ+H(pµ) over MF .



Discussion of Mean Field and Structured MF

Mean field is weird:

Non-convex approximation to a convex problem.
For learning, we want upper bounds on log(Z).

Structured mean field:

Cost of computing entropy is similar to cost of inference.
Use a subgraph where we can perform exact inference.

http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf

http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf


Structured Mean Field with Tree

More edges means better approximation of M and H(pµ):

http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf

Fixed points of loopy correspond to using “Bethe” approximation of entropy and
“local polytope” approximation of “marginal polytope”.

You can design better variational methods by constructing better approximations.

http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf

	Variational Inference
	Variational Auto-encoders

