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Quick things Qd/""_‘ﬂ

@ I'm working on project proposal feedback. .. hopefully by tomorrow

e UBC participating in ASA Data Fest for the first time this year
o Undergraduate data science hackathon, April 28th (5pm) to April 30th (6pm)
o Register by April 10th:
https://ubc.cal.qualtrics.com/jfe/form/SV_8ABL52tzvw2Z3rU
o Grad students can help as mentors — contact Giulia Toti (gtoti@cs.ubc.ca)


https://ww2.amstat.org/education/datafest/index.cfm
https://ubc.ca1.qualtrics.com/jfe/form/SV_8ABL52tzvw2Z3rU

Last Time: Expectation Maximization

@ EM considers learning with observed data X and hidden data Z.
@ What we'd really like to do is maximize the marginal log-likelihood:

O € arg max log/ p(X,Z|0©)dZ
© Z

e EM is helpful when “complete” likelihood, p(X,Z | ©), has a nice form.
@ EM iterations take the form of a weighted “complete” MLE,

eitl ¢ argmax/ p(Z | X,0Mlogp(X,Z | ©)dZ
S) Z

taking an expectation over Z w.r.t. the previous ©.
@ We looked at the simple form of the EM update for mixture models,

@HlEargmaXZZ 242", 0" logp(a', 2' | ©) .
i=1 zi=1

responsibility complete-data log-lik



Back to the Rain Data

@ We previously considered the “Vancouver Rain” data:

@ We used homogeneous Markov chains to model between-day dependence.



Back to the Rain Data

@ Before, we used a conditional random field to depend on the month.

@ We could alternately try to learn the clusters using a mixture model.
e But mixture of independents wouldn't capture dependencies within cluster.

@ A mixture of Markov chains could capture direct dependence and clusters,

pler,a,... za) = 3 p(z = ) plar | 2 = plaz | 21,2 = ) -plaa | w412 = c).

=1 ~

Markov chain for cluster ¢

o Cluster z chooses which homogeneous Markov chain parameters to use.

o We could learn that some months are more likely to have rain (like winter months).
e Can do inference by running forward-backward on each mixture; fit model with EM.



Comparison of Models on Rain Data

@ Independent (homogeneous) Bernoulli:
o Average NLL: 18.97 (1 parameter).
@ Independent Bernoullis:
o Average NLL: 18.95, (28 parmaeters).
Mixture of Bernoullis (k = 10, five random restarts of EM):
o Average NLL: 17.06 (10 + 10 x 28 = 290 parameters)
Homogeneous Markov chain:
o Average NLL: 16.81 (3 parameters)
Mixture of Markov chains (k = 10, five random restarts of EM):
o Average NLL: 16.53 (10 4 10 x 3 = 40 parameters).
o Parameters of one of the clusters (possibly modeling summer months):

p(z=5)=0.14

p(x1 = “rain” | z =5) = 0.22 (instead of usual 37%)
p(z; = “rain” | z;_1 = “rain”,z =5) = 0.49 (instead of usual 65%)
p(x; = "rain” | 2;_1 = "not rain”,z =5) =0.11  (instead of usual 35%)



Back to the Rain Data

The rain data is artificially divided into months.

We previously discussed viewing rain data as one very long sequence (n = 1).

We could apply homogeneous Markov chains due to parameter tying.
e But a mixture doesn't make sense when n = 1.

@ What we want: different “parts” of the sequence come from different clusters.
e We transition from “summer” cluster to “fall” cluster at some time j.

One way to address this is with a “hidden” Markov model (HMM):

e Instead of examples being assigned to clusters, days are assigned to clusters.
e Have a Markov dependency between cluster values of adjacent days.



Hidden Markov Models

@ Hidden Markov models have each x; depend on a hidden Markov chain.
@O —E6~E)
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e We're going to learn clusters z; and the hidden dynamics between days.

o Hidden cluster z; could be “summer” or “"winter" (we're learning the clusters).
e Transition probability p(z; | zj_1) is probability of staying in “summer”.
o Initial probability p(z1) is probability of starting chain in “summer”.

o Emission probability p(x; | z;) is probability of rain during “summer”.



Hidden Markov Models

e Hidden Markov models have each x; depend on a hidden Markov chain.
OB~

|
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@ You observe the z; values but don't see the z; values.
e There is a “hidden” Markov chain, whose state determines the cluster at each time.

@ HMMs generalize both Markov chains and mixture of categoricals.
e Both models are obtained under appropriate parameters.



Hidden Markov Models

e Hidden Markov models have each z; depend on a hidden Markov chain.
O O—E-E~)

|
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p(T1, T2, .., T4, 21,22, - - 24) :p(zl)H p(zj | zj—1) H p(x; | z5).
j: :
@ Note that the x; can be continuous even with discrete clusters z;.
e Data could come from a mixture of Gaussians, with cluster changing in time.
o If the z; are continuous it's often called a state-space model.

e If everything is Gaussian, it leads to Kalman filtering.
e Keywords for non-Gaussian: unscented Kalman filter and particle filter.



Applications of HMMs and Kalman Filters

@ HMMs variants are probably the most-used time-series model.

Applications fedi

HMMs can be applied in many fields where the goal is to recover a data sequence that is not immediately observable (but other data that depend on the sequence are).

Applications include:
. Single Molecule Kinetic analysis('6]
. Cryptanalysis
. Speech recognition
. Speech synthesis
. Part-of-speech tagging
. Document Separation in scanning solutions
. Machine translation
. Partial discharge
. Gene prediction
. Alignment of bio-sequences
. Time Series Analysis
. Activity recognition
. Protein folding[17)
. Metamorphic Virus Detection!'8!
. DNA Motif Discovery!'®!

Applications fediy

. Attitude and Heading Reference Systems

. Autopilot

. Battery state of charge (SoC) estimation321(40]

. Brain-computer interface

. Chaotic signals

. Tracking and Vertex Fitting of charged particles in
Particle Detectorsi*!!

. Tracking of objects in computer vision

. Dynamic positioning

. Economics, in particular time

series analysis, and economefrics“?)

. Inertial guidance system

. Orbit Determination

. Power system state estimation
. Radar tracker

. Satellite navigation systems

. Seismology!*!

control of AG motor q
drives

localization and mapping

. Speech enhancement

. Visual odometry

. Weather forecasting

. Navigation system

. 3D modeling

. Structural health monitoring

. Human sensorimotor processing(#41

Also includes chain-structured conditional random fields.



Example: Modeling DNA Sequences

@ Previously: Markov chain for DNA sequences:

"AfterA" wheel "AfterC" wheel

P&=0.2, p:=0.3, R;=0.3, p,=0.2 Pa=0.1, p:=0.41, p;=0.39, p,=0.1

"AfterG" wheel "AfterT" wheel

Pi=0.25, p=0.25, pF0.25,p=0.25  p,=0.5, p=0.17, p=0.17, p=0.17

https://www.tes.com/lessons/WESE9RncBhieAQ/dna


https://www.tes.com/lessons/WE5E9RncBhieAQ/dna

Example: Modeling DNA Sequences

e Hidden Markov model (HMM) for DNA sequences (two hidden clusters):

"AT-rich" wheel

"GC-rich" wheel

p=03o0f
changing wheel

-———
p=0.1of
changing wheel

ps=0.39, p=0.1, p=0.1, p,=0.41 P=0.1, p=0.41, p=0.39, p,=0.1

@ This is a (hidden) state transition diagram.
o Can reflect that probabilities are different in different regions.

e The actual regions are not given, but instead are nuissance variables handled by EM

@ A better model might use a hidden and visible Markov chain.

o With 2 hidden clusters, you would have 8 “probability wheels” (4 per cluster).
e Would have “treewidth 2", so inference would be tractable.



Inference and Learning in HMMs

@ Given observed features x;, likelihood of a joint z; assignment is

d d
p(z1,22, ... 24 | 1,22,...,24) X p(z1 H (%5 | zj—1 H (x| 25)-

@ We can do inference with forward-backward by converting to potentials:

$1(21) = p(21)p(x1 | 21)
bj(zj) = p(xj | 25) (j>1)

b5.i-1(25,2j-1) = p(zj | 2j-1).

@ Marginals from forward-backward are used to update parameters in EM.

o In this setting EM is called the “Baum-Welch" algorithm.
e As with other mixture models, learning with EM is sensitive to initialization.



Who is Guarding Who? bonus!

@ There is a lot of data on scoring/offense of NBA basketball players.
o Every point and assist is recorded, more scoring gives more wins and $$$.

@ But how do we measure defense (“stopping people from scoring”)?
o We need to know who each player is guarding (which is not recorded)

KAWHI LEONARD
DEFENSIVE SHOT CHART

http://www.lukebornn.com/papers/franks_ssac_2015.pdf
@ HMMs can be used to model who is guarding who over time.
e https://www.youtube.com/watch?v=JvNkZdZJBt4


http://www.lukebornn.com/papers/franks_ssac_2015.pdf
https://www.youtube.com/watch?v=JvNkZdZJBt4

Neural Networks with Latent-Dynamics bonus!

e Could have (undirected) HMM parameters come out of a neural network:
o Tries to model hidden dynamics across time.

@ Combines deep learning, mixture models, and graphical models.
e “Latent-dynamics model”.
e Previously achieved among state of the art in several applications.



Outline

© Topic Models



Motivation for Topic Models
We want a model of the hidden “factors” making up a set of documents.

@ In this context, latent-factor models are called topic models.

Semantics Topical Strength ’"d"V"d"aa Attribute
Extraction Documents Extraction

Topic Model Hierarchical
(HLTM) Topics Extraction Documents

1

Vocabulary
Selection

1

Document
Collection

Document View

Topic View Evolution View
User Interface

https://www.sciencedirect.com/science/article/pii/S2468502X17300074

@ “Topics” could be useful for things like searching for relevant documents.


https://www.sciencedirect.com/science/article/pii/S2468502X17300074

Classic Approach: Latent Semantic Indexing

@ Classic methods are based on scores like TF-IDF:
@ Term frequency: probability of a word occuring within a document.
o E.g., 7% of words in document i are the and 2% of the words are LeBron.
@ Document frequency: probability of a word occuring across documents.
o E.g., 100% of documents contain the and 0.01% have LeBron.
© TF-IDF: measures like (term frequency)*log 1/(document frequency).
@ Seeing LeBron tells you a lot about the document; seeing the tells you nothing.

@ Many many many variations exist.

@ TF-IDF features are very redundant.

o Consider TF-IDF of LeBron, Durant, and Giannis.
e High values of these typically just indicate topic of “basketball”.
o Basically a weighted bag of words.

e We want to find latent factors (“topics”) like "basketball”.



Modern Approach: Latent Dirichlet Allocation

@ Latent semantic indexing (LSI) topic model:

@ Summarize each document by its TF-IDF values.
@ Run a latent-factor model like PCA or NMF on the matrix.
© Treat the latent factors as the “topics”.

@ LSI has been largely replaced by latent Dirichlet allocation (LDA).
e Hierarchical Bayesian model of all words in a document.

o Still ignores word order.
o Tries to explain all words in terms of topics.

e The most cited ML paper in the 00s?

@ LDA has several components; we'll build up to it by parts.
o We'll assume all documents have d words and word order doesn’'t matter.



Model 1: Categorical Distribution of Words
@ Base model: each word x; comes from the same categorical distribution.
p(xj = the) = btne where BOyorg >0 and Z Oword = 1.
word

@ So to generate a document with d words:
e Sample d words from the categorical distribution.

e

@ Drawback: misses that documents are about different “topics.”
e We want the word distribution to depend on the “topics.”



Model 2: Mixture of Categorical Distributions

@ To represent “topics”, we'll use a mixture model.
e Each mixture has its own categorical distribution over words.
o E.g., the “basketball” mixture will have higher probability of LeBron.

@ So to generate a document with d words:

e Sample a topic z from a categorical distribution.
e Sample d words from categorical distribution z.

@

!

5

@ Similar to a mixture of independent categorical distributions.
o But we tie categorical distribution across the d variables, given cluster.

@ Drawback: misses that documents may be about more than one topic.



Model 3: Multi-Topic Mixture of Categorical

@ Our third model introduces a new vector of “topic proportions” .
o Gives percentage of each topic that makes up the document.
o E.g., 80% basketball and 20% politics.
o Called probabilistic latent semantic indexing (PLSI).

@ So to generate a document with d words given topic proportions 7:

e Sample d topics z; from categorical distribution 7.
e Sample a word for each z; from corresponding categorical distribution.

og\ﬁ
Ll I}
6008 &
® @ (s @5

e Similar to HMM where each “time” has own cluster (but no Markov assumption).
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Model 4: Latent Dirichlet Allocation

@ Latent Dirichlet allocation (LDA) puts a prior on topic proportions.
e Conjugate prior for categorical is Dirichlet distribution.

@ So to generate a document with d words given Dirichlet prior:

e Sample mixture proportions 7 from the Dirichlet prior.
e Sample d topics z; from categorical distribution .

e Sample a word for each z; from corresponding categorical distribution.

H—G)

3
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O
SO
OO
@

@ This is the generative model, typically used with MCMC or variational methods



Latent Dirichlet Allocation (LDA)

Topic proportions and

Topics Documents ;
assignments

gene 6.04
dna .62
genetic 0.61

—

life .02
evolve  6.61
organism 8.61

data 0.62
number  ©.62
computer 0.81

o
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Latent Dirichlet Allocation (LDA)

Topic proportions and

Topics Documents ;
assignments
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genetic 0.61
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life .02
evolve  6.61
organism 8.61
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brain 6.04
neuron  6.02
nerve 0.81

data 0.62
number  ©.62
computer 0.81
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Latent Dirichlet Allocation (LDA)

Topic proportions and

Topics Documents ;
assignments
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Latent Dirichlet Allocation (LDA)

Topic proportions and
assignments
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Latent Dirichlet Allocation Example

“Genetics” “Evolution” “Disease” “Computers”

human evolution disease computer
- genome evolutionary host models
s dna species bacteria information
genetic organisms diseases data
81 genes life resistance computers
= sequence origin bacterial system
E o gene biology new network
£ molecular groups strains systems
sequencing  phylogenetic control model
s map living infectious parallel
information diversity malaria methods
2 = L I l . genetics group parasite networks
18 16 26 36 46 56 66 76 86 96 mapping new parasites software
Topics project two united new
sequences common tuberculosis  simulations

Figure 2: Real inference with LDA. We fit a 100-topic LDA model to 17,000 articles
from the journal Science. At left is the inferred topic proportions for the example article in
Figure 1. At right are the top 15 most frequent words from the most frequent topics found in
this artic

http://menome.com/wp/wp-content/uploads/2014/12/Blei2011.pdf


http://menome.com/wp/wp-content/uploads/2014/12/Blei2011.pdf

Latent Dirichlet Allocation Example

4 10 3
ax labor women
income ‘workers sexual
taxation employees men
taxes union sex
reverue. ployer child
estate employers family
suvsities employment iidren
exemprion work
rgenizazons employee woman
e marriage
sy bargaining discrmination
consumprion unions maie
s worker ‘social
eamings cotecve temate
[ incusaial pareis
[ 15 1
jury speech fims
trial price
crime ‘amendment
defengant freedom frm
defendants expression value
sentencing orcncd markat
judges oy cost
punshment cortmt caoeal
Joge oy snarenoicers
ermes. e ot
eidence et -
[ = e
s rmaon e
Hacse e 'y
oy s -

o

e
16
constitutional
political

‘gavernment

Figure 3: A topic model fit to the Yale Law Journal. Here there are twenty topics (the top
eight are plotted). Each topic is illustrated with its top most frequent words. Each word’s
position along the x-axis denotes its specificity to the documents. For example “estate” in

the first topic is more specific than “tax.”

http://menome.com/wp/wp-content/uploads/2014/12/Blei2011.pdf


http://menome.com/wp/wp-content/uploads/2014/12/Blei2011.pdf

Latent Dirichlet Allocation Example

Health topics in social media:

Non-Ailment Topics

TV&Movies  Games & Sports School Conversation Family Transportation Music
watch Killing. ugh il mom home. voice
watching play class ok shes car hear
tv game school haha dad drive feelin
filling playing read ha says walk il
movie win test fine hes bus night
seen boys doing yeah sister driving bit
movies games finish thanks tell trip music
mr fight reading hey mum ride listening
watched Tost teacher thats brother leave listen
hi team write xd thinks house sound
Influenza-like Insomnia & Diet & Exercise Cancer & Injuries & Pain Dental Health
Iliness Sleep Issues Serious lliness.
General Words better night body cancer hurts dentist
hope bed pounds help knee appointment
il bady gym pray ankle doctors
soon ill weight awareness hurt tooth
feel lost diagnosed neck teeth
feeling workout prayers ouch appt
day lose died leg wisdom
flu days family arm eye
thanks legs friend fell going
xx week shes left went
Symptoms sick sore cancer pain infection
sore throat breast sore i
throat pain lung. head mouth
fever aching prostate foot. ear
cough stomach sad feet sinus
Treatments hospital exercise surgery massage surgery
surgery diet hospital brace braces
antibiotics dieting treatment physical antibiotics
fluids pill exercises heart therapy eye
paracetamol tylenol protein transplant crutches hospital

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0103408


http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0103408

Latent Dirichlet Allocation Example

Three topics in 100 years of “Vogue” fashion magazine:

“Art”

ArtWords

works gallery american
eres colletion
nnnnn . work york 2=
paintings a r't exhibition

inting e
painting modem artist

artists  myseum  ars

“Dressmaking”

Dressmaking Words

inches made coatcents

waist . . good
collar prlceSklrt Yogute |
front sz« * materia
s PAEIN 4 s
“Advice and Etiquette”

Advice nd Eiquete Words

quessW@Ading peope P
auw

Zoemdinners®® ..

%Y house

= o vogue

metropolitan museum modern art
works art

art galer
york iy otey

museum art™"""
metropolitan museum art

Dressmaking Phases
vogue patems
price cents designed sizescents yard

vogue pattern

inches vide collr cutts

sizes years'
inches vide yards

Advice and Ebquette Phases

luncheon dinner
answers
correspondents

evening dress bride groom

http://dh.library.yale.edu/projects/vogue/topics/


http://dh.library.yale.edu/projects/vogue/topics/

Discussion of Topic Models

@ There are many extensions of LDA:

e We can put prior on the number of words (like Poisson).
o Correlated and hierarchical topic models learn dependencies between topics.

Figure 2: A portion of the topic graph learned from 15,744 OCR articles from Science.
Each node represents a topic, and is labeled with the five most probable words from its
distribution; edges are labeled with the correlation between topics.

http://people.ee.duke.edu/~1lcarin/Blei2005CTM. pdf


http://people.ee.duke.edu/~lcarin/Blei2005CTM.pdf

Discussion of Topic Models

@ There are many extensions of LDA:
e We can put prior on the number of words (like Poisson).
o Correlated and hierarchical topic models learn dependencies between topics.
e Can be combined with Markov models to capture dependencies over time.

1900 1920
energy atom
molecules atorns
atoms energy
molecular matter electrons. electron
matter atomic electron states

1910
molecules energy
energy theory
atoms atoms
molecular atom
atter molacules

“Mass and Energy” (1907)

8 “The Wave Properties
of Electrons" (1930) "The Z Boson" (1990)
g "Alchemy” (1891)
“Structure of the
H Proton® (1974) "Quantum Criicallty:
H Competing Ground States
£ "Nuclear Fission" (1840) in Low Dimensions" (2000)
I3
a

atomic

quantum
—a—o—

molecular

Topic score

1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

http://menome.com/wp/wp-content/uploads/2014/12/Blei2011.pdf


http://menome.com/wp/wp-content/uploads/2014/12/Blei2011.pdf

Discussion of Topic Models

@ There are many extensions of LDA:

o We can put prior on the number of words (like Poisson).
Correlated and hierarchical topic models learn dependencies between topics.

e Can be combined with Markov models to capture dependencies over time.
o Better word representations like “word2vec” (CPSC 340).
o Now being applied beyond text, like “cancer mutation signatures”:
. ®@. ®. W .
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http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1005657


http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1005657

Discussion of Topic Models

@ Topic models for analyzing musical keys:

LDA-based ! Minor Key-Profile

gq . LDADISEAIMapr Key-Proie 0
03 015
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Figure 2: The C major and C minor key-profiles learned by our model, as encoded by the 8 matrix.
Resulting key-profiles are obtained by transpo:
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Figure 3: Key judgments for the first 6 measures of Bach's Prelude in C minor, WTC-II. Annotations
for each measure show the top three keys (and relative strengths) chosen for each measure. The top
set of three annotations are judgments from our LDA-based model; the bottom set of three are from

human expert judgments [3].

http://cseweb.ucsd.edu/~dhu/docs/nips09_abstract

.pdf


http://cseweb.ucsd.edu/~dhu/docs/nips09_abstract.pdf

Monte Carlo Methods for Topic Models

@ Nasty integrals in topic models:

Inference [edit
See also: Dirichlet-multinomial distribution

Learning the various distributions (the set of topics, their associated word probabilities, the topic of each word, and the particular
topic mixture of each document) is a problem of Bayesian inference. The original paper used a variational Bayes approximation

of the posterior di M alt tive i i use Gibbs ling®® and 1 pre tion "
Following is the ion of the equati for P Gibbs which means s and @s will be integrated out. For
,inthis the are all to have the same length V. The derivation is equally valid if the

document lengths vary.

According to the model, the total probability of the model is:
K M N
P(W, 2,0,p;0,8) = [ | Plei; ) || P05 0) [] P(Z3e|60)) P(Wislp3,,),
i=1 i=1 =1

where the bold-font variables denote the vector version of the variables. First, ¢ and @ need to be integrated out.

Pz Wiaf) = [ j; P(W, 2,6,¢;0,) dip d6
K M N M N
= [ 1Pt TLITP0¥ [0z, [ 1120 [ 2230 16,) do.
¥ =1 J=11t=1 951 =1

https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation


https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation

Monte Carlo Methods for Topic Models

@ How do we actually use Monte Carlo for topic models?

@ First we write out the posterior:

‘:(J ng%:,.u B)r [n fw)jf’ ZJIQ)PJ/I\Z}@;RL” 'rrclﬂ)]

J[bf'-“‘ m{é k’f \/‘YJ \/
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Monte Carlo Methods for Topic Models

@ How do we actually use Monte Carlo for topic models?

o First we generate samples from the posterior:
o With Gibbs sampling we alternate between:

e Sampling topics given word probabilities and topic proportions.
@ Sampling topic proportions given topics and prior parameters a.
e Sampling word probabilities given topics, words, and prior parameters 3.

e Have a burn-in period, use thinning, try to monitor convergence, and so on.

@ Then we use posterior samples to do inference:

e Distribution of topic proportions for sample i is frequency in samples.
e To see if words come from same topic, check frequency in samples.



Summary

Hidden Markov models model time-series with hidden per-time cluster.
o Inference with forward-backward; learn with EM.
e Tons of applications; typically more realistic than Markov models.
o Can make

Topic models: latent-factor model of discrete data text.
o The latent “factors” are called “topics”.
o Latent Dirichlet allocation: hierarchical Bayesian topic model.

e Represent words in documents as coming from different topics.
e Each document has its own proportion for each topic.

@ Next time: faster (but worse?) inference, variationally.



Outline

© Bonus: Restricted Boltzmann Machines



Mixture of Bernoullis Models

@ Recall the mixture of Bernoullis models:
d
px) =Y p(z=c) [[plx; | z=0).
j=1

@ Given z, each variable x; comes from a product of Bernoullis

@ This is enough to model any multivariate binary distribution.
e But not an efficient representation: number of cluster might need to be huge.

o Need to learn each cluster independently (no “shared” information across clusters).

bonus,(



Mixture of Independents as a UGM bonus!

@ The mixture of independents assumptions can be represented as a UGM:

o "“The z; are independent given the cluster 2".

o A log-linear parameterization for z; € {—1,4+1} and z € {—1,+1} could be

¢j(x;) = exp(wjzj),  ¢=(2) = exp(vz),

¢j.2(x4,2) = exp(wjz;2z).
@ We have three types of parameters:

o Weight wj; in ¢; affects probability of z; =1 (independent of cluster).
o Weight v in ¢. affecst probability that z; = 1 (prior for cluster).
o Weight w; in ¢, . affects probability that z; and 2 are same.

e Can encourage each binary variable to be same or different than “cluster sign”



“Double Clustering” Model bonus!

@ Now consider adding a second binary cluster variable:

e “The z; are independent given both cluster variables z; and 23"

@ A log-linear parameterization for z; € {—1,4+1} and z. € {—1,+1} could be

¢j(x;) = exp(wjz;), @c(2c) = exp(veze),

bj.c(xj, 2c) = exp(wjcz;2)
@ We have three types of parameters:

o Weight w; in ¢; affects probability of 2; = 1 (independent of cluster).

o Weight v, in ¢, affecst probability that z. = 1 (prior for cluster variable).

o Weight wj. in ¢; ., affects probability that =; and z. are same.

@ Can encourage each binary variable to be same or different than “cluster variable



“Double Clustering” Model bonus!

@ Now consider adding a second binary cluster variable:

@ Have we gained anything?

o We have 4 clusters based on two hidden variables.
e Each cluster shares parameters with 2 of the other clusters.

@ Hope is to achieve some degree of composition

e Don't need to re-learn basic things about the z; in each cluster.
e Maybe one hidden z. models clusters, and another models correlations.

@ So that when you use both, you can capture both aspects.



Restricted Boltzmann Machines (RBMs) bonus!

@ Now consider adding two more binary latent variables:

o Now we have 16 clusters, in general we'll have 2* with k hidden binary nodes.
e This discrete latent-factors give combinatorial number of mixtures.
@ You can think of each z. as a “part” that can be included or not (“binary PCA").
@ This is called a restricted Boltzmann machine (RBM).
e A Boltzmann machine is a UGM with binary hidden variables.
@ It is restricted because all edges are between “visible” x; and "hidden” z.
o If we know the z;, then the 2. are independent.

o If we know the z., then the z; are independent.
e Inference on both x and z is hard.

o But we could alternate between Gibbs sampling of all  and all z variables.



Generating Digits with RBMs bonus!

Here are the samples generated by the RBM after training. Each row
represents a mini-batch of negative particles (samples from inde-
pendent Gibbs chains). 1000 steps of Gibbs sampling were taken
between each of those rows.
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http://deeplearning.net/tutorial/rbm.html

Generating Digits with RBMs bonus!

Visualizing each z.'s interaction parameters (wj. for all j) as images:

http://deeplearning.net/tutorial/rbm.html


http://deeplearning.net/tutorial/rbm.html

Restricted Boltzmann Machines bonus!

@ The RBM graph structure leads to a joint distribution of the form

@ RBMs usually use a log-linear parameterization like

d k d k
p(z, z) x exp E Ww;T; + E VeZe + Z Z WjeTjZe |
j=1 =1

j=1 c=1

for parameters w;, v., and wj. (variants exist for non-binary l‘j).



Learning UGMs with Hidden Variables bonus!

@ For RBMs we have hidden variables:

where Z(x) is the partition function of the conditional UGM given z.
e Z(x) is cheap in RBMs because the z are independent given z.



Learning UGMs with Hidden Variables

@ This gives an observed NLL of the form

—logp(z) = —log(Z(x)) + log Z,

where Z(z) sums over hidden z values, and Z sums over z and z.

@ The second term is convex but the first term is non-convex.
o This is expected when we have hidden variables.

@ With a log-linear parameterization, the gradient has the form

~Viogp(x) = ~ Euf,[F(X, 2)] + . o[F(X, Z)].

@ For RBMs, first term is cheap due to independence of z given .
@ We can approximate second term using block Gibbs sampling.

e For other problems, you would also need to approximate first term.

bon MS,(



Deep Boltzmann Machines bonus!

e

@ 15 years ago, a hot topic was “stacking RBMs", as in deep Boltzmann Machine:

S22

\
)
\P

S =<

{
c
)
i"
,,6

8
b
L

\

M
|
i
&

/

\\

ONO
S>>

Y
i
i
!
A

/

l L — 4%’«@»

VA
W
O

KA
I\

i

e N

(

7'

=

@ Part of the motivation for people to re-consider “deep”’ models.
@ Model above allows block Gibbs sampling “by layer”.
e Variables in layer are conditionally independent given layer above and below.



Deep Boltzmann Machines M.‘

@ Performance of deep Boltzmann machine on NORB data:

Deep Boltzmann Machine Training Samples Generated Samples
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Figure 5: Left: The architecture of deep Boltzmann machine used for NORB. Right: Random samples from the training set, and
samples generated from the deep Boltzmann machines by running the Gibbs sampler for 10,000 steps.

http://www.cs.toronto.edu/~fritz/absps/dbm.pdf


http://www.cs.toronto.edu/~fritz/absps/dbm.pdf

Deep Belief Networks

@ There were also deep belief networks where RBM outputs DAG layers.

@ More difficult to train and do inference due to explaining away.

@ Though easier to sample using ancestral sampling.

bon MS,‘



Cool Pictures Motivation for Deep Learning bonus!

o First layer of z; in a convolutional deep belief network:
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@ Visualization of second and third layers trained on specific objects:

faces elephants. chairs. faces, cars, airplanes, motorbikes.
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http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf
@ Many classes use these particular images to motivate deep neural networks.
e But they're not from a neural network: they're from a deep DAG model.


http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf
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