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Quick things

I’m working on project proposal feedback. . . hopefully by tomorrow

UBC participating in ASA Data Fest for the first time this year

Undergraduate data science hackathon, April 28th (5pm) to April 30th (6pm)
Register by April 10th:
https://ubc.ca1.qualtrics.com/jfe/form/SV_8ABL52tzvw2Z3rU

Grad students can help as mentors – contact Giulia Toti (gtoti@cs.ubc.ca)

https://ww2.amstat.org/education/datafest/index.cfm
https://ubc.ca1.qualtrics.com/jfe/form/SV_8ABL52tzvw2Z3rU


Last Time: Expectation Maximization
EM considers learning with observed data X and hidden data Z.

What we’d really like to do is maximize the marginal log-likelihood:

Θ ∈ argmax
Θ

log

∫
Z
p(X,Z | Θ)dZ

EM is helpful when “complete” likelihood, p(X,Z | Θ), has a nice form.

EM iterations take the form of a weighted “complete” MLE,

Θt+1 ∈ argmax
Θ

∫
Z
p(Z | X,Θt) log p(X,Z | Θ)dZ,

taking an expectation over Z w.r.t. the previous Θt.

We looked at the simple form of the EM update for mixture models,

Θt+1 ∈ argmax
Θ

n∑
i=1

k∑
zi=1

p(zi | xi,Θt)︸ ︷︷ ︸
responsibility

log p(xi, zi | Θ)︸ ︷︷ ︸
complete-data log-lik

.



Back to the Rain Data

We previously considered the “Vancouver Rain” data:

We used homogeneous Markov chains to model between-day dependence.



Back to the Rain Data

Before, we used a conditional random field to depend on the month.

We could alternately try to learn the clusters using a mixture model.

But mixture of independents wouldn’t capture dependencies within cluster.

A mixture of Markov chains could capture direct dependence and clusters,

p(x1, x2, . . . , xd) =

k∑
c=1

p(z = c) p(x1 | z = c)p(x2 | x1, z = c) · · · p(xd | xd−1, z = c)︸ ︷︷ ︸
Markov chain for cluster c

.

Cluster z chooses which homogeneous Markov chain parameters to use.

We could learn that some months are more likely to have rain (like winter months).
Can do inference by running forward-backward on each mixture; fit model with EM.



Comparison of Models on Rain Data
Independent (homogeneous) Bernoulli:

Average NLL: 18.97 (1 parameter).

Independent Bernoullis:
Average NLL: 18.95, (28 parmaeters).

Mixture of Bernoullis (k = 10, five random restarts of EM):
Average NLL: 17.06 (10 + 10× 28 = 290 parameters)

Homogeneous Markov chain:
Average NLL: 16.81 (3 parameters)

Mixture of Markov chains (k = 10, five random restarts of EM):
Average NLL: 16.53 (10 + 10× 3 = 40 parameters).
Parameters of one of the clusters (possibly modeling summer months):

p(z = 5) = 0.14

p(x1 = “rain” | z = 5) = 0.22 (instead of usual 37%)

p(xj = “rain” | xj−1 = “rain”, z = 5) = 0.49 (instead of usual 65%)

p(xj = “rain” | xj−1 = “not rain”, z = 5) = 0.11 (instead of usual 35%)



Back to the Rain Data

The rain data is artificially divided into months.

We previously discussed viewing rain data as one very long sequence (n = 1).

We could apply homogeneous Markov chains due to parameter tying.

But a mixture doesn’t make sense when n = 1.

What we want: different “parts” of the sequence come from different clusters.

We transition from “summer” cluster to “fall” cluster at some time j.

One way to address this is with a “hidden” Markov model (HMM):

Instead of examples being assigned to clusters, days are assigned to clusters.
Have a Markov dependency between cluster values of adjacent days.



Hidden Markov Models

Hidden Markov models have each xj depend on a hidden Markov chain.

p(x1, x2, . . . , xd, z1, z2, . . . zd) = p(z1)
d∏

j=2

p(zj | zj−1)

d∏
j=1

p(xj | zj).

We’re going to learn clusters zj and the hidden dynamics between days.

Hidden cluster zj could be “summer” or “winter” (we’re learning the clusters).
Transition probability p(zj | zj−1) is probability of staying in “summer”.

Initial probability p(z1) is probability of starting chain in “summer”.

Emission probability p(xj | zj) is probability of rain during “summer”.



Hidden Markov Models

Hidden Markov models have each xj depend on a hidden Markov chain.

p(x1, x2, . . . , xd, z1, z2, . . . zd) = p(z1)

d∏
j=2

p(zj | zj−1)

d∏
j=1

p(xj | zj).

You observe the xj values but don’t see the zj values.

There is a “hidden” Markov chain, whose state determines the cluster at each time.

HMMs generalize both Markov chains and mixture of categoricals.

Both models are obtained under appropriate parameters.



Hidden Markov Models

Hidden Markov models have each xj depend on a hidden Markov chain.

p(x1, x2, . . . , xd, z1, z2, . . . zd) = p(z1)

d∏
j=2

p(zj | zj−1)

d∏
j=1

p(xj | zj).

Note that the xj can be continuous even with discrete clusters zj .

Data could come from a mixture of Gaussians, with cluster changing in time.

If the zj are continuous it’s often called a state-space model.

If everything is Gaussian, it leads to Kalman filtering.
Keywords for non-Gaussian: unscented Kalman filter and particle filter.



Applications of HMMs and Kalman Filters

HMMs variants are probably the most-used time-series model.

Also includes chain-structured conditional random fields.



Example: Modeling DNA Sequences

Previously: Markov chain for DNA sequences:

https://www.tes.com/lessons/WE5E9RncBhieAQ/dna

https://www.tes.com/lessons/WE5E9RncBhieAQ/dna


Example: Modeling DNA Sequences
Hidden Markov model (HMM) for DNA sequences (two hidden clusters):

This is a (hidden) state transition diagram.
Can reflect that probabilities are different in different regions.
The actual regions are not given, but instead are nuissance variables handled by EM.

A better model might use a hidden and visible Markov chain.
With 2 hidden clusters, you would have 8 “probability wheels” (4 per cluster).
Would have “treewidth 2”, so inference would be tractable.



Inference and Learning in HMMs

Given observed features xj , likelihood of a joint zj assignment is

p(z1, z2, . . . zd | x1, x2, . . . , xd) ∝ p(z1)

d∏
j=2

p(zj | zj−1)

d∏
j=1

p(xj | zj).

We can do inference with forward-backward by converting to potentials:

ϕ1(z1) = p(z1)p(x1 | z1)
ϕj(zj) = p(xj | zj) (j > 1)

ϕj,j−1(zj , zj−1) = p(zj | zj−1).

Marginals from forward-backward are used to update parameters in EM.

In this setting EM is called the “Baum-Welch” algorithm.
As with other mixture models, learning with EM is sensitive to initialization.



Who is Guarding Who?

There is a lot of data on scoring/offense of NBA basketball players.
Every point and assist is recorded, more scoring gives more wins and $$$.

But how do we measure defense (“stopping people from scoring”)?
We need to know who each player is guarding (which is not recorded)

http://www.lukebornn.com/papers/franks_ssac_2015.pdf

HMMs can be used to model who is guarding who over time.
https://www.youtube.com/watch?v=JvNkZdZJBt4

http://www.lukebornn.com/papers/franks_ssac_2015.pdf
https://www.youtube.com/watch?v=JvNkZdZJBt4


Neural Networks with Latent-Dynamics

Could have (undirected) HMM parameters come out of a neural network:
Tries to model hidden dynamics across time.

Combines deep learning, mixture models, and graphical models.
“Latent-dynamics model”.
Previously achieved among state of the art in several applications.



Outline

1 Hidden Markov Models

2 Topic Models

3 Bonus: Restricted Boltzmann Machines



Motivation for Topic Models

We want a model of the hidden “factors” making up a set of documents.

In this context, latent-factor models are called topic models.

https://www.sciencedirect.com/science/article/pii/S2468502X17300074

“Topics” could be useful for things like searching for relevant documents.

https://www.sciencedirect.com/science/article/pii/S2468502X17300074


Classic Approach: Latent Semantic Indexing
Classic methods are based on scores like TF-IDF:

1 Term frequency: probability of a word occuring within a document.

E.g., 7% of words in document i are the and 2% of the words are LeBron.

2 Document frequency: probability of a word occuring across documents.

E.g., 100% of documents contain the and 0.01% have LeBron.

3 TF-IDF: measures like (term frequency)*log 1/(document frequency).

Seeing LeBron tells you a lot about the document; seeing the tells you nothing.

Many many many variations exist.

TF-IDF features are very redundant.

Consider TF-IDF of LeBron, Durant, and Giannis.
High values of these typically just indicate topic of “basketball”.
Basically a weighted bag of words.

We want to find latent factors (“topics”) like “basketball”.



Modern Approach: Latent Dirichlet Allocation

Latent semantic indexing (LSI) topic model:
1 Summarize each document by its TF-IDF values.
2 Run a latent-factor model like PCA or NMF on the matrix.
3 Treat the latent factors as the “topics”.

LSI has been largely replaced by latent Dirichlet allocation (LDA).
Hierarchical Bayesian model of all words in a document.

Still ignores word order.
Tries to explain all words in terms of topics.

The most cited ML paper in the 00s?

LDA has several components; we’ll build up to it by parts.

We’ll assume all documents have d words and word order doesn’t matter.



Model 1: Categorical Distribution of Words

Base model: each word xj comes from the same categorical distribution.

p(xj = the) = θthe where θword ≥ 0 and
∑
word

θword = 1.

So to generate a document with d words:

Sample d words from the categorical distribution.

Drawback: misses that documents are about different “topics.”

We want the word distribution to depend on the “topics.”



Model 2: Mixture of Categorical Distributions
To represent “topics”, we’ll use a mixture model.

Each mixture has its own categorical distribution over words.

E.g., the “basketball” mixture will have higher probability of LeBron.

So to generate a document with d words:

Sample a topic z from a categorical distribution.
Sample d words from categorical distribution z.

Similar to a mixture of independent categorical distributions.

But we tie categorical distribution across the d variables, given cluster.

Drawback: misses that documents may be about more than one topic.



Model 3: Multi-Topic Mixture of Categorical

Our third model introduces a new vector of “topic proportions” π.
Gives percentage of each topic that makes up the document.

E.g., 80% basketball and 20% politics.

Called probabilistic latent semantic indexing (PLSI).

So to generate a document with d words given topic proportions π:

Sample d topics zj from categorical distribution π.
Sample a word for each zj from corresponding categorical distribution.

Similar to HMM where each “time” has own cluster (but no Markov assumption).



Model 4: Latent Dirichlet Allocation
Latent Dirichlet allocation (LDA) puts a prior on topic proportions.

Conjugate prior for categorical is Dirichlet distribution.

So to generate a document with d words given Dirichlet prior:

Sample mixture proportions π from the Dirichlet prior.
Sample d topics zj from categorical distribution π.
Sample a word for each zj from corresponding categorical distribution.

This is the generative model, typically used with MCMC or variational methods.











Latent Dirichlet Allocation Example

http://menome.com/wp/wp-content/uploads/2014/12/Blei2011.pdf

http://menome.com/wp/wp-content/uploads/2014/12/Blei2011.pdf


Latent Dirichlet Allocation Example

http://menome.com/wp/wp-content/uploads/2014/12/Blei2011.pdf

http://menome.com/wp/wp-content/uploads/2014/12/Blei2011.pdf


Latent Dirichlet Allocation Example
Health topics in social media:

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0103408

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0103408


Latent Dirichlet Allocation Example

Three topics in 100 years of “Vogue” fashion magazine:

http://dh.library.yale.edu/projects/vogue/topics/

http://dh.library.yale.edu/projects/vogue/topics/


Discussion of Topic Models

There are many extensions of LDA:

We can put prior on the number of words (like Poisson).
Correlated and hierarchical topic models learn dependencies between topics.

http://people.ee.duke.edu/~lcarin/Blei2005CTM.pdf

http://people.ee.duke.edu/~lcarin/Blei2005CTM.pdf


Discussion of Topic Models
There are many extensions of LDA:

We can put prior on the number of words (like Poisson).
Correlated and hierarchical topic models learn dependencies between topics.
Can be combined with Markov models to capture dependencies over time.

http://menome.com/wp/wp-content/uploads/2014/12/Blei2011.pdf

http://menome.com/wp/wp-content/uploads/2014/12/Blei2011.pdf


Discussion of Topic Models

There are many extensions of LDA:

We can put prior on the number of words (like Poisson).
Correlated and hierarchical topic models learn dependencies between topics.
Can be combined with Markov models to capture dependencies over time.
Better word representations like“word2vec” (CPSC 340).
Now being applied beyond text, like “cancer mutation signatures”:

http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1005657

http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1005657


Discussion of Topic Models

Topic models for analyzing musical keys:

http://cseweb.ucsd.edu/~dhu/docs/nips09_abstract.pdf

http://cseweb.ucsd.edu/~dhu/docs/nips09_abstract.pdf


Monte Carlo Methods for Topic Models

Nasty integrals in topic models:

https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation

https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation


Monte Carlo Methods for Topic Models

How do we actually use Monte Carlo for topic models?

First we write out the posterior:



Monte Carlo Methods for Topic Models

How do we actually use Monte Carlo for topic models?

First we generate samples from the posterior:
With Gibbs sampling we alternate between:

Sampling topics given word probabilities and topic proportions.
Sampling topic proportions given topics and prior parameters α.
Sampling word probabilities given topics, words, and prior parameters β.

Have a burn-in period, use thinning, try to monitor convergence, and so on.

Then we use posterior samples to do inference:

Distribution of topic proportions for sample i is frequency in samples.
To see if words come from same topic, check frequency in samples.



Summary

Hidden Markov models model time-series with hidden per-time cluster.

Inference with forward-backward; learn with EM.
Tons of applications; typically more realistic than Markov models.
Can make

Topic models: latent-factor model of discrete data text.

The latent “factors” are called “topics”.

Latent Dirichlet allocation: hierarchical Bayesian topic model.

Represent words in documents as coming from different topics.
Each document has its own proportion for each topic.

Next time: faster (but worse?) inference, variationally.



Outline

1 Hidden Markov Models

2 Topic Models

3 Bonus: Restricted Boltzmann Machines



Mixture of Bernoullis Models

Recall the mixture of Bernoullis models:

p(x) =

k∑
c=1

p(z = c)

d∏
j=1

p(xj | z = c).

Given z, each variable xj comes from a product of Bernoullis

This is enough to model any multivariate binary distribution.
But not an efficient representation: number of cluster might need to be huge.

Need to learn each cluster independently (no “shared” information across clusters).



Mixture of Independents as a UGM

The mixture of independents assumptions can be represented as a UGM:

“The xj are independent given the cluster z”.

A log-linear parameterization for xj ∈ {−1,+1} and z ∈ {−1,+1} could be

ϕj(xj) = exp(wjxj), ϕz(z) = exp(vz), ϕj,z(xj , z) = exp(wjxjz).

We have three types of parameters:

Weight wj in ϕj affects probability of xj = 1 (independent of cluster).
Weight v in ϕz affecst probability that zj = 1 (prior for cluster).
Weight wj in ϕj,z affects probability that xj and z are same.

Can encourage each binary variable to be same or different than “cluster sign”.



“Double Clustering” Model

Now consider adding a second binary cluster variable:

“The xj are independent given both cluster variables z1 and z2”.

A log-linear parameterization for xj ∈ {−1,+1} and zc ∈ {−1,+1} could be

ϕj(xj) = exp(wjxj), ϕc(zc) = exp(vczc), ϕj,c(xj , zc) = exp(wjcxjz)

We have three types of parameters:

Weight wj in ϕj affects probability of xj = 1 (independent of cluster).
Weight vc in ϕz affecst probability that zc = 1 (prior for cluster variable).
Weight wjc in ϕj,z affects probability that xj and zc are same.

Can encourage each binary variable to be same or different than “cluster variable”.



“Double Clustering” Model

Now consider adding a second binary cluster variable:

Have we gained anything?

We have 4 clusters based on two hidden variables.
Each cluster shares parameters with 2 of the other clusters.

Hope is to achieve some degree of composition

Don’t need to re-learn basic things about the xj in each cluster.
Maybe one hidden zc models clusters, and another models correlations.

So that when you use both, you can capture both aspects.



Restricted Boltzmann Machines (RBMs)

Now consider adding two more binary latent variables:

Now we have 16 clusters, in general we’ll have 2k with k hidden binary nodes.
This discrete latent-factors give combinatorial number of mixtures.

You can think of each zc as a “part” that can be included or not (“binary PCA”).

This is called a restricted Boltzmann machine (RBM).
A Boltzmann machine is a UGM with binary hidden variables.

It is restricted because all edges are between “visible” xj and “hidden” zc.
If we know the xj , then the zc are independent.
If we know the zc, then the xj are independent.
Inference on both x and z is hard.

But we could alternate between Gibbs sampling of all x and all z variables.



Generating Digits with RBMs

http://deeplearning.net/tutorial/rbm.html

http://deeplearning.net/tutorial/rbm.html


Generating Digits with RBMs
Visualizing each zc’s interaction parameters (wjc for all j) as images:

http://deeplearning.net/tutorial/rbm.html

http://deeplearning.net/tutorial/rbm.html


Restricted Boltzmann Machines

The RBM graph structure leads to a joint distribution of the form

p(x, z) =
1

Z

 d∏
j=1

ϕj(xj)

( k∏
c=1

ϕc(zc)

) d∏
j=1

k∏
c=1

ϕjc(xj , zc)

 .

RBMs usually use a log-linear parameterization like

p(x, z) ∝ exp

 d∑
j=1

wjxj +

k∑
c=1

vczc +

d∑
j=1

k∑
c=1

wjcxjzc

 ,

for parameters wj , vc, and wjc (variants exist for non-binary xj).



Learning UGMs with Hidden Variables

For RBMs we have hidden variables:

With hidden (“nuissance”) variables z the observed likelihood has the form

p(x) =
∑
z

p(x, z) =
∑
z

p̃(x, z)

Z

=
1

Z

∑
z

p̃(x, z)︸ ︷︷ ︸
Z(x)

=
Z(x)

Z
,

where Z(x) is the partition function of the conditional UGM given x.
Z(x) is cheap in RBMs because the z are independent given x.



Learning UGMs with Hidden Variables

This gives an observed NLL of the form

− log p(x) = − log(Z(x)) + logZ,

where Z(x) sums over hidden z values, and Z sums over z and x.

The second term is convex but the first term is non-convex.
This is expected when we have hidden variables.

With a log-linear parameterization, the gradient has the form

−∇ log p(x) = −Ez|x[F (X,Z)] + Ez,x[F (X,Z)].

For RBMs, first term is cheap due to independence of z given x.

We can approximate second term using block Gibbs sampling.
For other problems, you would also need to approximate first term.



Deep Boltzmann Machines

15 years ago, a hot topic was “stacking RBMs”, as in deep Boltzmann Machine:

Part of the motivation for people to re-consider “deep” models.

Model above allows block Gibbs sampling “by layer”.

Variables in layer are conditionally independent given layer above and below.



Deep Boltzmann Machines

Performance of deep Boltzmann machine on NORB data:

http://www.cs.toronto.edu/~fritz/absps/dbm.pdf

http://www.cs.toronto.edu/~fritz/absps/dbm.pdf


Deep Belief Networks

There were also deep belief networks where RBM outputs DAG layers.

More difficult to train and do inference due to explaining away.

Though easier to sample using ancestral sampling.



Cool Pictures Motivation for Deep Learning

First layer of zi in a convolutional deep belief network:

Visualization of second and third layers trained on specific objects:

http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf

Many classes use these particular images to motivate deep neural networks.
But they’re not from a neural network: they’re from a deep DAG model.

http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf
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