CPSC 440/540: Advanced Machine Learning Mixtures, EM, KDE

Danica Sutherland (building on materials from Mark Schmidt)

University of British Columbia

Winter 2023

Last Time: Gaussian Mixtures

• Mixture of k Gaussians: per-class parameters $\pi_c \in \mathbb{R}$, $\mu_c \in \mathbb{R}^d$, $\Sigma_c \in \mathbb{R}^{d \times d}$,

$$p(x\mid \mu, \Sigma, \pi) = \sum_{c=1}^k \pi_c \underbrace{p(x\mid \mu_c, \Sigma_c)}_{\text{PDF of Gaussian }c}.$$

- Latent variable representation: $z^i \sim \operatorname{Categorical}(\pi)$, $x^i \mid z^i \sim \mathcal{N}(\mu_c, \Sigma_c)$.
 - ullet Can't observe z^i , but leads to an ancestral sampling algorithm.
- Responsibilities: our "posterior estimate" for which component a point came from:

$$\mathbf{R} \in \mathbb{R}^{n \times k}, \qquad r_c^i = p(z^i = c \mid x^i) = \frac{\pi_c p(x^i \mid \mu_c, \Sigma_c)}{\sum_{c'=1}^k \pi_{c'} p(x^i \mid \mu_{c'}, \Sigma_{c'})}.$$

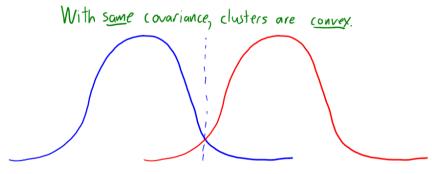
Learning Mixture Models with Imputation

- Mixture of Gaussian parameters are $\{\pi_c, \mu_c, \Sigma_c\}_{c=1}^k$.
 - Unfortunately, NLL is non-convex.
 - Various optimization methods are used in practice.
- If we treat the z^i as parameters, we get a simple algorithm for decreasing NLL:
 - Given the clusters z^i , find the most likely parameters.
 - Optimize $p(\mathbf{X} \mid \pi, \mu, \Sigma, \mathbf{z})$ in terms of the $\{\pi_c, \mu_c, \Sigma_c\}_{c=1}^k$.
 - Set π_c based on frequency of seeing $z^i = c$.
 - Set μ_c to the mean of examples in cluster c.
 - Set Σ_c to the covariance of examples in cluster c.
 - 2 Given the parameters, find the most likely clusters.
 - For each example i, compute responsibility $r_c^i = p(z^i = c \mid x^i, \pi_c, \mu_c, \Sigma_c)$.
 - Set z^i to the the argmax of r_c^i over c.
- Connection to Gaussian discriminant analysis (GDA), using clusters z^i as labels:
 - Step 1 above is the learning step in GDA, Step 2 above is the prediction step in GDA.

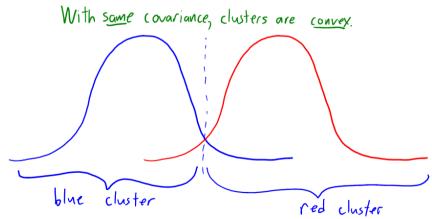
Special Case of K-Means

- Algorithm from the previous slide is a generalization of k-means clustering.
- Apply the algorithm assuming $\pi_c = 1/k$ and $\Sigma_c = I$ for all c:
 - **①** Given the clusters z^i , find the most likely parameters.
 - Sets μ_c to the mean of examples in cluster c.
 - ② Given the parameters, find the most likely clusters.
 - Sets z^i to the closest mean of example i.
- As with k-means, initialization matters for mixture of Gaussians.
 - May need to do multiple random restarts, or clever initializations like k-means++.

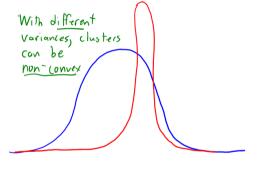
- K-means can be viewed as fitting mixture of Gaussians (same π_c and Σ_c).
 - ullet But variable Σ_c in general mixture of Gaussians allows non-convex clusters.



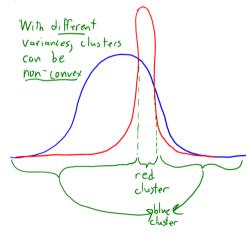
- K-means can be viewed as fitting mixture of Gaussians (same π_c and Σ_c).
 - ullet But variable Σ_c in general mixture of Gaussians allows non-convex clusters.



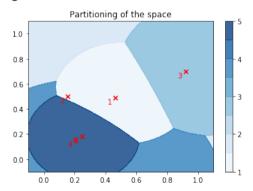
- ullet K-means can be viewed as fitting mixture of Gaussians (same π_c and Σ_c).
 - ullet But variable Σ_c in general mixture of Gaussians allows non-convex clusters.



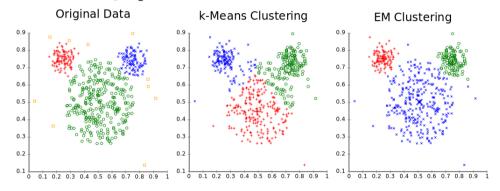
- K-means can be viewed as fitting mixture of Gaussians (same π_c and Σ_c).
 - ullet But variable Σ_c in general mixture of Gaussians allows non-convex clusters.



- K-means can be viewed as fitting mixture of Gaussians (same π_c and Σ_c).
 - But variable Σ_c in general mixture of Gaussians allows non-convex clusters.



- K-means can be viewed as fitting mixture of Gaussians (same π_c and Σ_c).
 - But variable Σ_c in general mixture of Gaussians allows non-convex clusters.



Digression: MLE does not exist

- For mixture of Gaussian, there is no MLE.
- You can make the likelihood arbitrarily large:
 - Set $\mu_c = x^i$ for a particular i and c, and make $\Sigma_c \to 0$.
 - It is common for optimizers to converge to models with degenerate clusters.
 - Empty or covariance is not positive definite.
- It is common to remove empty clusters and use a regularized update,

$$\Sigma_c = \frac{1}{\sum_{i=1}^n r_c^i} \sum_{i=1}^n r_c^i (x^i - \mu_c) (x^i - \mu_c)^T + \lambda I,$$

which corresponds to MAP estimation with an L1-regularizer on Θ diagonals.

• The MAP estimate exists under this and other usual priors on Σ_c .

Outline

- Mixture of Gaussians
- Mixture of Bernoullis
- 3 Expectation Maximization
- 4 Advanced Mixtures
- 5 Kernel Density Estimation

Previously: Product of Bernoullis

• We previously considered density estimation with discrete variables,

$$\mathbf{X} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}.$$

• We considered a product of Bernoullis:

$$p(x^i \mid \theta) = \prod_{j=1}^d p(x_j^i \mid \theta_j).$$

Easy to fit but strong independence assumption:

- Knowing x_i^i tells you nothing about x_k^i .
- A more-powerful model is a mixture of Bernoullis.

Mixture of Bernoullis

- Consider a coin flipping scenario where we have two coins:
 - Coin 1 has $\theta_1 = 0.5$ (fair) and coin 2 has $\theta_2 = 1$ (biased).
- Half the time we flip coin 1, and otherwise we flip coin 2:

$$p(x^{i} = 1 \mid \theta_{1}, \theta_{2}) = \pi_{1} p(x^{i} = 1 \mid \theta_{1}) + \pi_{2} p(x^{i} = 1 \mid \theta_{2})$$
$$= \frac{1}{2} \theta_{1} + \frac{1}{2} \theta_{2} = \frac{\theta_{1} + \theta_{2}}{2}$$

- With one variable this mixture model is not very interesting:
 - It's equivalent to flipping one coin with $\theta = 0.75$.
- But with multiple variables, mixture of Bernoullis can model dependencies...

• Consider a mixture of a product of Bernoullis:

$$p(x \mid \theta_1, \theta_2) = \frac{1}{2} \underbrace{\prod_{j=1}^d p(x_j \mid \theta_{1j})}_{\text{first set of Bernoullis}} + \frac{1}{2} \underbrace{\prod_{j=1}^d p(x_j \mid \theta_{2j})}_{\text{second set of Bernoulli}}.$$

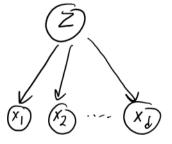
- Conceptually, we now have two sets of coins:
 - Half the time we throw the first set, half the time we throw the second set.
- With d=4 we could have $\theta_1=\begin{bmatrix}0&0.7&1&1\end{bmatrix}$ and $\theta_2=\begin{bmatrix}1&0.7&0.8&0\end{bmatrix}$.
 - Half the time we have $p(x_3^i=1)=1$ and half the time it's 0.8.
- Have we gained anything?

- Example from the previous slide: $\theta_1 = \begin{bmatrix} 0 & 0.7 & 1 & 1 \end{bmatrix}$ and $\theta_2 = \begin{bmatrix} 1 & 0.7 & 0.8 & 0 \end{bmatrix}$.
- Here are some samples from this model:

$$\mathbf{X} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

- Unlike product of Bernoullis, notice that features in samples are not independent.
 - In this example knowing $x_1 = 1$ tells you that $x_4 = 0$.
- This model can capture dependencies: $\underbrace{p(x_4=1\mid x_1=1)}_{0} \neq \underbrace{p(x_4=1)}_{0.5}$.

• Drawing the mixture of Bernoullis as a DAG:



- Since we do not know z, there are dependencies between x_i .
 - But features are independent if we know z.
- ullet This is the same graph as naive Bayes, with cluster z instead of class y.
 - If you see one spammy word, it makes other spammy words more likely.

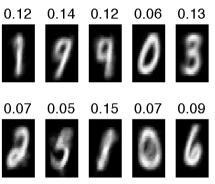
General mixture of independent Bernoullis:

$$p(x^{i} \mid \Theta) = \sum_{c=1}^{k} \pi_{c} p(x^{i} \mid \theta_{c}) = \sum_{c=1}^{k} \pi_{c} \prod_{j=1}^{d} \theta_{cj},$$

where Θ contains all the model parameters.

- Θ has k values of π_c and $k \times d$ values of θ_{ci} .
- Mixture of Bernoullis can model dependencies between variables
 - Individual mixtures act like clusters of the binary data.
 - Knowing cluster of one variable gives information about other variables.
- With k large enough, mixture of Bernoullis can model any binary distribution.
 - Hopefully with $k \ll 2^d$.

• Plotting parameters θ_c with 10 mixtures trained on MNIST digits (with "EM"): (numbers above images are mixture coefficients π_c)

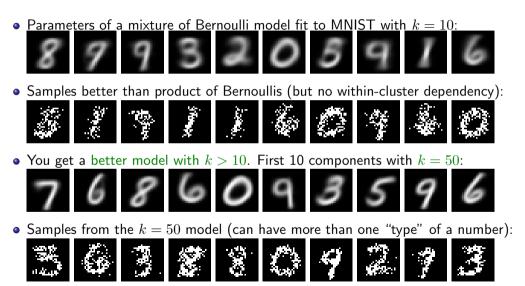


http:

 $//pmtk3.googlecode.com/svn/trunk/docs/demoOutput/bookDemos/\%2811\%29-Mixture_models_and_the_EM_algorithm/mixBerMnistEM.html$

- Remember this is unsupervised: it hasn't been told there are ten digits.
 - You could use this model to "fill in" missing parts of an image.

Mixture of Bernoullis on Digits with k > 10



Outline

- Mixture of Gaussians
- 2 Mixture of Bernoullis
- Section Maximization
- Advanced Mixtures
- 5 Kernel Density Estimation

Big Picture: Training and Inference

- Many possible mixture model inference tasks:
 - Generate samples.
 - Measure likelihood of test examples \tilde{x} .
 - To detect outliers, for example.
 - ullet Compute probability that test example belongs to cluster c.
 - Compute marginal or conditional probabilities.
 - "Fill in" missing parts of a test example.
- Mixture model training phase:
 - Input is a matrix X, number of clusters k, and form of individual distributions.
 - ullet Output is mixture proportions π_c and parameters of components.
 - The θ_c for Bernoulli, and the $\{\mu_c, \Sigma_c\}$ for Gaussians.
 - ullet And maybe the responsibilities r_c^i or cluster assignments z^i .

Fitting a Mixture of Bernoullis: Imputation of z^i

- ullet Imputation approach to fitting mixture of Bernoullis if we view z^i as parameters:
 - **①** Find the most likely cluster z^i for each example i,

$$z^i \in \operatorname*{arg\,max}_{c} p(z^i = c \mid x^i, \Theta).$$

Update the mixture probabilities as proportion of examples in cluster,

$$\pi_c = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(z^i = c).$$

Update the product of Bernoullis based on examples in cluster,

$$\theta_{cj} = \frac{\sum_{i=1}^{n} \mathbb{1}(z^i = c) x_j^i}{\sum_{i=1}^{n} \mathbb{1}(z^i = c)}.$$

• You can think of this as doing exact assignments to the z^i variables.

Fitting a Mixture of Bernoullis: Expectation Maximization

- Expectation maximization (EM) approach to ftting mixture of Bernoulli:
 - **①** Find the responsibility of cluster z^i for each example i

$$r_c^i = p(z^i = c \mid x^i, \Theta).$$

Update the mixture probabilities as proportion of examples cluster is responsible for,

$$\pi_c = \frac{1}{n} \sum_{i=1}^n r_c^i.$$

Opdate the product of Bernoullis based on examples cluster is responsible for,

$$\theta_{cj} = \frac{\sum_{i=1}^{n} r_c^i x_j^i}{\sum_{i=1}^{n} r_c^i}.$$

ullet You can think of this as doing probabilistic assignment to the z^i variables.

Fitting a Mixture of Gaussians: Expectation Maximization

- Expectation maximization (EM) approach to fitting mixture of Gaussians:
 - **1** Find the responsibility of cluster z^i for each example i

$$r_c^i = p(z^i = c \mid x^i, \Theta).$$

Update the mixture probabilities as proportion of examples cluster is responsible for,

$$\pi_c = \frac{1}{n} \sum_{i=1}^n r_c^i.$$

Output the Gaussian based on examples cluster is responsible for,

$$\mu_c = \frac{1}{\sum_{i=1}^n r_c^i} \sum_{i=1}^n r_c^i x^i, \quad \Sigma_c = \frac{1}{\sum_{i=1}^n r_c^i} \sum_{i=1}^n r_c^i (x^i - \mu_c) (x^i - \mu_c)^T.$$

Video: https://www.youtube.com/watch?v=B36fzChfyGU

Expectation Maximization vs. Imputation

- The imputation method is optimizing $p(x^i, z^i \mid \Theta)$ in terms of z^i and Θ .
 - So we're optimizing z^i as well as Θ .
 - $p(x^i, z^i \mid \Theta)$ is called the complete-data likelihood.
- Expectation maximization (EM) is optimizing $p(x^i \mid \Theta)$ in terms of Θ .
 - So we're integrating over z^i values while optimizing Θ .
 - $p(x^i \mid \Theta)$ is the usual likelihood, marginalizing over the z^i .
- EM is a general algorithm for parameter learning with missing data.
 - ullet For mixtures, the "missing" data is the z^i variables.
 - But EM can be used for any probabilistic model where we have missing data.

Expectation Maximization: General Form

 \bullet With data X and hidden values Z, the general EM uses iterations of the form

$$\begin{split} \Theta^{t+1} \in \mathop{\arg\max}_{\Theta} \sum_{Z} p(Z \mid X, \Theta^{t}) \log p(X, Z \mid \Theta) \\ &\equiv \mathop{\arg\max}_{\Theta} \mathbb{E}_{Z \mid X, \Theta^{t}} [\log p(X, Z \mid \Theta)]. \end{split}$$

- Summing/integrating over all possible hidden values Z may be hard.
 - But in many cases this simplifies due to conditional independence assumptions.
- For mixture models, the EM iteration simplifies to (see notes on webpage)

$$\sum_{i=1}^{n} \sum_{z^{i}=1}^{k} \underbrace{p(z^{i} \mid x^{i}, \Theta^{t})}_{\text{responsibility}} \underbrace{\log p(x^{i}, z^{i} \mid \Theta)}_{\text{complete-data log-lik}},$$

so summing over k^n possible clusterings turns into sum over nk terms.

"E-Step" and "M-Step" for Mixture Models

- For mixture models, EM is often written as two steps:
 - **1** E-step: compute responsibilities r_c^i for all i and c for current Θ^t .
 - M-step: optimize the weighted "complete-data" log-likelihood

$$\Theta^{t+1} \in \arg\max_{\Theta} \sum_{i=1}^{n} \sum_{z^{i}=1}^{k} r_{c}^{i} \log p(x^{i}, z^{i} \mid \Theta).$$

- For other models, there may not be separate "E-steps" and "M-steps."
- EM is most useful when complete-data log-likelihood is easy to optimize.
- Most common case: complete-data log-likelihood is in an exponential family.
 - Mixture of Bernoullis, mixture of Gaussians, and many other cases.
 - In this case the M-step is a weighted combination of the sufficient statistics.

Expectation Maximization Algorithm: Properties

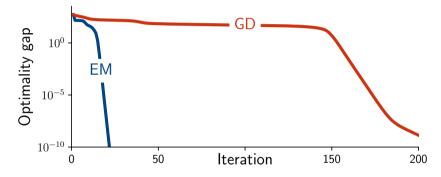
- EM monotonically increases likelihood, $p(X \mid \Theta^{t+1}) \ge p(X \mid \Theta^t)$.
 - This is useful for debugging: if likelihood decreases you have a bug.
- EM doesn't need a step size, unlike many learning algorithms.
- EM tends to satisfy constraints automatically.
 - Unlike gradient descent, don't need to worry about constraints on π_c and Σ_c .
 - Assuming you have a prior to avoid degenerate situations where MLE does not exist.
- EM iterations are parameterization independent.
 - Get the same performance under any re-parameterization of the problem.
- EM is notorious for converging to bad local optima.
 - Not really the algorithm's fault: we typically apply EM to hard problems.

Expectation Maximization Algorithm: Properties

- EM converges to a stationary point under weak assumptions.
- EM is at least as fast as gradient descent (with a constant step size).
 - In the worst case, for differentiable problems.
 - EM can also be used for non-differentiable likelihoods.
- EM converges faster as entropy of hidden variables decreases.
 - If value of hidden variables is "obvious", it converges very fast.
- And EM can be arbitrarily faster than gradient descent.
- Mark has a bunch of more detailed material on the EM algorithm here:
 - https://www.cs.ubc.ca/~schmidtm/Courses/440-W22/L34.5.pdf

Expectation Maximization vs. Gradient Descent

• Expectation maximization vs. gradient for fitting mixture of 2 Gaussians:



• Show video.

Outline

- Mixture of Gaussians
- 2 Mixture of Bernoullis
- 3 Expectation Maximization
- 4 Advanced Mixtures
- 5 Kernel Density Estimation

Combining Mixture Models with Other Models

- We can use mixtures in generative classifiers.
 - Model $p(x \mid y)$ as a mixture instead of simple Gaussian or product of Bernoullis.
 - VQNB from Assignment 2 fits a mixture of Bernoullis for each class.
- We can do mixture of more-complicated distributions:
 - Mixture of categoricals (can model arbitrary categorical vectors).
 - Mixture of student t distributions.
 - Not exponential family, so no simple closed-form update of parameters.
 - Mixture of Markov chains for rain data (later).
 - Mixture of DAGs/UGMs (could be tree-structured for easy inference).
 - Captures both clusters and dependencies between variables in clusters.
- We can add features to mixture models for supervised learning:
 - Mixture of experts: have k regression/classification models.
 - Each model can be viewed as a "expert" for a cluster of x^i values.

Less-Naive Bayes on Digits

• Naive Bayes θ_c values (independent Bernoullis for each class):

• One sample from each class:

• Generative classifier with mixture of 5 Bernoullis for each class (digits 1 and 2):

• One sample from each class:

• Would get less noisy samples and more variation with mixture of graphical models.

Dirichlet Process

Non-parametric Bayesian methods allow us to consider infinite mixture model,

$$p(x \mid \Theta) = \sum_{c=1}^{\infty} \pi_c p(x \mid \Theta_c).$$

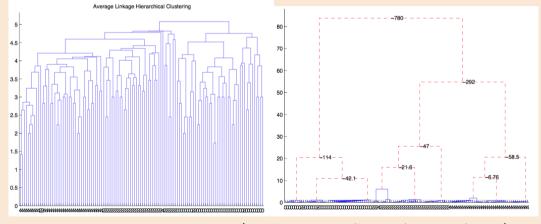
- Common choice for prior on π values is Dirichlet process:
 - Also called "Chinese restaurant process" and "stick-breaking process".
 - For finite datasets, only a fixed number of clusters have $\pi_c \neq 0$.
 - But don't need to pick number of clusters; it grows with data size.
- Gibbs sampling in Dirichlet process mixture model in action: https://www.youtube.com/watch?v=0Vh7qZY9sPs

Dirichlet Process

- Slides giving more details on Dirichelt process mixture models:
 - https://www.cs.ubc.ca/labs/lci/mlrg/slides/NP.pdf
- We could alternately put a prior on number of clusters k:
 - Allows more flexibility than Dirichlet process as a prior.
 - Needs "trans-dimensional" MCMC to sample models of different sizes.
- There are a variety of interesting variations on Dirichlet processes
 - Beta process ("Indian buffet process").
 - Hierarchical Dirichlet process.
 - Polya trees.
 - Infinite hidden Markov models.

Bayesian Hierarchical Clustering

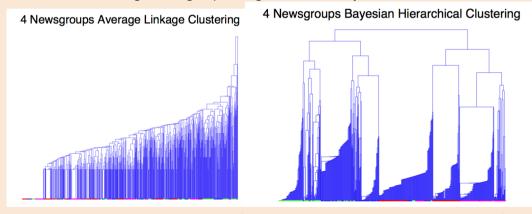
ullet Hierarchical clustering of $\{0,2,4\}$ digits using classic and Bayesian method:



http://www2.stat.duke.edu/~kheller/bhcnew.pdf (y-axis represents distance between clusters)

Bayesian Hierarchical Clustering

• Hierarchical clustering of newgroups using classic and Bayesian method:



http://www2.stat.duke.edu/~kheller/bhcnew.pdf (y-axis represents distance between clusters)

Continuous Mixture Models

• We can also consider mixture models where z^i is continuous,

$$p(x^{i}) = \int_{z^{i}} p(z^{i}) p(x^{i} \mid z^{i} = c) dz^{i}.$$

- Unfortunately, computing the integral might be hard.
- Special case is if both probabilities are Gaussian (conjugate).
 - Leads to probabilistic PCA and factor analysis (OCEAN model in psychology).
 - My old material: https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/L17.5.pdf.
- Another special case is scale mixtures of Gaussians
 - Where $p(x^i \mid z^i)$ is Gaussian and $p(z^i)$ is a gamma prior on variance (conjugate).
 - ullet Can represent many distributions in this form, like Laplace and student t.
 - ullet Leads to EM algorithms for fitting Laplace and student t...

Outline

- Mixture of Gaussians
- Mixture of Bernoullis
- 3 Expectation Maximization
- Advanced Mixtures
- **6** Kernel Density Estimation

Non-Parametric Mixtures: Kernel Density Estimation

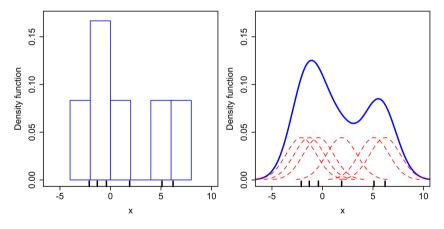
• A common non-parametric mixture model centers one cluster on each example:

$$p(x^{i}) = \frac{1}{n} \sum_{j=1}^{n} p(x^{i} \mid x^{j}, \sigma^{2}I).$$

- This is called kernel density estimation (KDE) or the Parzen window method.
 - Common choice is a Gaussian centered on each example ("mixture of n Gaussians").
 - \bullet Scale σ^2 is viewed as a hyper-parameter.
- By fixing mean/covariance/k, no parameters to learn (except σ^2).
 - And most inference tasks (except decoding) are easy but slow (depend on n).
 - Many variations exist, see bonus slides for generalizations.
 - Tends to work great in low dimensions and badly in high dimensions.

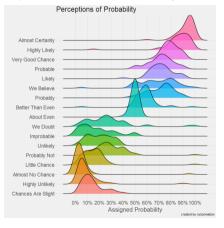
Histogram vs. Kernel Density Estimator

• You can think of a kernel density estimate as a continuous histogram:



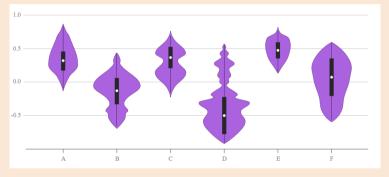
Kernel Density Estimator for Visualization

• Visualization of people's opinions about what "likely" and other words mean.



Violin Plot: Added KDE to a Boxplot

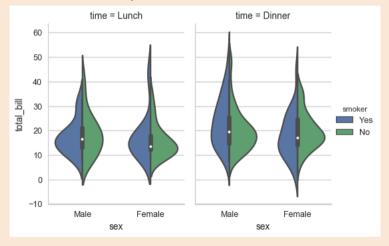
• Violin plot adds KDE to a boxplot:



https://datavizcatalogue.com/methods/violin_plot.html

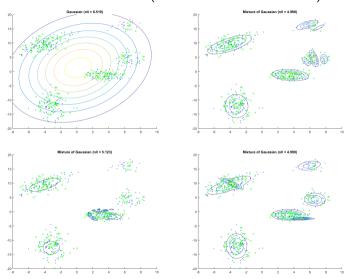
Violin Plot: Added KDE to a Boxplot

• Violin plot adds KDE to a boxplot:



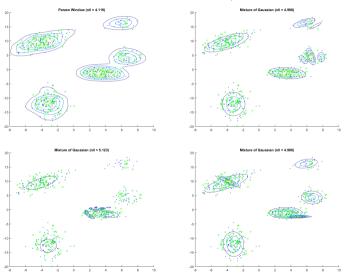
KDE vs. Mixture of Gaussian

• Multivariate vs mixture of Gaussians (different EM initializations):



KDE vs. Mixture of Gaussian

• Kernel density estimation vs mixture of Gaussians (different EM initializations):



Mean-Shift Clustering

- Mean-shift clustering uses KDE for clustering:
 - Define a KDE on the training examples, and then for test example \hat{x} :
 - Run gradient descent to maximize p(x) starting from \hat{x} .
 - Clusters are points that reach same local minimum.
- https://spin.atomicobject.com/2015/05/26/mean-shift-clustering
- ullet Not sensitive to initialization, no need to choose k, can find non-convex clusters.
- Similar to density-based clustering from 340.
 - But doesn't require uniform density within cluster.
 - And can be used for vector quantization.
- "The 5 Clustering Algorithms Data Scientists Need to Know":
 - https://towardsdatascience.com/
 the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68

Kernel Density Estimation on Digits

- Samples from a KDE model of digits:
 - Sample is on the left, right is the closest image from the training set.

- KDE just samples a training example then adds noise.
 - Usually makes more sense for continuous data that is densely packed.
- A variation with a location-specific variance (diagonal Σ instead of $\sigma^2 I$):

Summary

- Mixture of Bernoullis can model dependencies between discrete variables.
 - Unsupervised version of naive Bayes; can model arbitrary binary distributions.
- ullet Learning by alternating imputing z^i and fitting full model...or more commonly,
- Expectation maximization: algorithm for optimization with hidden variables.
 - Instead of imputation, works with "soft" assignments to nuisance variables.
 - Maximizes log-likelihood, weighted by all imputations of hidden variables.
 - Simple and intuitive updates for fitting mixtures models.
 - Appealing properties as an optimization algorithm, but only finds local optimum.
- Kernel density estimation: Non-parametric density estimation method.
 - Center a mixture on each datapoint (smooth variation on histograms).
 - Used for data visualization and low-dimensional density estimation.
 - Basis of mean-shift clustering.
- Next time: measuring defense in the NBA.

- Computing responsibility may underflow for high-dimensional x^i , due to $p(x^i \mid z^i = c, \Theta^t)$.
- Usual ML solution: do all but last step in log-domain.

$$\log r_c^i = \log p(x^i \mid z^i = c, \Theta^t) + \log p(z^i = c \mid \Theta^t) - \log \left(\sum_{c'=1}^k p(x^i \mid z^i = c', \Theta^t) p(z^i = c' \mid \Theta^t) \right).$$

To compute last term, use "log-sum-exp" trick.

Log-Sum-Exp Trick

• To compute $\log(\sum_i \exp(v_i))$, set $\beta = \max_i \{v_i\}$ and use:

$$\log(\sum_{c} \exp(v_{i})) = \log(\sum_{i} \exp(v_{i} - \beta + \beta))$$

$$= \log(\sum_{i} \exp(v_{i} - \beta) \exp(\beta))$$

$$= \log(\exp(\beta)) \sum_{i} \exp(v_{i} - \beta))$$

$$= \log(\exp(\beta)) + \log(\sum_{i} \exp(v_{i} - \beta))$$

$$= \beta + \log(\sum_{i} \exp(v_{i} - \beta)).$$

• Avoids overflows due to computing exp operator.

Mixture of Gaussians on Digits

• Mean parameters of a mixture of Gaussians with k = 10:

Samples:

• 10 components with k = 50 (might need a better initialization):

• Samples:

EM for MAP Estimation

• We can also use EM for MAP estimation. With a prior on Θ our objective is:

$$\underbrace{\log p(X \mid \Theta) + \log p(\Theta)}_{\text{what we optimize in MAP}} = \log \left(\sum_{Z} p(X, Z \mid \Theta) \right) + \log p(\Theta).$$

• EM iterations take the form of a regularized weighted "complete" NLL,

$$\Theta^{t+1} \in \operatorname*{arg\,max}_{\Theta} \left\{ \underbrace{\sum_{Z} p(Z \mid X, \Theta^{t}) \log p(X, Z \mid \Theta) + \log p(\Theta)}_{Z} \right\},$$

- Now guarantees monotonic improvement in MAP objective.
 - Has a closed-form solution for mixture of exponential families with conjugate priors.
- For mixture of Gaussians with $-\log p(\Theta_c) = \lambda \text{Tr}(\Theta_c)$ for precision matrices Θ_c :
 - ullet Closed-form solution that satisfies positive-definite constraint (no $\log |\Theta|$ needed).

Generative Mixture Models and Mixture of Experts

Classic generative model for supervised learning uses

$$p(y^i \mid x^i) \propto p(x^i \mid y^i)p(y^i),$$

and typically $p(x^i \mid y^i)$ is assumed Gaussian (LDA) or independent (naive Bayes).

• But we could allow more flexibility by using a mixture model,

$$p(x^i \mid y^i) = \sum_{i=1}^{k} p(z^i = c \mid y^i) p(x^i \mid z^i = c, y^i).$$

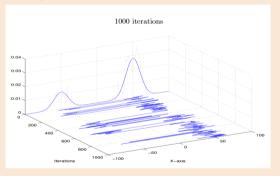
• Another variation is a mixture of disciminative models (like logistic regression),

$$p(y^i \mid x^i) = \sum_{i=1}^{k} p(z^i = c \mid x^i) p(y^i \mid z^i = c, x^i).$$

- Called a "mixture of experts" model:
 - Each regression model becomes an "expert" for certain values of x^i .

Mixtures as Proposals in Metropolis-Hastings

• Suppose we want to sample from a multi-modal distribution:



http://www.cs.ubc.ca/~arnaud/stat535/slides10.pdf

- With random walk proposals, we stay in one mode for a long time.
- We could instead use mixture model as a proposal in Metropolis-Hastings.
 - Proposal could be a mixture between random walk and "mode jumping".

General Kernel Density Estimation

The 1D kernel density estimation (KDE) model uses

$$p(x^{i}) = \frac{1}{n} \sum_{j=1}^{n} k_{\sigma} \underbrace{(x^{i} - x^{j})}_{i},$$

where the PDF k is called the "kernel" and parameter σ is the "bandwidth".

• In the previous slide we used the (normalized) Gaussian kernel,

$$k_1(r) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{r^2}{2}\right), \quad k_{\sigma}(r) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{r^2}{2\sigma^2}\right).$$

ullet Note that we can add a "bandwith" (standard deviation) σ to any PDF k_1 , using

$$k_{\sigma}(r) = \frac{1}{\sigma} k_1 \left(\frac{r}{\sigma}\right),$$

from the change of variables formula for probabilities $(\left|\frac{d}{dr}\left\lceil\frac{r}{a}\right\rceil\right| = \frac{1}{a})$.

• Under common choices of kernels, KDEs can model any continuous density.

Efficient Kernel Density Estimation

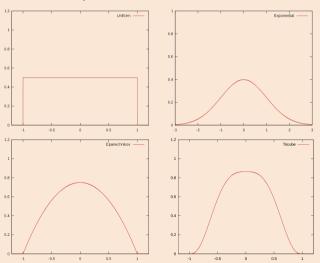
- KDE with the Gaussian kernel is slow at test time:
 - We need to compute distance of test point to every training point.
- A common alternative is the Epanechnikov kernel,

$$k_1(r) = \frac{3}{4} (1 - r^2) \mathcal{I}[|r| \le 1].$$

- This kernel has two nice properties:
 - Epanechnikov showed that it is asymptotically optimal in terms of squared error.
 - It can be much faster to use since it only depends on nearby points.
 - You can use hashing to quickly find neighbours in training data.
- It is non-smooth at the boundaries but many smooth approximations exist.
 - Quartic, triweight, tricube, cosine, etc.
- For low-dimensional spaces, we can also use the fast multipole method.

Visualization of Common Kernel Functions

Histogram vs. Gaussian vs. Epanechnikov vs. tricube:



Multivariate Kernel Density Estimation

• The multivariate kernel density estimation (KDE) model uses

$$p(x^{i}) = \frac{1}{n} \sum_{j=1}^{n} k_{A}(\underbrace{x^{i} - x^{j}}_{r}),$$

• The most common kernel is a product of independent Gaussians,

$$k_I(r) = \frac{1}{(2\pi)^{\frac{d}{2}}} \exp\left(-\frac{\|r\|^2}{2}\right).$$

ullet We can add a bandwith matrix A to any kernel using

$$k_A(r) = rac{1}{|A|} k_1(A^{-1}r)$$
 (generalizes $k_\sigma(r) = rac{1}{\sigma} k_1\left(rac{r}{\sigma}
ight)$),

and in Gaussian case we get a multivariate Gaussian with $\Sigma = AA^T$.

- To reduce number of parameters, we typically:
 - Use a product of independent distributions and use $A = \sigma I$ for some σ .