CPSC 440/540: Advanced Machine Learning Mixtures, EM, KDE

Danica Sutherland (building on materials from Mark Schmidt)

University of British Columbia
Winter 2023

Last Time: Gaussian Mixtures

- Mixture of k Gaussians: per-class parameters $\pi_{c} \in \mathbb{R}, \mu_{c} \in \mathbb{R}^{d}, \Sigma_{c} \in \mathbb{R}^{d \times d}$,

$$
p(x \mid \mu, \Sigma, \pi)=\sum_{c=1}^{k} \pi_{c} \underbrace{p\left(x \mid \mu_{c}, \Sigma_{c}\right)}_{\text {PDF of Gaussian } c} .
$$

- Latent variable representation: $z^{i} \sim \operatorname{Categorical}(\pi), x^{i} \mid z^{i} \sim \mathcal{N}\left(\mu_{c}, \Sigma_{c}\right)$.
- Can't observe z^{i}, but leads to an ancestral sampling algorithm.
- Responsibilities: our "posterior estimate" for which component a point came from:

$$
\mathbf{R} \in \mathbb{R}^{n \times k}, \quad r_{c}^{i}=p\left(z^{i}=c \mid x^{i}\right)=\frac{\pi_{c} p\left(x^{i} \mid \mu_{c}, \Sigma_{c}\right)}{\sum_{c^{\prime}=1}^{k} \pi_{c^{\prime}} p\left(x^{i} \mid \mu_{c^{\prime}}, \Sigma_{c^{\prime}}\right)}
$$

Learning Mixture Models with Imputation

- Mixture of Gaussian parameters are $\left\{\pi_{c}, \mu_{c}, \Sigma_{c}\right\}_{c=1}^{k}$.
- Unfortunately, NLL is non-convex.
- Various optimization methods are used in practice.
- If we treat the z^{i} as parameters, we get a simple algorithm for decreasing NLL:
(1) Given the clusters z^{i}, find the most likely parameters.
- Optimize $p(\mathbf{X} \mid \pi, \mu, \Sigma, \mathbf{z})$ in terms of the $\left\{\pi_{c}, \mu_{c}, \Sigma_{c}\right\}_{c=1}^{k}$.
- Set π_{c} based on frequency of seeing $z^{i}=c$.
- Set μ_{c} to the mean of examples in cluster c.
- Set Σ_{c} to the covariance of examples in cluster c.
(2) Given the parameters, find the most likely clusters.
- For each example i, compute responsibility $r_{c}^{i}=p\left(z^{i}=c \mid x^{i}, \pi_{c}, \mu_{c}, \Sigma_{c}\right)$.
- Set z^{i} to the the argmax of r_{c}^{i} over c.
- Connection to Gaussian discriminant analsysis (GDA), using clusters z^{i} as labels:
- Step 1 above is the learning step in GDA, Step 2 above is the prediction step in GDA.

Special Case of K-Means

- Algorithm from the previous slide is a generalization of k-means clustering.
- Apply the algorithm assuming $\pi_{c}=1 / k$ and $\Sigma_{c}=I$ for all c :
(1) Given the clusters z^{i}, find the most likely parameters.
- Sets μ_{c} to the mean of examples in cluster c.
(2) Given the parameters, find the most likely clusters.
- Sets z^{i} to the closest mean of example i.
- As with k-means, initialization matters for mixture of Gaussians.
- May need to do multiple random restarts, or clever initializations like k-means++.

K-Means vs. Mixture of Gaussians

- K-means can be viewed as fitting mixture of Gaussians (same π_{c} and Σ_{c}).
- But variable Σ_{c} in general mixture of Gaussians allows non-convex clusters.

With same covariance, clusters are convex.

K-Means vs. Mixture of Gaussians

- K-means can be viewed as fitting mixture of Gaussian (same π_{c} and Σ_{c}).
- But variable Σ_{c} in general mixture of Gaussians allows non-convex clusters.

With same covariance, clusters are convex.

K-Means vs. Mixture of Gaussians

- K-means can be viewed as fitting mixture of Gaussian (same π_{c} and Σ_{c}).
- But variable Σ_{c} in general mixture of Gaussian allows non-convex clusters.

K-Means vs. Mixture of Gaussians

- K-means can be viewed as fitting mixture of Gaussians (same π_{c} and Σ_{c}).
- But variable Σ_{c} in general mixture of Gaussians allows non-convex clusters.

K-Means vs. Mixture of Gaussians

- K-means can be viewed as fitting mixture of Gaussians (same π_{c} and Σ_{c}).
- But variable Σ_{c} in general mixture of Gaussians allows non-convex clusters.

K-Means vs. Mixture of Gaussians

- K-means can be viewed as fitting mixture of Gaussians (same π_{c} and Σ_{c}).
- But variable Σ_{c} in general mixture of Gaussians allows non-convex clusters.

Original Data

k-Means Clustering

EM Clustering

Digression: MLE does not exist

- For mixture of Gaussian, there is no MLE.
- You can make the likelihood arbitrarily large:
- Set $\mu_{c}=x^{i}$ for a particular i and c, and make $\Sigma_{c} \rightarrow 0$.
- It is common for optimizers to converge to models with degenerate clusters.
- Empty or covariance is not positive definite.
- It is common to remove empty clusters and use a regularized update,

$$
\Sigma_{c}=\frac{1}{\sum_{i=1}^{n} r_{c}^{i}} \sum_{i=1}^{n} r_{c}^{i}\left(x^{i}-\mu_{c}\right)\left(x^{i}-\mu_{c}\right)^{T}+\lambda I
$$

which corresponds to MAP estimation with an L1-regularizer on Θ diagonals.

- The MAP estimate exists under this and other usual priors on Σ_{c}.

Outline

(1) Mixture of Gaussians
(2) Mixture of Bernoullis
(3) Expectation Maximization
(4) Advanced Mixtures
(5) Kernel Density Estimation

Previously: Product of Bernoullis

- We previously considered density estimation with discrete variables,

$$
\mathbf{X}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

- We considered a product of Bernoullis:

$$
p\left(x^{i} \mid \theta\right)=\prod_{j=1}^{d} p\left(x_{j}^{i} \mid \theta_{j}\right)
$$

Easy to fit but strong independence assumption:

- Knowing x_{j}^{i} tells you nothing about x_{k}^{i}.
- A more-powerful model is a mixture of Bernoullis.

Mixture of Bernoullis

- Consider a coin flipping scenario where we have two coins:
- Coin 1 has $\theta_{1}=0.5$ (fair) and coin 2 has $\theta_{2}=1$ (biased).
- Half the time we flip coin 1, and otherwise we flip coin 2:

$$
\begin{aligned}
p\left(x^{i}=1 \mid \theta_{1}, \theta_{2}\right) & =\pi_{1} p\left(x^{i}=1 \mid \theta_{1}\right)+\pi_{2} p\left(x^{i}=1 \mid \theta_{2}\right) \\
& =\frac{1}{2} \theta_{1}+\frac{1}{2} \theta_{2}=\frac{\theta_{1}+\theta_{2}}{2}
\end{aligned}
$$

- With one variable this mixture model is not very interesting:
- It's equivalent to flipping one coin with $\theta=0.75$.
- But with multiple variables, mixture of Bernoullis can model dependencies...

Mixture of Independent Bernoullis

- Consider a mixture of a product of Bernoullis:

$$
p\left(x \mid \theta_{1}, \theta_{2}\right)=\frac{1}{2} \underbrace{\prod_{j=1}^{d} p\left(x_{j} \mid \theta_{1 j}\right)}_{\text {first set of Bernoullis }}+\frac{1}{2} \underbrace{\prod_{j=1}^{d} p\left(x_{j} \mid \theta_{2 j}\right)}_{\text {second set of Bernoulli }}
$$

- Conceptually, we now have two sets of coins:
- Half the time we throw the first set, half the time we throw the second set.
- With $d=4$ we could have $\theta_{1}=\left[\begin{array}{llll}0 & 0.7 & 1 & 1\end{array}\right]$ and $\theta_{2}=\left[\begin{array}{llll}1 & 0.7 & 0.8 & 0\end{array}\right]$.
- Half the time we have $p\left(x_{3}^{i}=1\right)=1$ and half the time it's 0.8 .
- Have we gained anything?

Mixture of Independent Bernoullis

- Example from the previous slide: $\theta_{1}=\left[\begin{array}{llll}0 & 0.7 & 1 & 1\end{array}\right]$ and $\theta_{2}=\left[\begin{array}{llll}1 & 0.7 & 0.8 & 0\end{array}\right]$.
- Here are some samples from this model:

$$
\mathbf{X}=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

- Unlike product of Bernoullis, notice that features in samples are not independent.
- In this example knowing $x_{1}=1$ tells you that $x_{4}=0$.
- This model can capture dependencies: $\underbrace{p\left(x_{4}=1 \mid x_{1}=1\right)}_{0} \neq \underbrace{p\left(x_{4}=1\right)}_{0.5}$.

Mixture of Independent Bernoullis

- Drawing the mixture of Bernoullis as a DAG:

- Since we do not know z, there are dependencies between x_{j}.
- But features are independent if we know z.
- This is the same graph as naive Bayes, with cluster z instead of class y.
- If you see one spammy word, it makes other spammy words more likely.

Mixture of Independent Bernoullis

- General mixture of independent Bernoullis:

$$
p\left(x^{i} \mid \Theta\right)=\sum_{c=1}^{k} \pi_{c} p\left(x^{i} \mid \theta_{c}\right)=\sum_{c=1}^{k} \pi_{c} \prod_{j=1}^{d} \theta_{c j}
$$

where Θ contains all the model parameters.

- Θ has k values of π_{c} and $k \times d$ values of $\theta_{c j}$.
- Mixture of Bernoullis can model dependencies between variables
- Individual mixtures act like clusters of the binary data.
- Knowing cluster of one variable gives information about other variables.
- With k large enough, mixture of Bernoullis can model any binary distribution.
- Hopefully with $k \ll 2^{d}$.

Mixture of Independent Bernoullis

- Plotting parameters θ_{c} with 10 mixtures trained on MNIST digits (with "EM"): (numbers above images are mixture coefficients π_{c})

//pmtk3.googlecode.com/svn/trunk/docs/demoOutput/bookDemos/\(11\)-Mixture_models_and_the_EM_algorithm/mixBerMnistEM.html
- Remember this is unsupervised: it hasn't been told there are ten digits.
- You could use this model to "fill in" missing parts of an image.

Mixture of Bernoullis on Digits with $k>10$

－Parameters of a mixture of Bernoulli model fit to MNIST with $k=10$ ：

－Samples better than product of Bernoullis（but no within－cluster dependency）：
家要

－You get a better model with $k>10$ ．First 10 components with $k=50$ ：

－Samples from the $k=50$ model（can have more than one＂type＂of a number）：

资条名			$2 x^{2}+x$		$\frac{y^{2}}{4} \frac{1}{4}$				

Outline

(1) Mixture of Gaussians
(2) Mixture of Bernoullis
(3) Expectation Maximization
(4) Advanced Mixtures
(5) Kernel Density Estimation

Big Picture: Training and Inference

- Many possible mixture model inference tasks:
- Generate samples.
- Measure likelihood of test examples \tilde{x}.
- To detect outliers, for example.
- Compute probability that test example belongs to cluster c.
- Compute marginal or conditional probabilities.
- "Fill in" missing parts of a test example.
- Mixture model training phase:
- Input is a matrix X, number of clusters k, and form of individual distributions.
- Output is mixture proportions π_{c} and parameters of components.
- The θ_{c} for Bernoulli, and the $\left\{\mu_{c}, \Sigma_{c}\right\}$ for Gaussians.
- And maybe the responsibilities r_{c}^{i} or cluster assignments z^{i}.

Fitting a Mixture of Bernoullis: Imputation of z^{i}

- Imputation approach to ftting mixture of Bernoullis if we view z^{i} as parameters:
(1) Find the most likely cluster z^{i} for each example i,

$$
z^{i} \in \underset{c}{\arg \max } p\left(z^{i}=c \mid x^{i}, \Theta\right)
$$

(2) Update the mixture probabilities as proportion of examples in cluster,

$$
\pi_{c}=\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\left(z^{i}=c\right) .
$$

(3) Update the product of Bernoullis based on examples in cluster,

$$
\theta_{c j}=\frac{\sum_{i=1}^{n} \mathbb{1}\left(z^{i}=c\right) x_{j}^{i}}{\sum_{i=1}^{n} \mathbb{1}\left(z^{i}=c\right)} .
$$

- You can think of this as doing exact assignments to the z^{i} variables.

Fitting a Mixture of Bernoullis: Expectation Maximization

- Expectation maximization (EM) approach to ftting mixture of Bernoulli:
(1) Find the responsibility of cluster z^{i} for each example i

$$
r_{c}^{i}=p\left(z^{i}=c \mid x^{i}, \Theta\right)
$$

(2) Update the mixture probabilities as proportion of examples cluster is responsible for,

$$
\pi_{c}=\frac{1}{n} \sum_{i=1}^{n} r_{c}^{i} .
$$

(3) Update the product of Bernoullis based on examples cluster is responsible for,

$$
\theta_{c j}=\frac{\sum_{i=1}^{n} r_{c}^{i} x_{j}^{i}}{\sum_{i=1}^{n} r_{c}^{i}} .
$$

- You can think of this as doing probabilistic assignment to the z^{i} variables.

Fitting a Mixture of Gaussians: Expectation Maximization

- Expectation maximization (EM) approach to ftting mixture of Gaussians:
(1) Find the responsibility of cluster z^{i} for each example i

$$
r_{c}^{i}=p\left(z^{i}=c \mid x^{i}, \Theta\right) .
$$

(2) Update the mixture probabilities as proportion of examples cluster is responsible for,

$$
\pi_{c}=\frac{1}{n} \sum_{i=1}^{n} r_{c}^{i} .
$$

(3) Update the Gaussian based on examples cluster is responsible for,

$$
\mu_{c}=\frac{1}{\sum_{i=1}^{n} r_{c}^{i}} \sum_{i=1}^{n} r_{c}^{i} x^{i}, \quad \Sigma_{c}=\frac{1}{\sum_{i=1}^{n} r_{c}^{i}} \sum_{i=1}^{n} r_{c}^{i}\left(x^{i}-\mu_{c}\right)\left(x^{i}-\mu_{c}\right)^{T} .
$$

- Video: https://www.youtube.com/watch?v=B36fzChfyGU

Expectation Maximization vs. Imputation

- The imputation method is optimizing $p\left(x^{i}, z^{i} \mid \Theta\right)$ in terms of z^{i} and Θ.
- So we're optimizing z^{i} as well as Θ.
- $p\left(x^{i}, z^{i} \mid \Theta\right)$ is called the complete-data likelihood.
- Expectation maximization (EM) is optimizing $p\left(x^{i} \mid \Theta\right)$ in terms of Θ.
- So we're integrating over z^{i} values while optimizing Θ.
- $p\left(x^{i} \mid \Theta\right)$ is the usual likelihood, marginalizing over the z^{i}.
- EM is a general algorithm for parameter learning with missing data.
- For mixtures, the "missing" data is the z^{i} variables.
- But EM can be used for any probabilistic model where we have missing data.

Expectation Maximization: General Form

- With data X and hidden values Z, the general EM uses iterations of the form

$$
\begin{aligned}
\Theta^{t+1} & \in \underset{\Theta}{\arg \max } \sum_{Z} p\left(Z \mid X, \Theta^{t}\right) \log p(X, Z \mid \Theta) \\
& \equiv \underset{\Theta}{\arg \max } \mathbb{E}_{Z \mid X, \Theta^{t}}[\log p(X, Z \mid \Theta)] .
\end{aligned}
$$

- Summing/integrating over all possible hidden values Z may be hard.
- But in many cases this simplifies due to conditional independence assumptions.
- For mixture models, the EM iteration simplifies to (see notes on webpage)

$$
\sum_{i=1}^{n} \sum_{z^{i}=1}^{k} \underbrace{p\left(z^{i} \mid x^{i}, \Theta^{t}\right)}_{\text {responsibility }} \underbrace{\log p\left(x^{i}, z^{i} \mid \Theta\right)}_{\text {complete-data log-lik }}
$$

so summing over k^{n} possible clusterings turns into sum over $n k$ terms.

"E-Step" and "M-Step" for Mixture Models

- For mixture models, EM is often written as two steps:
(1) E-step: compute responsibilities r_{c}^{i} for all i and c for current Θ^{t}.
(2) M-step: optimize the weighted "complete-data" log-likelihood

$$
\Theta^{t+1} \in \underset{\Theta}{\arg \max } \sum_{i=1}^{n} \sum_{z^{i}=1}^{k} r_{c}^{i} \log p\left(x^{i}, z^{i} \mid \Theta\right) .
$$

- For other models, there may not be separate "E-steps" and "M-steps."
- EM is most useful when complete-data log-likelihood is easy to optimize.
- Most common case: complete-data log-likelihood is in an exponential family.
- Mixture of Bernoullis, mixture of Gaussians, and many other cases.
- In this case the M-step is a weighted combination of the sufficient statistics.

Expectation Maximization Algorithm: Properties

- EM monotonically increases likelihood, $p\left(X \mid \Theta^{t+1}\right) \geq p\left(X \mid \Theta^{t}\right)$.
- This is useful for debugging: if likelihood decreases you have a bug.
- EM doesn't need a step size, unlike many learning algorithms.
- EM tends to satisfy constraints automatically.
- Unlike gradient descent, don't need to worry about constraints on π_{c} and Σ_{c}.
- Assuming you have a prior to avoid degenerate situations where MLE does not exist.
- EM iterations are parameterization independent.
- Get the same performance under any re-parameterization of the problem.
- EM is notorious for converging to bad local optima.
- Not really the algorithm's fault: we typically apply EM to hard problems.

Expectation Maximization Algorithm: Properties

- EM converges to a stationary point under weak assumptions.
- EM is at least as fast as gradient descent (with a constant step size).
- In the worst case, for differentiable problems.
- EM can also be used for non-differentiable likelihoods.
- EM converges faster as entropy of hidden variables decreases.
- If value of hidden variables is "obvious", it converges very fast.
- And EM can be arbitrarily faster than gradient descent.
- Mark has a bunch of more detailed material on the EM algorithm here:
- https://www.cs.ubc.ca/~schmidtm/Courses/440-W22/L34.5.pdf

Expectation Maximization vs. Gradient Descent

- Expectation maximization vs. gradient for fitting mixture of 2 Gaussians:

- Show video.

Outline

(1) Mixture of Gaussians
(2) Mixture of Bernoullis
(3) Expectation Maximization

4 Advanced Mixtures
(5) Kernel Density Estimation

Combining Mixture Models with Other Models

- We can use mixtures in generative classifiers.
- Model $p(x \mid y)$ as a mixture instead of simple Gaussian or product of Bernoullis.
- VQNB from Assignment 2 fits a mixture of Bernoullis for each class.
- We can do mixture of more-complicated distributions:
- Mixture of categoricals (can model arbitrary categorical vectors).
- Mixture of student t distributions.
- Not exponential family, so no simple closed-form update of parameters.
- Mixture of Markov chains for rain data (later).
- Mixture of DAGs/UGMs (could be tree-structured for easy inference).
- Captures both clusters and dependencies between variables in clusters.
- We can add features to mixture models for supervised learning:
- Mixture of experts: have k regression/classification models.
- Each model can be viewed as a "expert" for a cluster of x^{i} values.

Less-Naive Bayes on Digits

- Naive Bayes θ_{c} values (independent Bernoullis for each class):

- One sample from each class:
(
- Generative classifier with mixture of 5 Bernoullis for each class (digits 1 and 2):

- One sample from each class:

- Would get less noisy samples and more variation with mixture of graphical models.

Dirichlet Process

- Non-parametric Bayesian methods allow us to consider infinite mixture model,

$$
p(x \mid \Theta)=\sum_{c=1}^{\infty} \pi_{c} p\left(x \mid \Theta_{c}\right)
$$

- Common choice for prior on π values is Dirichlet process:
- Also called "Chinese restaurant process" and "stick-breaking process".
- For finite datasets, only a fixed number of clusters have $\pi_{c} \neq 0$.
- But don't need to pick number of clusters; it grows with data size.
- Gibbs sampling in Dirichlet process mixture model in action: https://www. youtube.com/watch?v=0Vh7qZY9sPs

Dirichlet Process

- Slides giving more details on Dirichelt process mixture models:
- https://www.cs.ubc.ca/labs/lci/mlrg/slides/NP.pdf
- We could alternately put a prior on number of clusters k :
- Allows more flexibility than Dirichlet process as a prior.
- Needs "trans-dimensional" MCMC to sample models of different sizes.
- There are a variety of interesting variations on Dirichlet processes
- Beta process ("Indian buffet process").
- Hierarchical Dirichlet process.
- Polya trees.
- Infinite hidden Markov models.

Bayesian Hierarchical Clustering

- Hierarchical clustering of $\{0,2,4\}$ digits using classic and Bayesian method:

Bayesian Hierarchical Clustering

- Hierarchical clustering of newgroups using classic and Bayesian method:

4 Newsgroups Average Linkage Clustering 4 Newsgroups Bayesian Hierarchical Clustering

http:///www2.stat.duke.edu/-khel1er/bhenew.pdaf (y -axis represents distance between clusters)

Continuous Mixture Models

- We can also consider mixture models where z^{i} is continuous,

$$
p\left(x^{i}\right)=\int_{z^{i}} p\left(z^{i}\right) p\left(x^{i} \mid z^{i}=c\right) d z^{i} .
$$

- Unfortunately, computing the integral might be hard.
- Special case is if both probabilities are Gaussian (conjugate).
- Leads to probabilistic PCA and factor analysis (OCEAN model in psychology).
- My old material:
https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/L17.5.pdf.
- Another special case is scale mixtures of Gaussians
- Where $p\left(x^{i} \mid z^{i}\right)$ is Gaussian and $p\left(z^{i}\right)$ is a gamma prior on variance (conjugate).
- Can represent many distributions in this form, like Laplace and student t.
- Leads to EM algorithms for fitting Laplace and student t..

Outline

(1) Mixture of Gaussians
(2) Mixture of Bernoullis
(3) Expectation Maximization
4. Advanced Mixtures
(5) Kernel Density Estimation

Non-Parametric Mixtures: Kernel Density Estimation

- A common non-parametric mixture model centers one cluster on each example:

$$
p\left(x^{i}\right)=\frac{1}{n} \sum_{j=1}^{n} p\left(x^{i} \mid x^{j}, \sigma^{2} I\right)
$$

- This is called kernel density estimation (KDE) or the Parzen window method.
- Common choice is a Gaussian centered on each example ("mixture of n Gaussians").
- Scale σ^{2} is viewed as a hyper-parameter.
- By fixing mean/covariance/k, no parameters to learn (except σ^{2}).
- And most inference tasks (except decoding) are easy but slow (depend on n).
- Many variations exist, see bonus slides for generalizations.
- Tends to work great in low dimensions and badly in high dimensions.

Histogram vs. Kernel Density Estimator

- You can think of a kernel density estimate as a continuous histogram:

Kernel Density Estimator for Visualization

- Visualization of people's opinions about what "likely" and other words mean.

Violin Plot: Added KDE to a Boxplot

- Violin plot adds KDE to a boxplot:

[^0]
Violin Plot: Added KDE to a Boxplot

- Violin plot adds KDE to a boxplot:

KDE vs. Mixture of Gaussian

- Multivariate vs mixture of Gaussians (different EM initializations):

KDE vs. Mixture of Gaussian

- Kernel density estimation vs mixture of Gaussians (different EM initializations):

Mean-Shift Clustering

- Mean-shift clustering uses KDE for clustering:
- Define a KDE on the training examples, and then for test example \hat{x} :
- Run gradient descent to maximize $p(x)$ starting from \hat{x}.
- Clusters are points that reach same local minimum.
- https://spin.atomicobject.com/2015/05/26/mean-shift-clustering
- Not sensitive to initialization, no need to choose k, can find non-convex clusters.
- Similar to density-based clustering from 340.
- But doesn't require uniform density within cluster.
- And can be used for vector quantization.
- "The 5 Clustering Algorithms Data Scientists Need to Know":
- https://towardsdatascience.com/ the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68

Kernel Density Estimation on Digits

- Samples from a KDE model of digits:
- Sample is on the left, right is the closest image from the training set.

- KDE just samples a training example then adds noise.
- Usually makes more sense for continuous data that is densely packed.
- A variation with a location-specific variance (diagonal Σ instead of $\sigma^{2} I$):

Summary

- Mixture of Bernoullis can model dependencies between discrete variables.
- Unsupervised version of naive Bayes; can model arbitrary binary distributions.
- Learning by alternating imputing z^{i} and fitting full model. . . or more commonly,
- Expectation maximization: algorithm for optimization with hidden variables.
- Instead of imputation, works with "soft" assignments to nuisance variables.
- Maximizes log-likelihood, weighted by all imputations of hidden variables.
- Simple and intuitive updates for fitting mixtures models.
- Appealing properties as an optimization algorithm, but only finds local optimum.
- Kernel density estimation: Non-parametric density estimation method.
- Center a mixture on each datapoint (smooth variation on histograms).
- Used for data visualization and low-dimensional density estimation.
- Basis of mean-shift clustering.
- Next time: measuring defense in the NBA.

Avoiding Underflow when Computing Responsibilities

- Computing responsibility may underflow for high-dimensional x^{i}, due to $p\left(x^{i} \mid z^{i}=c, \Theta^{t}\right)$.
- Usual ML solution: do all but last step in log-domain.

$$
\begin{aligned}
\log r_{c}^{i} & =\log p\left(x^{i} \mid z^{i}=c, \Theta^{t}\right)+\log p\left(z^{i}=c \mid \Theta^{t}\right) \\
& -\log \left(\sum_{c^{\prime}=1}^{k} p\left(x^{i} \mid z^{i}=c^{\prime}, \Theta^{t}\right) p\left(z^{i}=c^{\prime} \mid \Theta^{t}\right)\right)
\end{aligned}
$$

- To compute last term, use "log-sum-exp" trick.
- To compute $\log \left(\sum_{i} \exp \left(v_{i}\right)\right)$, set $\beta=\max _{i}\left\{v_{i}\right\}$ and use:

$$
\begin{aligned}
\log \left(\sum_{c} \exp \left(v_{i}\right)\right) & =\log \left(\sum_{i} \exp \left(v_{i}-\beta+\beta\right)\right) \\
& =\log \left(\sum_{i} \exp \left(v_{i}-\beta\right) \exp (\beta)\right) \\
& \left.=\log (\exp (\beta)) \sum_{i} \exp \left(v_{i}-\beta\right)\right) \\
& =\log (\exp (\beta))+\log \left(\sum_{i} \exp \left(v_{i}-\beta\right)\right) \\
& =\beta+\log (\sum_{i} \underbrace{\exp \left(v_{i}-\beta\right)}_{\leq 1}) .
\end{aligned}
$$

- Avoids overflows due to computing exp operator.
- Mean parameters of a mixture of Gaussians with $k=10$:

- Samples:

- 10 components with $k=50$ (might need a better initialization):

EM for MAP Estimation

- We can also use EM for MAP estimation. With a prior on Θ our objective is:

$$
\underbrace{\log p(X \mid \Theta)+\log p(\Theta)}_{\text {what we optimize in MAP }}=\log \left(\sum_{Z} p(X, Z \mid \Theta)\right)+\log p(\Theta) .
$$

- EM iterations take the form of a regularized weighted "complete" NLL,

$$
\Theta^{t+1} \in \underset{\Theta}{\arg \max }\{\underbrace{\sum_{Z} p\left(Z \mid X, \Theta^{t}\right) \log p(X, Z \mid \Theta)}+\log p(\Theta)\}
$$

- Now guarantees monotonic improvement in MAP objective.
- Has a closed-form solution for mixture of exponential families with conjugate priors.
- For mixture of Gaussians with $-\log p\left(\Theta_{c}\right)=\lambda \operatorname{Tr}\left(\Theta_{c}\right)$ for precision matrices Θ_{c} :
- Closed-form solution that satisfies positive-definite constraint (no $\log |\Theta|$ needed).

Generative Mixture Models and Mixture of Experts

- Classic generative model for supervised learning uses

$$
p\left(y^{i} \mid x^{i}\right) \propto p\left(x^{i} \mid y^{i}\right) p\left(y^{i}\right)
$$

and typically $p\left(x^{i} \mid y^{i}\right)$ is assumed Gaussian (LDA) or independent (naive Bayes).

- But we could allow more flexibility by using a mixture model,

$$
p\left(x^{i} \mid y^{i}\right)=\sum_{c=1}^{k} p\left(z^{i}=c \mid y^{i}\right) p\left(x^{i} \mid z^{i}=c, y^{i}\right) .
$$

- Another variation is a mixture of disciminative models (like logistic regression),

$$
p\left(y^{i} \mid x^{i}\right)=\sum_{c=1}^{k} p\left(z^{i}=c \mid x^{i}\right) p\left(y^{i} \mid z^{i}=c, x^{i}\right) .
$$

- Called a "mixture of experts" model:
- Each regression model becomes an "expert" for certain values of x^{i}.

Mixtures as Proposals in Metropolis-Hastings

- Suppose we want to sample from a multi-modal distribution:

http://www.cs.ubc.ca/~arnaud/stat535/slides10.pdf
- With random walk proposals, we stay in one mode for a long time.
- We could instead use mixture model as a proposal in Metropolis-Hastings.
- Proposal could be a mixture between random walk and "mode jumping".

General Kernel Density Estimation

- The 1D kernel density estimation (KDE) model uses

$$
p\left(x^{i}\right)=\frac{1}{n} \sum_{j=1}^{n} k_{\sigma} \underbrace{\left(x^{i}-x^{j}\right.}_{r}),
$$

where the PDF k is called the "kernel" and parameter σ is the "bandwidth".

- In the previous slide we used the (normalized) Gaussian kernel,

$$
k_{1}(r)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{r^{2}}{2}\right), \quad k_{\sigma}(r)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{r^{2}}{2 \sigma^{2}}\right) .
$$

- Note that we can add a "bandwith" (standard deviation) σ to any PDF k_{1}, using

$$
k_{\sigma}(r)=\frac{1}{\sigma} k_{1}\left(\frac{r}{\sigma}\right),
$$

from the change of variables formula for probabilities $\left(\left|\frac{d}{d r}\left[\frac{r}{\sigma}\right]\right|=\frac{1}{\sigma}\right)$.

- Under common choices of kernels, KDEs can model any continuous density.

Efficient Kernel Density Estimation

- KDE with the Gaussian kernel is slow at test time:
- We need to compute distance of test point to every training point.
- A common alternative is the Epanechnikov kernel,

$$
k_{1}(r)=\frac{3}{4}\left(1-r^{2}\right) \mathcal{I}[|r| \leq 1] .
$$

- This kernel has two nice properties:
- Epanechnikov showed that it is asymptotically optimal in terms of squared error.
- It can be much faster to use since it only depends on nearby points.
- You can use hashing to quickly find neighbours in training data.
- It is non-smooth at the boundaries but many smooth approximations exist.
- Quartic, triweight, tricube, cosine, etc.
- For low-dimensional spaces, we can also use the fast multipole method.

Visualization of Common Kernel Functions

Histogram vs. Gaussian vs. Epanechnikov vs. tricube:

Multivariate Kernel Density Estimation

- The multivariate kernel density estimation (KDE) model uses

$$
p\left(x^{i}\right)=\frac{1}{n} \sum_{j=1}^{n} k_{A}(\underbrace{x^{i}-x^{j}}_{r}),
$$

- The most common kernel is a product of independent Gaussians,

$$
k_{I}(r)=\frac{1}{(2 \pi)^{\frac{d}{2}}} \exp \left(-\frac{\|r\|^{2}}{2}\right) .
$$

- We can add a bandwith matrix A to any kernel using

$$
k_{A}(r)=\frac{1}{|A|} k_{1}\left(A^{-1} r\right) \quad\left(\text { generalizes } k_{\sigma}(r)=\frac{1}{\sigma} k_{1}\left(\frac{r}{\sigma}\right)\right),
$$

and in Gaussian case we get a multivariate Gaussian with $\Sigma=A A^{T}$.

- To reduce number of parameters, we typically:
- Use a product of independent distributions and use $A=\sigma I$ for some σ.

[^0]: https://datavizcatalogue.com/methods/violin_plot.html

