CPSC 440/540: Advanced Machine Learning
Log-Linear Models, CRFs, and Mixtures

Danica Sutherland (building on materials from Mark Schmidt)

University of British Columbia

Winter 2023

Last Time: Undirected Graphical Models
@ We discussed undirected graphical models
p(l’l,xQ, ceey :Ed) X H ¢C($0)7
ceC

which write joint distribution as product of non-negative potentials over subsets c.

@ The most common variant is pairwise UGMs,

d
plar, za,. .. xa) o | [] 65(x;) I witeiz)) |,
j=1

(i.4)€€
which includes Markov chains and multivariate Gaussians as special cases.

o In tree-structured graphs (no loops), common inference operations are O(dk?).

e By generalizing the methods used for Markov chains.
e But runtime is exponential in “treewidth” for graphs with loops.

Vancouver Rain Data: DAG vs. UGM

@ We previously considered the “Vancouver Rain” dataset:
TN e 7 N C T A TN
Moitn [0 0 1
Meith 2 1
Mol d 2

My 2
MonthY 0

Mealn o

@ We previously fit this with a Markov chain under the DAG factorization:

B O Bk = O O
O B O » O O
B O B P O

0
1
1
0
1

o = O = O
= T = TSN

0
1
1
0
0

», O Lk B O

p(x1,22,...,24 plxj | zj-1)

||::]&

where we used tabular potentials (so learning was counting).

Vancouver Rain Data: DAG vs. UGM

e Consider fitting a Markov chain under a UGM factorization:

d d
p(wr,wa,) oc | [o) | | T1 51 2im0)
j=1

j=2
o Consider the following UGM parameterization (for z; € {—1,+1}):

dj(xj) = exp(wjz;), ¢ij(xi, ;) = exp(vijziz;),

where w; is a node weight, v;; is an edge weight, and we have used Ising edges.
e The exponential function makes the potentials non-negative.
@ We call this a log-linear model: logarithms of potentials are linear.
o Ising potentials can reflect how strongly neighbours are attracted/repulsed.

o For the rain data, we would expect v;; > 0 (adjacent days likely to have same value).
o For the rain data, it makes sense to tie w; across j and v;; across (%, j) values.

Vancouver Rain Data: DAG vs. UGM

@ Our log-linear model of the rain data under the Ising parameterization:
d

d
p(x1, T2y ..., 24 | W,V) X H exp(wz;) H exp(va;T;_1)
j=1 j=2

d d
= exp E wr; + E VT ;T5-1
Jj=1 J=2

—eo ([|00)

@ This is an exponential family in canonical form!

e NLL will be convex in terms of w and v; derivative of NLL has simple form.
o If we didn't tie parameters, we'd have a statistic for each time.

Learning Log-Linear Model for Vancouver Rain Data

o Canonical form: p(x | w, v) o exp (mT lde?—l z D

j=2TjTj—1
o Sufficient statistics s1(z) = Z‘;Zl xj, so(z) = 2?22 TjTj_q.
o We derived in general for canonical-form exponential families that

n

Vol-logp(X |)] = =) s(z’) +nE[s(X) |).

i=1

e Can't solve analytically here...but we can just run gradient descent!

d
Z&:l 2(Pr(X; =1]w,v)—1)
ijz (2Pr(X; = X1 [w,v))

e Can compute all of these marginals with forward-backward.

e Could also compute log Z and use autodiff.

@ We have E[s(X) | w,v] =

Learning Log-Linear Models (In General)

o We often write log-linear UGMs in an exponential family form

exp (W' F(z))
Z(w) 7

p(x | w) =

where the feature functions F'(x) count the number of times we use each wj.
e Examples of feature functions, and potentials for categoricals, in bonus slides.

o Feature functions are just sufficient statistics, so
Vu[—logp(X | w)] = ZF)+ nE[s(X) | w].

e Computing this requires inference, which is #P-hard in general graphs.
e So we need to consider approximations when learning.

Approximate Learning: Pseudo-Likelihood

@ A popular approximation to the NLL is pseudo-likelihood.
e “Fast, convex, and crude.”

@ Pseudo-likelihood turns learning into d single-variables problem (similar to DAGs),

d

d
p($1,$2a-~~a$d) ~ H :C] |x*] Hp Ly ’xnel

j=1

Approximate Learning: Marginal Approximations

@ Another way to approximate the NLL is with approximate inference.
@ Deterministic variational approximations of E[F'(x)] (more on these later).
@ Approximate p by a simpler ¢, and compute expectation for q.

@ Monte Carlo approximation of E[Fj(z)] given current parameters w:

Vi(w) = —F(X) + E[F(2)]

Monte Carlo approx

based on samples from p(x | w).
e Unfortunately, we usually can't sample efficiently. . ..

Approximate Learning with MCMC Marginal Approximation

@ An innefficient approach to using an MCMC approximation of gradient:
@ At iteration k, we want to sample from p(z | w*).

e Start from some z*°, sample ot sample "2, etc from an MCMC chain for w”.

o Treat the last sample 2*'7 from the Markov chain as a sample from p(z | w").

@ Update the parameters using 2*'7 to get a gradient estimate (sample size 1),

whtl = wk 4 o (F(X) — F(zPT)).

o If the Markov chain is run long enough, can show convergence
using standard stochastic gradient descent arguments.

e But have to run MCMC on each iteration of the SGD method.

Younes Algorithm (“Persistent Contrastive Divergence”)

@ Younes algorithm (also known as “persistent contrastive divergence”):
© At iteration k, we want to sample from p(x | w").

o Set "0 = 2*~1T sample 2", sample 2*2, and so on.

o Treat the last sample z*'* from the Markov chain as a sample from p(z | w").

@ Update the parameters using z* to get a gradient estimate,

Wt = Wb 4 o (F(X) = F(2®T)),

@ In Younes algorithm, you don't need to run the Markov chain to stationarity.
e Usually you only run MCMC for 1 or a small number of iterations.
e This gives a biased estimate, but is much faster than running MCMC to stationarity.
e And with small-enough step-size, can show convergence.

Pairwise UGM on MNIST Digits

@ Samples from a lattice-structured pairwise UGM trained on MNIST:

5 10 15 20 25 5 10 15 20 25

5 10 15 20 25 5 10 15 20 25

e Training: 100k stochastic gradient w/ Gibbs sampling steps with a; = 0.01.
@ Samples are iteration 100k of Gibbs sampling with fixed w.

Outline

9 Conditional Random Fields

Motivation: Rain Data with Month Information

@ Our Ising UGM model for the rain data with tied parameters was

k k
p(Y1, Y2, Yk | w,v) o exp (Z wye + Zvycyc-1> ;

c=1 c=2

we switched variable names from z; to y. (but model is same).

o First term will reflect that “not rain” is more likely.
@ Second term reflects that consecutive days are more likely to be the same.
e This model is equivalent to a Markov chain model.

@ But the model doesn't know that some months are less rainy.

@ We can add features that reflect the month (or other information).

o Multi-label supervised learning, but modeling dependence in labels ..
o Adding fixed features to a UGM is also called a conditional random field (CRF).

Conditional Random Field (CRF) for Rain Data

@ A CRF model of rain data, conditioned on 12 “one of k" month features x;,

k k k
Py, Y2, - -5 Yk | T, w0, w, v) o exp (Z woye + Y VY1 + P ychx> :

c=1 c=2 c=1

@ The potentials in this model over the random variables y. are
¢i(yi) = exp (w0yi + yz‘wTJC> » G (Yir yj) = exp(vyy;)-

o If we draw the UGM over g, variables we get a chain structure.

e So inference can be done using forward-backward.
e And it's still log-linear so the NLL will be convex.

o Gradient descent finds global optimum jointly with respect to wo, w, and v.

Rain Data with Month Information

@ Samples from CRF conditioned on x being December (left) and July (right):

Samples from CRF model (for December) Samples from CRF model (for July)

@ Conditional NLL is 16.21, compared to Markov chain which gets NLL 16.81.

o Mark has Matlab (:/) code for this and a variety of other UGM models:
https://www.cs.ubc.ca/~schmidtm/Software/UGM. html

https://www.cs.ubc.ca/~schmidtm/Software/UGM.html

Conditional Random Fields (General Case)
@ We often write the likelihood for general CRFs in the form

exp(w' F(z,y)),

p(y | Iaw) = Z(wi)

for some parameters w and features F(z,y).

@ The NLL is convex; for a single (z,y) it's
—logp(y | #,w) = —w! F(z,y) + log Z(z,w),
with gradient
—Vlogp(y | #,w) = —F(2,y) + Eyjzu[F(z, y)].

This requires inference for each value of z in training data.
e For rain data, need to do run forward-backward 12 times.
o If each example has its own features, need to run it n times.
e Can make sense to use stochastic gradient if n is large.

Motivation: Automatic Brain Tumor Segmentation

@ Task: identification of tumours in multi-modal MRI.

@ Applications:
e Radiation therapy target planning, quantifying treatment response.
e Mining growth patterns, image-guided surgery.

o Challenges:

e Variety of tumor appearances, similarity to normal tissue.
e “You are never going to solve this problem”.

Brain Tumour Segmentation with Label Dependencies

o After a lot pre-processing and feature engineering (convolutions, priors, etc.),
final system used logistic regression to label each pixel as “tumour” or not.

1 exp(yew ' z.)
p(ye | zc) = T = T T
1+ exp(—2y.wTz.) exp(wTz:) + exp(—wTx.)

@ Gives a high “pixel-level” accuracy, but sometimes gives silly results:

o Classifying each pixel independently misses dependence in labels y':
o We prefer neighbouring voxels to have the same value.

Brain Tumour Segmentation with Label Dependencies

@ With independent logistic, conditional distribution over all labels in one image is

exp(yew' z.)
p(wTx.) + exp(—w'x.)

 exp (Z ychxc> :

c=1

k
p(y17y27"'7yk"xlaan"‘a :H

where here x. is the feature vector for position ¢ in the image.

@ We can view this as a log-linear UGM with no edges,

¢c(yc) = eXp(yc’le’c%

so given the x. there is no dependence between the ..

Brain Tumour Segmentation with Label Dependencies

@ Adding an Ising-like term to model dependencies between y; gives

Py Y2, s Yk | @1, @0, @) o exp Zycw e+ Z Yeyerv |
(e,c)e€

@ Now we have the same “good” logistic regression model,
but v controls how strongly we want neighbours to be the same.

@ We can run gradient descent to jointly optimize w and v (convex NLL).
e So we find the optimal joint logistic regression and Ising model.

Conditional Random Fields for Segmentation

@ Recall the performance with the independent classifier:

@ The pairwise CRF better modelled the “guilt by association™:
e Trained with pseudo-likelihood, constraining v > 0.
o Decoding with “graph cuts” (see bonus slides from last lecture).

(We were using edge features . too, see bonus (and different A on edges).)

Combining Neural Networks and UGMs

@ Instead of fixed features, you could use a neural network:

k

p(y |) o< exp Zycw h(W3h(W?2(Wz.))) Z UYeYer
c=1 (c,c)eE

or you could have an encode-decode model spit out potentials of a UGM:

— @7
R
O————tym %

O o der deccley

bonMS,(

@ These are sometimes called a conditional neural fields or deep structured model.

Multi-Label Classification bonus!

@ Learned dependencies on a mult-label image classification dataset:

female
people
indoor
baby

sea
portrait
transport
flower
sky

lake
structures
bird
plant life
food

male
clouds
water
animals
car

tree

dog
sunset
night
river

http://proceedings.mlr.press/v37/chenbl5.pdf

http://proceedings.mlr.press/v37/chenb15.pdf

Automatic Differentiation (AD) vs. Inference

@ Deep structured model gradient combines neural/Markov gradients:
@ Forward pass through neural network to get 9. predictions.
@ Forward message passing to compute normalizing constant.
© Backwards message passing to compute marginals.
© Backwards pass through neural network to get all gradients.

@ You could skip the last two steps if you use automatic differentiation.

@ But with approximate inference, AD may or may not work:
o AD will work for iterative variational inference methods (which we'll cover later).
e But it takes way more memory than needed (needs to store all iterations).
e AD is harder for Monte Carlo methods.

o Can’t AD through sampling steps — but can use “reparamaterization trick” (later).

@ Recent trend: run iterative variational method for a fixed number of iterations.
o AD can give gradient of result after this fixed number of iterations.
e “Train the inference you will use at test time."

bonus,(

Combining FCNs and CRFs bonus!

@ Deeplab used a fully-connected pairwise UGM on top layer of FCN:
Input eroplane
Coa;:e S%lore map

Deep

< Convolutional
S ol

Tt Network

Final Output

Fully Conngcted CRF Bi-linear Interpolation

Fig. 1: Model [llustration. A Deep Convolutional Neural Network such as VGG-16 or ResNet-101 is employed in a fully
convolutional fashion, using atrous convolution to reduce the degree of signal downsampling (from 32x down 8x). A
bilinear interpolation stage enlarges the feature maps to the original image resolution. A fully connected CRF is then
applied to refine the segmentation result and better capture the object boundaries.

https://arxiv.org/pdf/1606.00915.pdf
@ Most recent version of the paper removed the UGM.

@ Still really helps if you don’t have tons of training data (sae, ..., Sutheriand, 1cAI-23).

https://arxiv.org/pdf/1606.00915.pdf
https://arxiv.org/abs/2205.01233

Do we need UGMs in Neural Networks?

@ Recall that encode-decode hidden layers already capture label dependencies.
e So do we need a UGM to explicitly model label dependencies in output layer?

e Factor 1: data size (big vs. small).
o With a small dataset, it could be helpful to have direct dependencies in model.
o With a large dataset, the hidden layers should reflect dependencies.

@ Factor 2: how you evaluate the model (individual parts or full decoding).

o If you measure “pixel level” or “word level” error, UGMs may not help.
o If you measure "whole image” or “whole sentence” error, UGMs may help.

o Because for example inference can discourage unlikely joint labelings.

Combining RNNs and Graphical Models

@ An example where we use explicit label dependencies is language translation:

0-0-0-0-
laaaggﬁm 500

@ Above model has usual deterministic edges, and DAG edges on labels.
@ Can use Viterbi decoding to find best translation in this model.
e Taking into account probability of seeing neighbouring words.

@ But there is not much information in the DAG part of the model.
e Only modeling dependencies between adjacent words.

@ What we really want is to have the label we output affect the hidden state.
e So that the encoding reflects previously-output words.

Combining RNNs and Graphical Models bonus!

e

@ In order for the hidden states to depend on the output, we have this monstrosity:

[e

awﬂaﬂbé
Do

@ This can still be written as a Markov chain, but we cannot do Viterbi decoding.

e Problem is that the hidden states in decoder become random variables.
e So the state at each time has discrete and continuous parts (cannot be enumerated).

@ To do decoding in this thing, we typically use beam search.
e Heuristic algorithm that maintains “k best decodings up to time ¢."
o Can be arbitrarily bad, but works if decoding is obvious as we go forward in time.

e The type of edge and decoding strategy is also common with transformers.

Summary

Log-linear parameterization can be used to learn UGMs:
e Maximum likelihood is convex, but requires normalizing constant and inference.
@ Approximate UGM learning:

@ Change objective function: pseudolikelihood.
@ Approximate marginals: Monte Carlo or variational methods.

@ Younes algorithm for using MCMC within SGD.
e Conditional random fields generalize logistic regression:
e Multi-label model that explicitly models label dependencies.

Combining CRFs with deep learning.
e You can learn features and and the explicit label dependencies.

End of Part 4 (“Markov Models"): Key Concepts

@ We discussed Markov chains:

o Distribution assuming independence of past given last time (Markov assumption).
e Common parameterization uses initial probabilities and transition probabilities.
e Homogeneous Markov chains assume same transition probabilities across time.

@ We discussed inference in Markov chains.

e Ancestral sampling: sample each variable given previous variables in ordering.
o CK equations: give marginals recursively.

o Stationary distribution: marginals as time goes to infinity.

e Viterbi decoding: special case of dynamic programming.

e Forward backward: computation of all conditionals with two “passes”.

End of Part 4 (“Markov Models"): Key Concepts

e We discussed Markov chain Monte Carlo (MCMC):

e Define a Markov chain that has target distribution as stationary distribution.
o Use samples from the Markov chain within Monte Carlo method.
@ Possibly with burn in and/or thinning.
e Most common methods are Metropolis-Hastings.
@ Based on accepting proposals or keeping the same sample.
e Special case of Metropolis-Hastings is Gibbs sampling.
@ Based on sampling one variable at a time given all others.

End of Part 4 (“Markov Models"): Key Concepts

e We discussed directed acyclic graphical (DAG).

e Assume independence of previous variables given a set of parent variables.
o Can be used to visualize models/assumptions.
e Conditional independences can be tested using d-separation.

@ Are paths blocked by observed chain/fork, or unobserved child?

e Our standard independence assumptions appear if we add parameters to DAG.
e Training DAGs decomposes into d supervised learning problems.

e We discussed undirected graphical models (UGMs).

o Write distribution as product of non-negative potentials over subsets of variables.

o Log-linear models use exp(linear) potentials.
@ Convex NLL trained with gradient descent, but gradient requires inference.

e Approximate training methods include pseudo-likelihood and variational methods.
@ Or Younes algorithm which integrates SGD steps within MCMC.

e Conditional random fields add features to UGMs.

o Deep structured models learn features in UGMs.

End of Part 4 (“Markov Models"): Key Concepts

@ We briefly discussed inference in graphical models.

e Markov chain inference methods extend to trees for DAGs and UGMs.
o But for general graphs inference can be hard in DAGs/UGMs.

o Except unconditional sampling, likelihood, and learning (easy in DAGs).

@ We skipped over structured SVMs
e A generalization of SVMs that can model correlations in labels.
e Applying SGD requires decoding instead of inference.
e Mark's slides on this topic are here:
https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/L28.5.pdf

https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/L28.5.pdf

Outline

© Mixture of Gaussians

1 Gaussian for Multi-Modal Data

@ Major drawback of Gaussian is that it is uni-modal.
o It gives a terrible fit to data like this:

0.03

0.025

0.015

0.005

@ If Gaussians are all we know, how can we fit this data?

2 Gaussians for Multi-Modal Data

@ We can fit this data by using two Gaussians

0.03

@ Half the samples are from Gaussian 1, half are from Gaussian 2.

Mixture of Gaussians
@ Our probability density in this example is given by

. 1) 1 ;
p(xl ’ /1’17#2721722) = 5 p(xl | Hluzl) +§ p(xz | HZ:EQ) ’
PDF of éussian 1 PDF of araussian 2

o We need the (1/2) factors so it still integrates to 1.

0.03

0.0251

0.0151

0.005

Mixture of Gaussians

@ If data comes from one Gaussian more often than the other, we could use

p(a’ | 1, p2, $1, B2, w1, m0) = w1 p(a' | pr, B1) +m2 p(at | pa, S2)
PDF of Gaussian 1 PDF of Gaussian 2

where 1 and w5 are non-negative and sum to 1.
e 7 represents “probability that we take a sample from Gaussian 1".

016

0.14

01z

010

o.og

006

004

0.0z

0.0

50 -25 00 25 50 75 100 125

Mixture of Gaussians

@ In general we might have a mixture of &£ Gaussians with different weights.

k
ple | p,3,7) = Zﬂc (| pe, Be)
—_——

e=1 PDF of Gaussian ¢

o Where 7. are categorical distribution parameters (non-negative and sum to 1).
o We can use it to model complicated densities with Gaussians (like RBFs).

@ “Universal approximator”: can model any continuous density on compact set.

Mixture of Gaussians

@ Gaussian vs. mixture of 2 Gaussian densities in 2D:

0
® .

T T T T T
-2 o 2 4 -5

@ Marginals will also be mixtures of Gaussians.

Mixture of Gaussians

@ Gaussian vs. Mixture of 4 Gaussians for 2D multi-modal data:

Gaussian (nll = 7.100) Mixture of Gaussian (nll = 5.108)
20 - 20
151 15|
100 10
5k 51
of ol
k1S 5|
‘ot 10|
REIS REI
20 20 I I I I
20 20 15 -10 5 0 5

Mixture of Gaussians

@ Gaussian vs. Mixture of 5 Gaussians for 2D multi-modal data:

Gaussian (nll = 7.100) Mixture of Gaussian (nll = 5.050)
20 - 20
151 15|
100 10
5k 51
of ol
k1S 5|
‘ot 10|
REIS REI
20 20 I I I I
20 20 15 -10 5 0 5

Latent-Variable Representation of Mixtures

@ For inference/learning in mixture models, we often introduce variables 2

e Each z' is a categorical variable in {1,2,...,k} when we have k mixtures.
e The value z* represents “what mixture this example came from".
o We do not observe the z* values (they are called latent variables).

e Why this interpretation of “each x’ comes from one Gaussian”?

o Consider a model where p(z* = ¢) = 7., and 2° | 2° = ¢ ~ N (i, 2
o Now marginalize over the z* in this model:

k

k
pla| w7 =Y plaz=c)=Y plz=c)px|z=c)

c=1

k
= § e p(x | Mcazc) ,
—_——
e=1 PDF of Gaussian ¢

which is the PDF of the mixture of Gaussians model.

Ancestral Sampling in Mixture of Gaussians

@ Generating samples with ancestral sampling in the latent variable representation:

@ Sample cluster z based on prior probabilities 7. (categorical distribution).
@ Sample example = based on mean p, and covariance 3, of Gaussian z.

Marginalization and computing conditionals is also easy.
Decoding z or computing marginal p(z | x) is easy (next slide).
Decoding x in Gaussian mixtures is NP-hard.

We usually fit these models with expectation maximization (EM).

Choosing k: domain knowledge, test set likelihood, or marginal likellihood.

Inference Task: Computing Responsibilities

o Consider computing probability that example ¢ came from mixture c.
o We call this the responsibility of mixture ¢ for example 7,

re=p(z=c|a")
p(z = ¢, zt)
p(z?)
_ p(z =c,2%)
Zi’:l p(z' = ¢ a")
__pe=ap | z=0)
Sh_ p(z =c)p(a | 2 =)
e p(' | e, Ee)

=—— :
Zc’:l e P | pery Ber)

@ If you think the different mixtures as clusters, this is probability of being in cluster.

(we know all these values)

Notation Alert: 7 vs. z vs. » (MEMORIZE)

@ In mixture models, many people confuse the quantities 7, z, and r.

o Vector 7 has k elements in [0, 1] and summing up to 1.
o Number 7. is the “prior” probability that an example is in cluster c.
e This is a parameter (we learn it from data).

e Matrix R is n x k& matrix, summing to 1 across rows.

o Number 7! is the “"posterior’ probability that example i is in cluster c.
o Computing these values is an inference task (assumes known parameters).

o Vector z has n elements in {1,2,...,k}.

o Category z' is the actual mixture/cluster that generated example i.
e This is a nuisance parameter (an unknown variable that is not a parameter).

Summary

@ Mixture of Gaussians writes probability as convex comb. of Gaussian densities.
e Can model arbitrary continuous densities.
o Latent-variable representation of mixtures with cluster variables z*.

o Allows ancestral sampling by sampling cluster than example.
e Responsibility is probability that an example belongs to a cluster.

Example: Ising Model of Rain Data bonus!

e E.g., for the rain data we could parameterize our node potentials using

wy No rain

log(¢i(zi)) = {

0 rain

@ Why do we only need 1 parameter?
o Scaling ¢;(1) and ¢(2) by constant doesn’t change distribution.

@ In general, we only need (k — 1) parameters for a k-state variable.
o But if we're using regularization we may want to use k anyways (symmetry).

Example: Ising Model of Rain Data bonus!

@ The Ising parameterization of edge potentials,

W2 T = Ty

log(¢sj(xs,x;5)) = {0 iy s
i 7 Xj

@ Applying gradient descent gives MLE of

o= [ossl s o) =1 =[S0 el = [T 20

preference towards no rain, and adjacent days being the same.
@ Average NLL of 16.8 vs. 19.0 for independent model.

Full Model of Rain Data

@ We could alternately use fully expressive edge potentials

log(¢ij(zi, z)) = [UJQ w3] 7

Wyq Ws

but these don't improve the likelihood much.

@ We could fix one of these at 0 due to the normalization.
e But we often don't do this when using regularization.

@ We could also have special potentials for the boundaries.

e Many language models are homogeneous, except for start/end of sentences.

bonus,(

Example: Ising Model of Rain Data

Independent model vs. chain-UGM model with tied nodes and Ising tied edges:

@ For this dataset, using untied or general edges doesn't change likelihood much.

‘Samples based on independent model Samples from MAF model

bon MS,‘

Example: Ising Model of Rain Data bonus!

Samples from Ising chain-UGM model if it rains on the first day:

Conditional samples from MRF model

Example of Feature Function bonus!

e Consider the 2-node 1-edge UGM (1)—(2), where each state has 2 values.
e So we have potentials ¢1(21), ¢2(z2), and ¢12(z1,22) and want to have

T _
w F(:E) = Wiz, T W22 T W22 ,20-

@ With no parameter tying and x = [2 1], our parameter vector and features are

w11
w12

wa 1

w22
w = ’ F(x) =
w1211 |’ (z)

W1,2,1,2
w1,2,2,1

Pl

| W1,2,2,2]

OO OO~ KF~Oo

Example of Feature Function bonus!

e

o If we instead had Ising potentials (just measuring whether 21 = x2) we would have
T _
w F(«T) = W1z, + W22y + W1.2same;

where w1 2 same is the parameter specifying how much we want z; = .

@ With no parameter tying and x = [2 1], our parameter vector and features are

wl,l 0
wi,2 1

w=| w1 |, Flz)=|1],
w22 0
W1,2.same 0

UGM Training Objective Function bonus!

o With log-linear parameterization, NLL for IID training examples is

exp(wT F(x
Zlogpa: | w) = Zlog <p(Z(w)())>

=1

= ZwTF(xi) + Z log Z(w
i=1 i=1
= —w'F(X) +nlog Z(w).

where the F(X) = >, F(2") are called the sufficient statistics of the dataset.

o Given sufficient statistics /'(X), we can throw out the examples x'.
(only go through data once)

@ Function f(w) is convex (it's linear plus a big log-sum-exp function).
e But notice that Z depends on w

Log-Linear UGM Gradient

@ For 1 example =, we showed that NLL with log-linear parameterization is
f(w) = —w" F(X) + log Z(w).
@ The partial derivative with respect to parameter w; has a simple form
Vo,) = ~F5(X)+ 3 Wﬂ(w)
= —F;(X) +)_p(z| w)Fj(z)
= —F;(X) + E[Fj(2)].

@ Observe that derivative of log(Z) is expected value of feature.

bonus,(

Brain Tumour Segmentation with Label Dependencies bonus!

@ We got a bit more fancy and used edge features z%/,

p(yl’y2’“"yd‘$l’$2, *eXp Zwal‘l"‘ Z yyUT Kl
(i.5)€E

e For example, we could use z% = 1/(1 + |z — 27|).
o Encourages y; and y; to be more similar if * and 27 are more similar.

@ This is a pairwise UGM with
<l5z‘(yi) = eXp(yinwi)v ¢ij(yi7yj) = exp(y'y vTx”)

so it didn’t make inference any more complicated.

Modeling OCR Dependencies bonus!

@ What dependencies should we model for this problem?

o ()@ D)D(s)

Output: "Paris"

(ye, x.): potential of individual letter given image.

(Ye—1,Yc): dependency between adjacent letters (‘g-u’).

(Ye—1,Yes Te—1, %) adjacent letters and image dependency.
e(Ye—1,Yc): inhomogeneous dependency (French: ‘e-r’ ending).
e(Ye—2,Ye—1,Yc): third-order and inhomogeneous (English: ‘i-n-g’ end).
(y € D): is y in dictionary D?

S S-S S S

Tractability of Discriminative Models

@ Features can be very complicated, since we just condition on the z., .

@ Given the z., tractability depends on the conditional UGM on the y..
o Inference tasks will be fast or slow, depending on the y. graph.

@ Besides “low treewidth”, some other cases where exact computation is possible:

o Semi-Markov chains (allow dependence on time you spend in a state).
o For example, in rain data the seasons will be approximately 3 months.

bon MS,(

o Context-free grammars (allows potentials on recursively-nested parts of sequence).

e Sum-product networks (restrict potentials to allow exact computation).
e “Dictionary” feature is non-Markov, but exact computation still easy.

@ We can alternately use our previous approximations:
@ Pseudo-likelihood (what we used).
@ Monte Carlo approximate inference (eventually better but probably much slower).
© Variational approximate inference (fast, quality varies).

Structure Learning in UGMs bonus!

Recall that in Ising UGMs, our edge potentials have the form

¢ij (CCZ', .%'j) = exp(wijmiwj).

If we set w;; =0, it sets ¢;;(x;, ;) =1 for all z; and x;.
e Potential just “multiplies by 1", which is equivalent to removing the edge.

L1-regularization of w;; values performs structure learning in UGM.

For general log-linear, each edge has multiple parameters wj ; s -
o In this case we can use “group L1-regularization” for structure learning.
e Each group will be all parameters w; ;... associated with an edge (i, 7).

bonus,‘

ceeeeeeeCrP®erree®®e®PePeyee®

<
=

€
n

Large A (and optimal tree):

Structure Learning on Rain Data

bon UlS,[

Structure Learning on USPS Digits

L1 on USPS digits:

Structure learning of pairwise UGM with group

¥c)
% e 00 0 06\
0000 0@ X

o} B
¢ 8066662

860606690 eeq)
446999699 HOeel e Q
SENCE O g0-0-0

568 0

G009 OO 606 066 0060
- - Ca o S N Y G- S S
860 9 O O 4
RO OO 0¢d b oo 60

6 O O A OO
(N 000090090

@0 , @

,@ 660666060600
ol o @,,,,, o

Structure Learning on News Words bonus!
Group-L1 on newsgroups data:

Structure Learning on News Words

Group-L1 on newsgroups data:

‘ baseball
| |
/)
/

-Q
Q \
‘ @
| -‘

/

y‘ ..

\ 0

bonus,‘

Posterior Regularization bonus!

@ In some cases it might make sense to use posterior regularization:
o Regularize the probabilities in the resulting model.

@ Consider an NLP labeling task where
@ You have a small amount of labeled sentences.
e You have a huge amount of unlabeled sentences.

@ Maximize labeled likelihood, plus total-variation penalty on p(y. | x,w) values.
e Give high regularization weights to words appearing in same trigrams:

they run over

blood run cold a run for

0.5
- \ =
we run out 04

a run along
luck run out ninth run for

http://jgillenw.com/conl12013-talk.pdf
@ Useful for “out of vocabulary” words (words that don't appear in labeled data).
e Has been replaced in recent by continuous word representations like word2vec.

http://jgillenw.com/conll2013-talk.pdf

Avoiding Underflow when Computing Responsibilities

e Computing responsibility may underflow for high-dimensional z?, due to
p(zt | 2* = ¢, 01).
@ Usual ML solution: do all but last step in log-domain.

log ri = logp(a;i] 2=, o) + logp(zi =c| 0
k
o (pr | =, (s = | @”).
@=ll

@ To compute last term, use “log-sum-exp” trick.

bonMS,[

Log-Sum-Exp Trick

@ To compute log(D, exp(v;)), set B = max;{v;} and use:

log(z exp(v;)) = log Z exp(v; — B+ 5))
= log(Zexp v; — B) exp(B))
= log(exp(p Z exp(v
= log(exp(p)) + log Z exp(v

= B+ log ZeXp v; — B)).

<1

@ Avoids overflows due to computing exp operator.

bon MS,‘

	Log-Linear Models
	Conditional Random Fields
	Mixture of Gaussians

