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Last Time: Undirected Graphical Models

We discussed undirected graphical models

p(x1, x2, . . . , xd) ∝
∏
c∈C

ϕc(xc),

which write joint distribution as product of non-negative potentials over subsets c.

The most common variant is pairwise UGMs,

p(x1, x2, . . . , xd) ∝

 d∏
j=1

ϕj(xj)

 ∏
(i,j)∈E

ψij(xi, xj)

 ,

which includes Markov chains and multivariate Gaussians as special cases.

In tree-structured graphs (no loops), common inference operations are O(dk2).

By generalizing the methods used for Markov chains.
But runtime is exponential in “treewidth” for graphs with loops.



Vancouver Rain Data: DAG vs. UGM

We previously considered the “Vancouver Rain” dataset:

We previously fit this with a Markov chain under the DAG factorization:

p(x1, x2, . . . , xd) = p(x1)

d∏
j=2

p(xj | xj−1),

where we used tabular potentials (so learning was counting).



Vancouver Rain Data: DAG vs. UGM

Consider fitting a Markov chain under a UGM factorization:

p(x1, x2, . . . , xd) ∝

 d∏
j=1

ϕj(xj)

 d∏
j=2

ϕj,j−1(xj , xj−1)

 .

Consider the following UGM parameterization (for xj ∈ {−1,+1}):

ϕj(xj) = exp(wjxj), ϕij(xi, xj) = exp(vijxixj),

where wj is a node weight, vij is an edge weight, and we have used Ising edges.
The exponential function makes the potentials non-negative.

We call this a log-linear model: logarithms of potentials are linear.

Ising potentials can reflect how strongly neighbours are attracted/repulsed.
For the rain data, we would expect vij > 0 (adjacent days likely to have same value).
For the rain data, it makes sense to tie wj across j and vij across (i, j) values.



Vancouver Rain Data: DAG vs. UGM
Our log-linear model of the rain data under the Ising parameterization:

p(x1, x2, . . . , xd | w, v) ∝

 d∏
j=1

exp(wxj)

 d∏
j=2

exp(vxjxj−1)


= exp

 d∑
j=1

wxj +

d∑
j=2

vxjxj−1


= exp

w d∑
j=1

xj + v

d∑
j=2

xjxj−1


= exp

([
w
v

]T [ ∑d
j=1 xj∑d

j=2 xjxj−1

])
.

This is an exponential family in canonical form!

NLL will be convex in terms of w and v; derivative of NLL has simple form.
If we didn’t tie parameters, we’d have a statistic for each time.



Learning Log-Linear Model for Vancouver Rain Data

Canonical form: p(x | w, v) ∝ exp

([
w
v

]T [ ∑d
j=1 xj∑d

j=2 xjxj−1

])
.

Sufficient statistics s1(x) =
∑d

j=1 xj , s2(x) =
∑d

j=2 xjxj−1.

We derived in general for canonical-form exponential families that

∇θ[− log p(X | θ)] = −
n∑

i=1

s(xi) + nE[s(X) | θ].

Can’t solve analytically here. . . but we can just run gradient descent!

We have E[s(X) | w, v] =

[∑d
j=1 2 (Pr(Xj = 1 | w, v)− 1)∑d
j=2 (2Pr(Xj = Xj−1 | w, v))

]
.

Can compute all of these marginals with forward-backward.
Could also compute logZ and use autodiff.



Learning Log-Linear Models (In General)

We often write log-linear UGMs in an exponential family form

p(x | w) =
exp

(
wTF (x)

)
Z(w)

,

where the feature functions F (x) count the number of times we use each wj .

Examples of feature functions, and potentials for categoricals, in bonus slides.

Feature functions are just sufficient statistics, so

∇w[− log p(X | w)] = −
n∑

i=1

F (xi) + nE[s(X) | w].

Computing this requires inference, which is #P-hard in general graphs.

So we need to consider approximations when learning.



Approximate Learning: Pseudo-Likelihood

A popular approximation to the NLL is pseudo-likelihood.

“Fast, convex, and crude.”

Pseudo-likelihood turns learning into d single-variables problem (similar to DAGs),

p(x1, x2, . . . , xd) ≈
d∏

j=1

p(xj | x−j) =

d∏
j=1

p(xj | xnei(j)).



Approximate Learning: Marginal Approximations

Another way to approximate the NLL is with approximate inference.
1 Deterministic variational approximations of E[F (x)] (more on these later).

Approximate p by a simpler q, and compute expectation for q.

2 Monte Carlo approximation of E[Fj(x)] given current parameters w:

∇f(w) = −F (X) + E[F (x)]

≈ −F (X) +
1

t

t∑
i=1

F (xi)︸ ︷︷ ︸
Monte Carlo approx

,

based on samples from p(x | w).
Unfortunately, we usually can’t sample efficiently. . . .



Approximate Learning with MCMC Marginal Approximation

An innefficient approach to using an MCMC approximation of gradient:
1 At iteration k, we want to sample from p(x | wk).

Start from some xk,0, sample xk,1, sample xk,2, etc from an MCMC chain for wk.
Treat the last sample xk,T from the Markov chain as a sample from p(x | wk).

2 Update the parameters using xk,T to get a gradient estimate (sample size 1),

wk+1 = wk + αk(F (X)− F (xk,T )).

If the Markov chain is run long enough, can show convergence
using standard stochastic gradient descent arguments.

But have to run MCMC on each iteration of the SGD method.



Younes Algorithm (“Persistent Contrastive Divergence”)

Younes algorithm (also known as “persistent contrastive divergence”):
1 At iteration k, we want to sample from p(x | wk).

Set xk,0 = xk−1,T , sample xk,1, sample xk,2, and so on.
Treat the last sample xk,T from the Markov chain as a sample from p(x | wk).

2 Update the parameters using xk to get a gradient estimate,

wk+1 = wk + αk(F (X)− F (xk,T )),

In Younes algorithm, you don’t need to run the Markov chain to stationarity.

Usually you only run MCMC for 1 or a small number of iterations.
This gives a biased estimate, but is much faster than running MCMC to stationarity.
And with small-enough step-size, can show convergence.



Pairwise UGM on MNIST Digits

Samples from a lattice-structured pairwise UGM trained on MNIST:

Training: 100k stochastic gradient w/ Gibbs sampling steps with αt = 0.01.

Samples are iteration 100k of Gibbs sampling with fixed w.
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Motivation: Rain Data with Month Information

Our Ising UGM model for the rain data with tied parameters was

p(y1, y2, . . . , yk | w, v) ∝ exp

(
k∑

c=1

wyc +

k∑
c=2

vycyc−1

)
;

we switched variable names from xj to yc (but model is same).

First term will reflect that “not rain” is more likely.

Second term reflects that consecutive days are more likely to be the same.

This model is equivalent to a Markov chain model.

But the model doesn’t know that some months are less rainy.

We can add features that reflect the month (or other information).

Multi-label supervised learning, but modeling dependence in labels yc.
Adding fixed features to a UGM is also called a conditional random field (CRF).



Conditional Random Field (CRF) for Rain Data

A CRF model of rain data, conditioned on 12 “one of k” month features xj ,

p(y1, y2, . . . , yk | x,w0, w, v) ∝ exp

(
k∑

c=1

w0yc +

k∑
c=2

vycyc−1 +

k∑
c=1

ycw
Tx

)
.

The potentials in this model over the random variables yc are

ϕi(yi) = exp
(
w0yi + yiw

Tx
)
, ϕij(yi, yj) = exp(vyiyj).

If we draw the UGM over yc variables we get a chain structure.

So inference can be done using forward-backward.
And it’s still log-linear so the NLL will be convex.

Gradient descent finds global optimum jointly with respect to w0, w, and v.



Rain Data with Month Information

Samples from CRF conditioned on x being December (left) and July (right):

Conditional NLL is 16.21, compared to Markov chain which gets NLL 16.81.

Mark has Matlab (:/) code for this and a variety of other UGM models:
https://www.cs.ubc.ca/~schmidtm/Software/UGM.html

https://www.cs.ubc.ca/~schmidtm/Software/UGM.html


Conditional Random Fields (General Case)
We often write the likelihood for general CRFs in the form

p(y | x,w) = 1

Z(x,w)
exp(wTF (x, y)),

for some parameters w and features F (x, y).

The NLL is convex; for a single (x, y) it’s

− log p(y | x,w) = −wTF (x, y) + logZ(x,w),

with gradient

−∇ log p(y | x,w) = −F (x, y) + Ey|x,w[F (x, y)].

This requires inference for each value of x in training data.
For rain data, need to do run forward-backward 12 times.
If each example has its own features, need to run it n times.
Can make sense to use stochastic gradient if n is large.



Motivation: Automatic Brain Tumor Segmentation

Task: identification of tumours in multi-modal MRI.

Applications:

Radiation therapy target planning, quantifying treatment response.
Mining growth patterns, image-guided surgery.

Challenges:

Variety of tumor appearances, similarity to normal tissue.
“You are never going to solve this problem”.



Brain Tumour Segmentation with Label Dependencies

After a lot pre-processing and feature engineering (convolutions, priors, etc.),
final system used logistic regression to label each pixel as “tumour” or not.

p(yc | xc) =
1

1 + exp(−2ycwTxc)
=

exp(ycw
Txc)

exp(wTxc) + exp(−wTxc)

Gives a high “pixel-level” accuracy, but sometimes gives silly results:

Classifying each pixel independently misses dependence in labels yi:

We prefer neighbouring voxels to have the same value.



Brain Tumour Segmentation with Label Dependencies

With independent logistic, conditional distribution over all labels in one image is

p(y1, y2, . . . , yk | x1, x2, . . . , xk) =
k∏

c=1

exp(ycw
Txc)

exp(wTxc) + exp(−wTxc)

∝ exp

(
d∑

c=1

ycw
Txc

)
,

where here xc is the feature vector for position c in the image.

We can view this as a log-linear UGM with no edges,

ϕc(yc) = exp(ycw
Txc),

so given the xc there is no dependence between the yc.



Brain Tumour Segmentation with Label Dependencies

Adding an Ising-like term to model dependencies between yi gives

p(y1, y2, . . . , yk | x1, x2, . . . , xk) ∝ exp

 k∑
c=1

ycw
Txc +

∑
(c,c′)∈E

ycyc′v

 ,

Now we have the same “good” logistic regression model,
but v controls how strongly we want neighbours to be the same.

We can run gradient descent to jointly optimize w and v (convex NLL).

So we find the optimal joint logistic regression and Ising model.



Conditional Random Fields for Segmentation

Recall the performance with the independent classifier:

The pairwise CRF better modelled the “guilt by association”:
Trained with pseudo-likelihood, constraining v ≥ 0.

Decoding with “graph cuts” (see bonus slides from last lecture).

(We were using edge features xcc′ too, see bonus (and different λ on edges).)



Combining Neural Networks and UGMs

Instead of fixed features, you could use a neural network:

p(y | x) ∝ exp

 k∑
c=1

ycv
Th(W 3h(W 2(W 1xc))) +

∑
(c,c′)∈E

uycyc′

 .

or you could have an encode-decode model spit out potentials of a UGM:

These are sometimes called a conditional neural fields or deep structured model.



Multi-Label Classification

Learned dependencies on a mult-label image classification dataset:

http://proceedings.mlr.press/v37/chenb15.pdf

http://proceedings.mlr.press/v37/chenb15.pdf


Automatic Differentiation (AD) vs. Inference

Deep structured model gradient combines neural/Markov gradients:
1 Forward pass through neural network to get ŷc predictions.
2 Forward message passing to compute normalizing constant.
3 Backwards message passing to compute marginals.
4 Backwards pass through neural network to get all gradients.

You could skip the last two steps if you use automatic differentiation.

But with approximate inference, AD may or may not work:
AD will work for iterative variational inference methods (which we’ll cover later).

But it takes way more memory than needed (needs to store all iterations).

AD is harder for Monte Carlo methods.
Can’t AD through sampling steps – but can use “reparamaterization trick” (later).

Recent trend: run iterative variational method for a fixed number of iterations.
AD can give gradient of result after this fixed number of iterations.
“Train the inference you will use at test time.”



Combining FCNs and CRFs

DeepLab used a fully-connected pairwise UGM on top layer of FCN:

https://arxiv.org/pdf/1606.00915.pdf

Most recent version of the paper removed the UGM.

Still really helps if you don’t have tons of training data (Bae, . . . , Sutherland, IJCAI-23).

https://arxiv.org/pdf/1606.00915.pdf
https://arxiv.org/abs/2205.01233


Do we need UGMs in Neural Networks?

Recall that encode-decode hidden layers already capture label dependencies.

So do we need a UGM to explicitly model label dependencies in output layer?

Factor 1: data size (big vs. small).

With a small dataset, it could be helpful to have direct dependencies in model.
With a large dataset, the hidden layers should reflect dependencies.

Factor 2: how you evaluate the model (individual parts or full decoding).

If you measure “pixel level” or “word level” error, UGMs may not help.
If you measure “whole image” or “whole sentence” error, UGMs may help.

Because for example inference can discourage unlikely joint labelings.



Combining RNNs and Graphical Models

An example where we use explicit label dependencies is language translation:

Above model has usual deterministic edges, and DAG edges on labels.

Can use Viterbi decoding to find best translation in this model.

Taking into account probability of seeing neighbouring words.

But there is not much information in the DAG part of the model.

Only modeling dependencies between adjacent words.

What we really want is to have the label we output affect the hidden state.

So that the encoding reflects previously-output words.



Combining RNNs and Graphical Models

In order for the hidden states to depend on the output, we have this monstrosity:

This can still be written as a Markov chain, but we cannot do Viterbi decoding.

Problem is that the hidden states in decoder become random variables.
So the state at each time has discrete and continuous parts (cannot be enumerated).

To do decoding in this thing, we typically use beam search.
Heuristic algorithm that maintains “k best decodings up to time t.”

Can be arbitrarily bad, but works if decoding is obvious as we go forward in time.

The type of edge and decoding strategy is also common with transformers.



Summary

Log-linear parameterization can be used to learn UGMs:

Maximum likelihood is convex, but requires normalizing constant and inference.

Approximate UGM learning:
1 Change objective function: pseudolikelihood.
2 Approximate marginals: Monte Carlo or variational methods.

Younes algorithm for using MCMC within SGD.

Conditional random fields generalize logistic regression:

Multi-label model that explicitly models label dependencies.

Combining CRFs with deep learning.

You can learn features and and the explicit label dependencies.



End of Part 4 (“Markov Models”): Key Concepts

We discussed Markov chains:

Distribution assuming independence of past given last time (Markov assumption).
Common parameterization uses initial probabilities and transition probabilities.
Homogeneous Markov chains assume same transition probabilities across time.

We discussed inference in Markov chains.

Ancestral sampling: sample each variable given previous variables in ordering.
CK equations: give marginals recursively.
Stationary distribution: marginals as time goes to infinity.
Viterbi decoding: special case of dynamic programming.
Forward backward: computation of all conditionals with two “passes”.



End of Part 4 (“Markov Models”): Key Concepts

We discussed Markov chain Monte Carlo (MCMC):

Define a Markov chain that has target distribution as stationary distribution.
Use samples from the Markov chain within Monte Carlo method.

Possibly with burn in and/or thinning.

Most common methods are Metropolis-Hastings.

Based on accepting proposals or keeping the same sample.

Special case of Metropolis-Hastings is Gibbs sampling.

Based on sampling one variable at a time given all others.



End of Part 4 (“Markov Models”): Key Concepts

We discussed directed acyclic graphical (DAG).

Assume independence of previous variables given a set of parent variables.
Can be used to visualize models/assumptions.
Conditional independences can be tested using d-separation.

Are paths blocked by observed chain/fork, or unobserved child?

Our standard independence assumptions appear if we add parameters to DAG.
Training DAGs decomposes into d supervised learning problems.

We discussed undirected graphical models (UGMs).

Write distribution as product of non-negative potentials over subsets of variables.
Log-linear models use exp(linear) potentials.

Convex NLL trained with gradient descent, but gradient requires inference.

Approximate training methods include pseudo-likelihood and variational methods.

Or Younes algorithm which integrates SGD steps within MCMC.

Conditional random fields add features to UGMs.
Deep structured models learn features in UGMs.



End of Part 4 (“Markov Models”): Key Concepts

We briefly discussed inference in graphical models.

Markov chain inference methods extend to trees for DAGs and UGMs.
But for general graphs inference can be hard in DAGs/UGMs.

Except unconditional sampling, likelihood, and learning (easy in DAGs).

We skipped over structured SVMs

A generalization of SVMs that can model correlations in labels.
Applying SGD requires decoding instead of inference.
Mark’s slides on this topic are here:
https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/L28.5.pdf

https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/L28.5.pdf
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1 Gaussian for Multi-Modal Data

Major drawback of Gaussian is that it is uni-modal.

It gives a terrible fit to data like this:

If Gaussians are all we know, how can we fit this data?



2 Gaussians for Multi-Modal Data

We can fit this data by using two Gaussians

Half the samples are from Gaussian 1, half are from Gaussian 2.



Mixture of Gaussians
Our probability density in this example is given by

p(xi | µ1, µ2,Σ1,Σ2) =
1

2
p(xi | µ1,Σ1)︸ ︷︷ ︸
PDF of Gaussian 1

+
1

2
p(xi | µ2,Σ2)︸ ︷︷ ︸
PDF of Gaussian 2

,

We need the (1/2) factors so it still integrates to 1.



Mixture of Gaussians
If data comes from one Gaussian more often than the other, we could use

p(xi | µ1, µ2,Σ1,Σ2, π1, π2) = π1 p(x
i | µ1,Σ1)︸ ︷︷ ︸

PDF of Gaussian 1

+π2 p(x
i | µ2,Σ2)︸ ︷︷ ︸

PDF of Gaussian 2

,

where π1 and π2 are non-negative and sum to 1.
π1 represents “probability that we take a sample from Gaussian 1”.



Mixture of Gaussians

In general we might have a mixture of k Gaussians with different weights.

p(x | µ,Σ, π) =
k∑

c=1

πc p(x | µc,Σc)︸ ︷︷ ︸
PDF of Gaussian c

,

Where πc are categorical distribution parameters (non-negative and sum to 1).
We can use it to model complicated densities with Gaussians (like RBFs).

“Universal approximator”: can model any continuous density on compact set.



Mixture of Gaussians

Gaussian vs. mixture of 2 Gaussian densities in 2D:

Marginals will also be mixtures of Gaussians.



Mixture of Gaussians

Gaussian vs. Mixture of 4 Gaussians for 2D multi-modal data:



Mixture of Gaussians

Gaussian vs. Mixture of 5 Gaussians for 2D multi-modal data:



Latent-Variable Representation of Mixtures

For inference/learning in mixture models, we often introduce variables zi.

Each zi is a categorical variable in {1, 2, . . . , k} when we have k mixtures.
The value zi represents “what mixture this example came from”.
We do not observe the zi values (they are called latent variables).

Why this interpretation of “each xi comes from one Gaussian”?

Consider a model where p(zi = c) = πc, and x
i | zi = c ∼ N (µc,Σc).

Now marginalize over the zi in this model:

p(x | µ,Σ, π) =
k∑

c=1

p(x, z = c) =

k∑
c=1

p(z = c)p(x | z = c)

=

k∑
c=1

πc p(x | µc,Σc)︸ ︷︷ ︸
PDF of Gaussian c

,

which is the PDF of the mixture of Gaussians model.



Ancestral Sampling in Mixture of Gaussians

Generating samples with ancestral sampling in the latent variable representation:
1 Sample cluster z based on prior probabilities πc (categorical distribution).
2 Sample example x based on mean µz and covariance Σz of Gaussian z.

Marginalization and computing conditionals is also easy.

Decoding z or computing marginal p(z | x) is easy (next slide).

Decoding x in Gaussian mixtures is NP-hard.

We usually fit these models with expectation maximization (EM).

Choosing k: domain knowledge, test set likelihood, or marginal likellihood.



Inference Task: Computing Responsibilities

Consider computing probability that example i came from mixture c.

We call this the responsibility of mixture c for example i,

ric = p(z = c | xi)

=
p(z = c, xi)

p(xi)

=
p(z = c, xi)∑k

c′=1 p(z
′ = c, xi)

=
p(z = c) p(xi | z = c))∑k

c′=1 p(z
′ = c) p(xi | z′ = c)

=
πc p(x

i | µc,Σc)∑k
c′=1 πc′ p(x

i | µc′ ,Σc′)
(we know all these values)

If you think the different mixtures as clusters, this is probability of being in cluster.



Notation Alert: π vs. z vs. r (MEMORIZE)

In mixture models, many people confuse the quantities π, z, and r.

Vector π has k elements in [0, 1] and summing up to 1.

Number πc is the “prior” probability that an example is in cluster c.
This is a parameter (we learn it from data).

Matrix R is n× k matrix, summing to 1 across rows.

Number ric is the “posterior” probability that example i is in cluster c.
Computing these values is an inference task (assumes known parameters).

Vector z has n elements in {1, 2, . . . , k}.
Category zi is the actual mixture/cluster that generated example i.
This is a nuisance parameter (an unknown variable that is not a parameter).



Summary

Mixture of Gaussians writes probability as convex comb. of Gaussian densities.

Can model arbitrary continuous densities.

Latent-variable representation of mixtures with cluster variables zi.

Allows ancestral sampling by sampling cluster than example.
Responsibility is probability that an example belongs to a cluster.



Example: Ising Model of Rain Data

E.g., for the rain data we could parameterize our node potentials using

log(ϕi(xi)) =

{
w1 no rain

0 rain
.

Why do we only need 1 parameter?

Scaling ϕi(1) and ϕ(2) by constant doesn’t change distribution.

In general, we only need (k − 1) parameters for a k-state variable.

But if we’re using regularization we may want to use k anyways (symmetry).



Example: Ising Model of Rain Data

The Ising parameterization of edge potentials,

log(ϕij(xi, xj)) =

{
w2 xi = xj

0 xi ̸= xj
.

Applying gradient descent gives MLE of

w =

[
0.16
0.85

]
, ϕi =

[
exp(w1)
exp(0)

]
=

[
1.17
1

]
, ϕij =

[
exp(w2) exp(0)
exp(0) exp(w2)

]
=

[
2.34 1
1 2.34

]
,

preference towards no rain, and adjacent days being the same.

Average NLL of 16.8 vs. 19.0 for independent model.



Full Model of Rain Data

We could alternately use fully expressive edge potentials

log(ϕij(xi, xj)) =

[
w2 w3

w4 w5

]
,

but these don’t improve the likelihood much.

We could fix one of these at 0 due to the normalization.

But we often don’t do this when using regularization.

We could also have special potentials for the boundaries.

Many language models are homogeneous, except for start/end of sentences.



Example: Ising Model of Rain Data

Independent model vs. chain-UGM model with tied nodes and Ising tied edges:

For this dataset, using untied or general edges doesn’t change likelihood much.



Example: Ising Model of Rain Data

Samples from Ising chain-UGM model if it rains on the first day:



Example of Feature Function

Consider the 2-node 1-edge UGM (1)–(2), where each state has 2 values.

So we have potentials ϕ1(x1), ϕ2(x2), and ϕ12(x1, x2) and want to have

wTF (x) = w1,x1
+ w2,x2

+ w1,2,x1,x2
.

With no parameter tying and x =
[
2 1

]
, our parameter vector and features are

w =



w1,1

w1,2

w2,1

w2,2

w1,2,1,1

w1,2,1,2

w1,2,2,1

w1,2,2,2


, F (x) =



0
1
1
0
0
0
1
0


,



Example of Feature Function

If we instead had Ising potentials (just measuring whether x1 = x2) we would have

wTF (x) = w1,x1 + w2,x2 + w1,2,same,

where w1,2,same is the parameter specifying how much we want x1 = x2.

With no parameter tying and x =
[
2 1

]
, our parameter vector and features are

w =


w1,1

w1,2

w2,1

w2,2

w1,2.same

 , F (x) =


0
1
1
0
0

 ,



UGM Training Objective Function

With log-linear parameterization, NLL for IID training examples is

f(w) = −
n∑

i=1

log p(xi | w) = −
n∑

i=1

log

(
exp(wTF (xi))

Z(w)

)

= −
n∑

i=1

wTF (xi) +

n∑
i=1

logZ(w)

= −wTF (X) + n logZ(w).

where the F (X) =
∑

i F (x
i) are called the sufficient statistics of the dataset.

Given sufficient statistics F (X), we can throw out the examples xi.
(only go through data once)

Function f(w) is convex (it’s linear plus a big log-sum-exp function).

But notice that Z depends on w

.



Log-Linear UGM Gradient

For 1 example x, we showed that NLL with log-linear parameterization is

f(w) = −wTF (X) + logZ(w).

The partial derivative with respect to parameter wj has a simple form

∇wjf(w) = −Fj(X) +
∑
x

exp(wTF (x))

Z(w)
Fj(x)

= −Fj(X) +
∑
x

p(x | w)Fj(x)

= −Fj(X) + E[Fj(x)].

Observe that derivative of log(Z) is expected value of feature.



Brain Tumour Segmentation with Label Dependencies

We got a bit more fancy and used edge features xij ,

p(y1, y2, . . . , yd | x1, x2, . . . , xd) = 1

Z
exp

 d∑
i=1

yiwTxi +
∑

(i,j)∈E

yiyjvTxij

 .

For example, we could use xij = 1/(1 + |xi − xj |).
Encourages yi and yj to be more similar if xi and xj are more similar.

This is a pairwise UGM with

ϕi(y
i) = exp(yiwTxi), ϕij(y

i, yj) = exp(yiyjvTxij),

so it didn’t make inference any more complicated.



Modeling OCR Dependencies

What dependencies should we model for this problem?

ϕ(yc, xc): potential of individual letter given image.
ϕ(yc−1, yc): dependency between adjacent letters (‘q-u’).
ϕ(yc−1, yc, xc−1, xc): adjacent letters and image dependency.
ϕc(yc−1, yc): inhomogeneous dependency (French: ‘e-r’ ending).
ϕc(yc−2, yc−1, yc): third-order and inhomogeneous (English: ‘i-n-g’ end).
ϕ(y ∈ D): is y in dictionary D?



Tractability of Discriminative Models

Features can be very complicated, since we just condition on the xc, .

Given the xc, tractability depends on the conditional UGM on the yc.
Inference tasks will be fast or slow, depending on the yc graph.

Besides “low treewidth”, some other cases where exact computation is possible:
Semi-Markov chains (allow dependence on time you spend in a state).

For example, in rain data the seasons will be approximately 3 months.

Context-free grammars (allows potentials on recursively-nested parts of sequence).
Sum-product networks (restrict potentials to allow exact computation).
“Dictionary” feature is non-Markov, but exact computation still easy.

We can alternately use our previous approximations:
1 Pseudo-likelihood (what we used).
2 Monte Carlo approximate inference (eventually better but probably much slower).
3 Variational approximate inference (fast, quality varies).



Structure Learning in UGMs

Recall that in Ising UGMs, our edge potentials have the form

ϕij(xi, xj) = exp(wijxixj).

If we set wij = 0, it sets ϕij(xi, xj) = 1 for all xi and xj .

Potential just “multiplies by 1”, which is equivalent to removing the edge.

L1-regularization of wij values performs structure learning in UGM.

For general log-linear, each edge has multiple parameters wi,j,s,s′ .
In this case we can use “group L1-regularization” for structure learning.

Each group will be all parameters wi,j,·,· associated with an edge (i, j).



Structure Learning on Rain Data

Large λ (and optimal tree):
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Structure Learning on USPS Digits
Structure learning of pairwise UGM with group-L1 on USPS digits:
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Structure Learning on News Words
Group-L1 on newsgroups data:
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Structure Learning on News Words

Group-L1 on newsgroups data:
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Posterior Regularization

In some cases it might make sense to use posterior regularization:
Regularize the probabilities in the resulting model.

Consider an NLP labeling task where
You have a small amount of labeled sentences.
You have a huge amount of unlabeled sentences.

Maximize labeled likelihood, plus total-variation penalty on p(yc | x,w) values.
Give high regularization weights to words appearing in same trigrams:

http://jgillenw.com/conll2013-talk.pdf

Useful for “out of vocabulary” words (words that don’t appear in labeled data).
Has been replaced in recent by continuous word representations like word2vec.

http://jgillenw.com/conll2013-talk.pdf


Avoiding Underflow when Computing Responsibilities

Computing responsibility may underflow for high-dimensional xi, due to
p(xi | zi = c,Θt).

Usual ML solution: do all but last step in log-domain.

log ric = log p(xi | zi = c,Θt) + log p(zi = c | Θt)

− log

(
k∑

c′=1

p(xi | zi = c′,Θt)p(zi = c′ | Θt)

)
.

To compute last term, use “log-sum-exp” trick.



Log-Sum-Exp Trick

To compute log(
∑

i exp(vi)), set β = maxi{vi} and use:

log(
∑
c

exp(vi)) = log(
∑
i

exp(vi − β + β))

= log(
∑
i

exp(vi − β) exp(β))

= log(exp(β))
∑
i

exp(vi − β))

= log(exp(β)) + log(
∑
i

exp(vi − β))

= β + log(
∑
i

exp(vi − β)︸ ︷︷ ︸
≤1

).

Avoids overflows due to computing exp operator.
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