CPSC 440/540: Advanced Machine Learning Log-Linear Models, CRFs, and Mixtures

Danica Sutherland (building on materials from Mark Schmidt)

University of British Columbia

Winter 2023

Last Time: Undirected Graphical Models

• We discussed undirected graphical models

$$p(x_1, x_2, \dots, x_d) \propto \prod_{c \in \mathcal{C}} \phi_c(x_c),$$

which write joint distribution as product of non-negative potentials over subsets c.

• The most common variant is pairwise UGMs,

$$p(x_1, x_2, \dots, x_d) \propto \left(\prod_{j=1}^d \phi_j(x_j)\right) \left(\prod_{(i,j)\in\mathcal{E}} \psi_{ij}(x_i, x_j)\right),$$

which includes Markov chains and multivariate Gaussians as special cases.

- In tree-structured graphs (no loops), common inference operations are $O(dk^2)$.
 - By generalizing the methods used for Markov chains.
 - But runtime is exponential in "treewidth" for graphs with loops.

Vancouver Rain Data: DAG vs. UGM

• We previously considered the "Vancouver Rain" dataset:

		Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8	Day 9	
Month (0	0	0	1	1	0	0	1	1	
Month 2	1	0	0	0	0	0	1	0	0	
Month 3	1	1	1	1	1	1	1	1	1	
Murilh 4	1	1	1	1	0	0	1	1	1	
Months	0	0	0	0	1	1	0	0	0	
Month	0	1	1	0	0	0	0	1	1	

• We previously fit this with a Markov chain under the DAG factorization:

$$p(x_1, x_2, \dots, x_d) = p(x_1) \prod_{j=2}^d p(x_j \mid x_{j-1}),$$

where we used tabular potentials (so learning was counting).

Vancouver Rain Data: DAG vs. UGM

• Consider fitting a Markov chain under a UGM factorization:

$$p(x_1, x_2, \dots, x_d) \propto \left(\prod_{j=1}^d \phi_j(x_j)\right) \left(\prod_{j=2}^d \phi_{j,j-1}(x_j, x_{j-1})\right)$$

• Consider the following UGM parameterization (for $x_j \in \{-1, +1\}$):

$$\phi_j(x_j) = \exp(w_j x_j), \quad \phi_{ij}(x_i, x_j) = \exp(v_{ij} x_i x_j),$$

where w_i is a node weight, v_{ij} is an edge weight, and we have used lsing edges.

- The exponential function makes the potentials non-negative.
 - We call this a log-linear model: logarithms of potentials are linear.
- Ising potentials can reflect how strongly neighbours are attracted/repulsed.
- For the rain data, we would expect $v_{ij} > 0$ (adjacent days likely to have same value).
- For the rain data, it makes sense to tie w_j across j and v_{ij} across (i, j) values.

Vancouver Rain Data: DAG vs. UGM

• Our log-linear model of the rain data under the Ising parameterization:

$$p(x_1, x_2, \dots, x_d \mid w, v) \propto \left(\prod_{j=1}^d \exp(wx_j)\right) \left(\prod_{j=2}^d \exp(vx_jx_{j-1})\right)$$
$$= \exp\left(\sum_{j=1}^d wx_j + \sum_{j=2}^d vx_jx_{j-1}\right)$$
$$= \exp\left(w\sum_{j=1}^d x_j + v\sum_{j=2}^d x_jx_{j-1}\right)$$
$$= \exp\left(\left[w\right]^{\mathsf{T}} \left[\sum_{\substack{j=2\\ j=2}}^d x_jx_{j-1}\right]\right).$$

- This is an exponential family in canonical form!
 - NLL will be convex in terms of w and v; derivative of NLL has simple form.
 - If we didn't tie parameters, we'd have a statistic for each time.

Learning Log-Linear Model for Vancouver Rain Data

• Canonical form:
$$p(x \mid w, v) \propto \exp\left(\begin{bmatrix} w \\ v \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \sum_{j=1}^{d} x_j \\ \sum_{j=2}^{d} x_j x_{j-1} \end{bmatrix}\right)$$
.
• Sufficient statistics $s_1(x) = \sum_{j=1}^{d} x_j$, $s_2(x) = \sum_{j=2}^{d} x_j x_{j-1}$.

• We derived in general for canonical-form exponential families that

$$\nabla_{\theta} [-\log p(\mathbf{X} \mid \theta)] = -\sum_{i=1}^{n} s(x^{i}) + n \mathbb{E}[s(X) \mid \theta].$$

• Can't solve analytically here... but we can just run gradient descent!

• We have
$$\mathbb{E}[s(X) \mid w, v] = \begin{bmatrix} \sum_{j=1}^{d} 2 \left(\Pr(X_j = 1 \mid w, v) - 1 \right) \\ \sum_{j=2}^{d} \left(2 \Pr(X_j = X_{j-1} \mid w, v) \right) \end{bmatrix}$$

- Can compute all of these marginals with forward-backward.
- $\bullet\,$ Could also compute $\log Z$ and use autodiff.

Learning Log-Linear Models (In General)

• We often write log-linear UGMs in an exponential family form

$$p(x \mid w) = \frac{\exp\left(w^{\mathsf{T}}F(x)\right)}{Z(w)},$$

where the feature functions F(x) count the number of times we use each w_j .

- Examples of feature functions, and potentials for categoricals, in bonus slides.
- Feature functions are just sufficient statistics, so

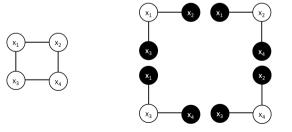
$$\nabla_w \left[-\log p(\mathbf{X} \mid w)\right] = -\sum_{i=1}^n F(x^i) + n \mathbb{E}[s(X) \mid w].$$

Computing this requires inference, which is #P-hard in general graphs.
So we need to consider approximations when learning.

Approximate Learning: Pseudo-Likelihood

- A popular approximation to the NLL is pseudo-likelihood.
 - "Fast, convex, and crude."
- Pseudo-likelihood turns learning into *d* single-variables problem (similar to DAGs),

$$p(x_1, x_2, \dots, x_d) \approx \prod_{j=1}^d p(x_j \mid x_{-j}) = \prod_{j=1}^d p(x_j \mid x_{\mathsf{nei}(j)})$$



Approximate Learning: Marginal Approximations

- Another way to approximate the NLL is with approximate inference.
 - **(** Deterministic variational approximations of $\mathbb{E}[F(x)]$ (more on these later).
 - $\bullet\,$ Approximate p by a simpler q, and compute expectation for q.
 - **2** Monte Carlo approximation of $\mathbb{E}[F_j(x)]$ given current parameters w:

$$\nabla f(w) = -F(\mathbf{X}) + \mathbb{E}[F(x)]$$

$$\approx -F(\mathbf{X}) + \underbrace{\frac{1}{t} \sum_{i=1}^{t} F(x^{i})}_{\text{Monte Carlo approx}},$$

based on samples from $p(x \mid w)$.

• Unfortunately, we usually can't sample efficiently....

Approximate Learning with MCMC Marginal Approximation

- An innefficient approach to using an MCMC approximation of gradient:
 - **①** At iteration k, we want to sample from $p(x \mid w^k)$.
 - Start from some $x^{k,0}$, sample $x^{k,1}$, sample $x^{k,2}$, etc from an MCMC chain for w^k .
 - Treat the last sample $x^{k,T}$ from the Markov chain as a sample from $p(x \mid w^k)$.
 - 2 Update the parameters using $x^{k,T}$ to get a gradient estimate (sample size 1),

$$w^{k+1} = w^k + \alpha_k(F(\mathbf{X}) - F(x^{k,T})).$$

- If the Markov chain is run long enough, can show convergence using standard stochastic gradient descent arguments.
 - But have to run MCMC on each iteration of the SGD method.

Younes Algorithm ("Persistent Contrastive Divergence")

• Younes algorithm (also known as "persistent contrastive divergence"):

① At iteration k, we want to sample from $p(x \mid w^k)$.

- Set $x^{k,0} = x^{k-1,T}$, sample $x^{k,1}$, sample $x^{k,2}$, and so on.
- Treat the last sample $x^{k,T}$ from the Markov chain as a sample from $p(x \mid w^k)$.

2 Update the parameters using x^k to get a gradient estimate,

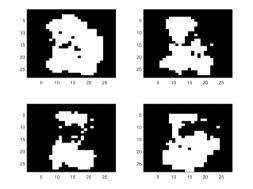
$$w^{k+1} = w^k + \alpha_k(F(\mathbf{X}) - F(x^{k,T})),$$

• In Younes algorithm, you don't need to run the Markov chain to stationarity.

- Usually you only run MCMC for 1 or a small number of iterations.
- This gives a biased estimate, but is much faster than running MCMC to stationarity.
- And with small-enough step-size, can show convergence.

Pairwise UGM on MNIST Digits

• Samples from a lattice-structured pairwise UGM trained on MNIST:



- Training: 100k stochastic gradient w/ Gibbs sampling steps with $\alpha_t = 0.01$.
- Samples are iteration 100k of Gibbs sampling with fixed w.

Outline

- 2 Conditional Random Fields
- 3 Mixture of Gaussians

Motivation: Rain Data with Month Information

• Our Ising UGM model for the rain data with tied parameters was

$$p(y_1, y_2, \dots, y_k \mid w, v) \propto \exp\left(\sum_{c=1}^k w y_c + \sum_{c=2}^k v y_c y_{c-1}\right);$$

we switched variable names from x_j to y_c (but model is same).

- First term will reflect that "not rain" is more likely.
- Second term reflects that consecutive days are more likely to be the same.
 - This model is equivalent to a Markov chain model.
- But the model doesn't know that some months are less rainy.
- We can add features that reflect the month (or other information).
 - Multi-label supervised learning, but modeling dependence in labels y_c .
 - Adding fixed features to a UGM is also called a conditional random field (CRF).

Conditional Random Field (CRF) for Rain Data

• A CRF model of rain data, conditioned on 12 "one of k" month features x_j ,

$$p(y_1, y_2, \dots, y_k \mid x, w_0, w, v) \propto \exp\left(\sum_{c=1}^k w_0 y_c + \sum_{c=2}^k v y_c y_{c-1} + \sum_{c=1}^k y_c w^{\mathsf{T}} x\right)$$

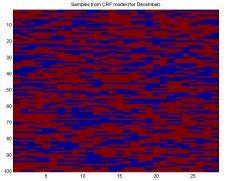
• The potentials in this model over the random variables y_c are

$$\phi_i(y_i) = \exp\left(w_0 y_i + y_i w^{\mathsf{T}} x\right), \quad \phi_{ij}(y_i, y_j) = \exp(v y_i y_j).$$

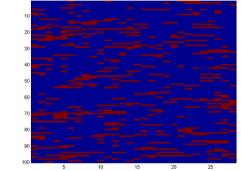
- If we draw the UGM over y_c variables we get a chain structure.
 - So inference can be done using forward-backward.
 - And it's still log-linear so the NLL will be convex.
 - Gradient descent finds global optimum jointly with respect to w_0 , w, and v.

Rain Data with Month Information

• Samples from CRF conditioned on x being December (left) and July (right):



Samples from CRF model (for July)



- Conditional NLL is 16.21, compared to Markov chain which gets NLL 16.81.
 - Mark has Matlab (:/) code for this and a variety of other UGM models: https://www.cs.ubc.ca/~schmidtm/Software/UGM.html

Conditional Random Fields (General Case)

• We often write the likelihood for general CRFs in the form

$$p(y \mid \boldsymbol{x}, w) = \frac{1}{Z(\boldsymbol{x}, w)} \exp(w^{\mathsf{T}} F(\boldsymbol{x}, y)),$$

for some parameters w and features F(x, y).

• The NLL is convex; for a single (x,y) it's

$$-\log p(y \mid \boldsymbol{x}, w) = -w^{\mathsf{T}} F(\boldsymbol{x}, y) + \log Z(\boldsymbol{x}, w),$$

with gradient

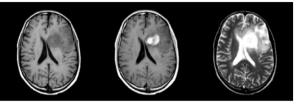
$$-\nabla \log p(y \mid x, w) = -F(x, y) + \mathbb{E}_{y \mid x, w}[F(x, y)].$$

This requires inference for each value of x in training data.

- For rain data, need to do run forward-backward 12 times.
- If each example has its own features, need to run it n times.
- Can make sense to use stochastic gradient if n is large.

Motivation: Automatic Brain Tumor Segmentation

• Task: identification of tumours in multi-modal MRI.



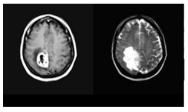
- Applications:
 - Radiation therapy target planning, quantifying treatment response.
 - Mining growth patterns, image-guided surgery.
- Challenges:
 - Variety of tumor appearances, similarity to normal tissue.
 - "You are never going to solve this problem".

Brain Tumour Segmentation with Label Dependencies

• After a lot pre-processing and feature engineering (convolutions, priors, etc.), final system used logistic regression to label each pixel as "tumour" or not.

$$p(y_c \mid x_c) = \frac{1}{1 + \exp(-2y_c w^{\mathsf{T}} x_c)} = \frac{\exp(y_c w^{\mathsf{T}} x_c)}{\exp(w^{\mathsf{T}} x_c) + \exp(-w^{\mathsf{T}} x_c)}$$

• Gives a high "pixel-level" accuracy, but sometimes gives silly results:



- Classifying each pixel independently misses dependence in labels y^i :
 - We prefer neighbouring voxels to have the same value.

Brain Tumour Segmentation with Label Dependencies

• With independent logistic, conditional distribution over all labels in one image is

$$p(y_1, y_2, \dots, y_k \mid x_1, x_2, \dots, x_k) = \prod_{c=1}^k \frac{\exp(y_c w^\mathsf{T} x_c)}{\exp(w^\mathsf{T} x_c) + \exp(-w^\mathsf{T} x_c)}$$
$$\propto \exp\left(\sum_{c=1}^d y_c w^\mathsf{T} x_c\right),$$

where here x_c is the feature vector for position c in the image.

• We can view this as a log-linear UGM with no edges,

$$\phi_c(y_c) = \exp(y_c w^\mathsf{T} x_c),$$

so given the x_c there is no dependence between the y_c .

Brain Tumour Segmentation with Label Dependencies

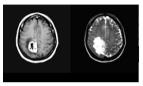
• Adding an Ising-like term to model dependencies between y_i gives

$$p(y_1, y_2, \dots, y_k \mid x_1, x_2, \dots, x_k) \propto \exp\left(\sum_{c=1}^k y_c w^\mathsf{T} x_c + \sum_{(c,c')\in\mathcal{E}} y_c y_{c'} v\right),$$

- Now we have the same "good" logistic regression model, but v controls how strongly we want neighbours to be the same.
- We can run gradient descent to jointly optimize w and v (convex NLL).
 So we find the optimal joint logistic regression and Ising model.

Conditional Random Fields for Segmentation

• Recall the performance with the independent classifier:



- The pairwise CRF better modelled the "guilt by association":
 - Trained with pseudo-likelihood, constraining $v \geq 0.$
 - Decoding with "graph cuts" (see bonus slides from last lecture).

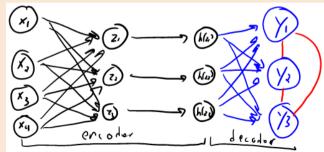
(We were using edge features $x_{cc'}$ too, see bonus (and different λ on edges).)

Combining Neural Networks and UGMs

• Instead of fixed features, you could use a neural network:

$$p(y \mid x) \propto \exp\left(\sum_{c=1}^{k} y_c v^{\mathsf{T}} h(W^3 h(W^2(W^1 x_c))) + \sum_{(c,c') \in \mathcal{E}} u y_c y_{c'}\right)$$

or you could have an encode-decode model spit out potentials of a UGM:



• These are sometimes called a conditional neural fields or deep structured model.

Multi-Label Classification

• Learned dependencies on a mult-label image classification dataset:

female	0.00 0.	68	0.04	0.06	0.02	0.24	0.03	-0.00	-0.01	0.01	0.04	-0.00	-0.05	-0.01	0.07	-0.01	-0.00	-0.12	0.04	0.01	0.01	0.02	0.04	0.02
people	0.68 0.	00	0.06	0.06	-0.00	0.36	0.03	-0.08	-0.05	-0.03	0.02	-0.06	-0.12	-0.05	0.74	-0.04	-0.03	-0.21	0.01	-0.03	-0.03	-0.03	0.05	-0.03
indoor	0.04 0.	.06 1	0.00	0.05	-0.06	0.07	-0.12	-0.07	-0.35	-0.03	-0.46	-0.02	-0.34	0.11	0.02	-0.15	-0.14	-0.01	-0.07	-0.21	0.03	-0.08	0.06	-0.03
baby	0.06 0.	06 1	0.05	0.00	0.10	0.11	0.07	0.09	0.03	0.10	0.01	0.10	0.02	0.09	0.06	0.08	0.07	0.07	0.08	0.06	0.09	0.09	0.08	0.10
sea	0.02 -0	0.00	-0.06	0.10	0.00	0.04	0.08	0.05			-0.02	0.09	-0.02	0.06	0.03		0.36	0.06	0.05	0.01	0.08	0.14	0.06	0.10
portrait	0.24 0.	36	0.07	0.11	0.04	0.00	0.01	0.03	-0.02	0.05	-0.02	0.04	-0.01	0.03	0.12	0.02	0.01	-0.07	0.05	0.05	0.03	0.04	0.07	0.05
transport	0.03 0.	.03 .	-0.12	0.07	0.08	0.01	0.00	0.02	0.14	0.07		0.04	0.05	0.03	0.06	0.08	0.07	-0.03	0.36	0.10	0.04	0.05	0.04	0.07
flower	-0.00 -0	.08 .	-0.07	0.09	0.05	0.03								0.04			0.04					0.06	0.02	0.07
sky	-0.01 -0																0.12						0.05	
lake			-0.03			0.05					-0.00						0.26			0.10	0.07	0.12	0.07	0.18
structures							0.14		0.22		0.00						-0.04			0.09	-0.00	0.06	0.03	0.02
bird	-0.00 -0																0.09					0.09	0.05	
plant life	-0.05 -0	_																				0.05	-0.07	
food	-0.01 -0				0.06	0.03		0.04			-0.05				-0.01					0.01		0.06		0.07
male		_	0.02				0.06							-0.01			-0.01			-0.02			0.06	
clouds	-0.01 -0						0.08							0.03				-0.00		0.11			-0.01	
water	-0.00 -0													0.03				0.05		0.03			0.03	
animals	-0.12 -0						-0.03													0.00			-0.01	
car			-0.07				0.36						_							0.11			0.07	
tree																	0.03							
dog			0.03		0.08	0.03		0.06									0.05			0.04	0.00		0.05	
sunset			-0.08		0.14	0.04			0.23	0.12	0.06	0.09					0.10			0.09	0.06	0.00		0.10
night			0.06		0.06	0.07				0.07				0.04				-0.01		-0.00		0.06	0.00	
river				0.10		0.05											0.27			0.12				0.00
	female.	0000 Y	, ndo	رم ^ي ک	Seg	·00,	, tait	20000 × × 0000	SF2	1ª40	, ⁵ 5-2	, ³ , 6	, ⁶ 7.97	, , , , , , ,	mare	, ₆ 2	A BE	anin,	Cox.	2.7.00	80g	SUN	, ¹ , 1, 9,	t'i vet
	197	્રંજ્	<u>م</u> کر	6, V			5. V	S. 4	0,	46	5° 6	6 ° G	v 93	γ v			0 0	2 VI	à, È	00	, 5	14	6, ×	2 62
	.0	,	0	К.			°Y'X	~0~	5			CQ.		~~			0		N'ON				c	
								. 5				.6	8	15	0									

http://proceedings.mlr.press/v37/chenb15.pdf

Automatic Differentiation (AD) vs. Inference

- Deep structured model gradient combines neural/Markov gradients:
 - **()** Forward pass through neural network to get \hat{y}_c predictions.
 - **②** Forward message passing to compute normalizing constant.
 - **I** Backwards message passing to compute marginals.
 - **O** Backwards pass through neural network to get all gradients.
- You could skip the last two steps if you use automatic differentiation.
- But with approximate inference, AD may or may not work:
 - AD will work for iterative variational inference methods (which we'll cover later).
 - But it takes way more memory than needed (needs to store all iterations).
 - AD is harder for Monte Carlo methods.
 - Can't AD through sampling steps but can use "reparamaterization trick" (later).
- Recent trend: run iterative variational method for a fixed number of iterations.
 - AD can give gradient of result after this fixed number of iterations.
 - "Train the inference you will use at test time."

Combining FCNs and CRFs

• DeepLab used a fully-connected pairwise UGM on top layer of FCN:

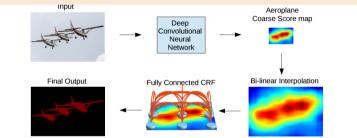


Fig. 1: Model Illustration. A Deep Convolutional Neural Network such as VGG-16 or ResNet-101 is employed in a fully convolutional fashion, using atrous convolution to reduce the degree of signal downsampling (from 32x down 8x). A bilinear interpolation stage enlarges the feature maps to the original image resolution. A fully connected CRF is then applied to refine the segmentation result and better capture the object boundaries.

https://arxiv.org/pdf/1606.00915.pdf

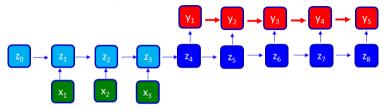
- Most recent version of the paper removed the UGM.
- Still really helps if you don't have tons of training data (Bae, ..., Sutherland, IJCAI-23).

Do we need UGMs in Neural Networks?

- Recall that encode-decode hidden layers already capture label dependencies.
 - So do we need a UGM to explicitly model label dependencies in output layer?
- Factor 1: data size (big vs. small).
 - With a small dataset, it could be helpful to have direct dependencies in model.
 - With a large dataset, the hidden layers should reflect dependencies.
- Factor 2: how you evaluate the model (individual parts or full decoding).
 - If you measure "pixel level" or "word level" error, UGMs may not help.
 - If you measure "whole image" or "whole sentence" error, UGMs may help.
 - Because for example inference can discourage unlikely joint labelings.

Combining RNNs and Graphical Models

• An example where we use explicit label dependencies is language translation:

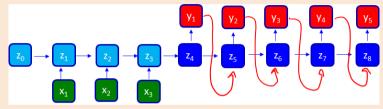


• Above model has usual deterministic edges, and DAG edges on labels.

- Can use Viterbi decoding to find best translation in this model.
 - Taking into account probability of seeing neighbouring words.
- But there is not much information in the DAG part of the model.
 - Only modeling dependencies between adjacent words.
- What we really want is to have the label we output affect the hidden state.
 - So that the encoding reflects previously-output words.

Combining RNNs and Graphical Models

• In order for the hidden states to depend on the output, we have this monstrosity:



- This can still be written as a Markov chain, but we cannot do Viterbi decoding.
 - Problem is that the hidden states in decoder become random variables.
 - So the state at each time has discrete and continuous parts (cannot be enumerated).
- To do decoding in this thing, we typically use beam search.
 - Heuristic algorithm that maintains "k best decodings up to time t."
 - Can be arbitrarily bad, but works if decoding is obvious as we go forward in time.
 - The type of edge and decoding strategy is also common with transformers.

Summary

- Log-linear parameterization can be used to learn UGMs:
 - Maximum likelihood is convex, but requires normalizing constant and inference.
- Approximate UGM learning:
 - Change objective function: pseudolikelihood.
 - Approximate marginals: Monte Carlo or variational methods.
 - Younes algorithm for using MCMC within SGD.
- Conditional random fields generalize logistic regression:
 - Multi-label model that explicitly models label dependencies.
- Combining CRFs with deep learning.
 - You can learn features and and the explicit label dependencies.

- We discussed Markov chains:
 - Distribution assuming independence of past given last time (Markov assumption).
 - Common parameterization uses initial probabilities and transition probabilities.
 - Homogeneous Markov chains assume same transition probabilities across time.
- We discussed inference in Markov chains.
 - Ancestral sampling: sample each variable given previous variables in ordering.
 - CK equations: give marginals recursively.
 - Stationary distribution: marginals as time goes to infinity.
 - Viterbi decoding: special case of dynamic programming.
 - Forward backward: computation of all conditionals with two "passes".

• We discussed Markov chain Monte Carlo (MCMC):

- Define a Markov chain that has target distribution as stationary distribution.
- Use samples from the Markov chain within Monte Carlo method.
 - Possibly with burn in and/or thinning.
- Most common methods are Metropolis-Hastings.
 - Based on accepting proposals or keeping the same sample.
- Special case of Metropolis-Hastings is Gibbs sampling.
 - Based on sampling one variable at a time given all others.

- We discussed directed acyclic graphical (DAG).
 - Assume independence of previous variables given a set of parent variables.
 - Can be used to visualize models/assumptions.
 - Conditional independences can be tested using d-separation.
 - Are paths blocked by observed chain/fork, or unobserved child?
 - Our standard independence assumptions appear if we add parameters to DAG.
 - $\bullet\,$ Training DAGs decomposes into d supervised learning problems.
- We discussed undirected graphical models (UGMs).
 - Write distribution as product of non-negative potentials over subsets of variables.
 - Log-linear models use $\exp(\text{linear})$ potentials.
 - Convex NLL trained with gradient descent, but gradient requires inference.
 - Approximate training methods include pseudo-likelihood and variational methods.
 - Or Younes algorithm which integrates SGD steps within MCMC.
 - Conditional random fields add features to UGMs.
 - Deep structured models learn features in UGMs.

- We briefly discussed inference in graphical models.
 - Markov chain inference methods extend to trees for DAGs and UGMs.
 - But for general graphs inference can be hard in DAGs/UGMs.
 - Except unconditional sampling, likelihood, and learning (easy in DAGs).
- We skipped over structured SVMs
 - A generalization of SVMs that can model correlations in labels.
 - Applying SGD requires decoding instead of inference.
 - Mark's slides on this topic are here:

https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/L28.5.pdf

Outline

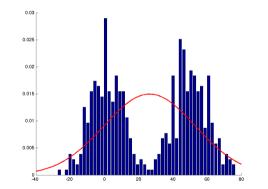
1 Log-Linear Models

2 Conditional Random Fields

3 Mixture of Gaussians

1 Gaussian for Multi-Modal Data

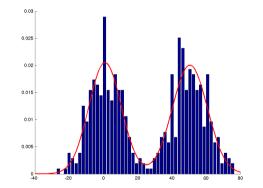
- Major drawback of Gaussian is that it is uni-modal.
 - It gives a terrible fit to data like this:



• If Gaussians are all we know, how can we fit this data?

2 Gaussians for Multi-Modal Data

• We can fit this data by using two Gaussians

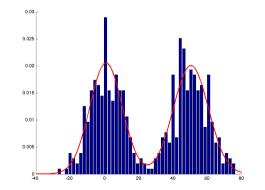


• Half the samples are from Gaussian 1, half are from Gaussian 2.

• Our probability density in this example is given by

$$p(x^i \mid \mu_1, \mu_2, \Sigma_1, \Sigma_2) = \frac{1}{2} \underbrace{p(x^i \mid \mu_1, \Sigma_1)}_{\text{PDF of Gaussian 1}} + \frac{1}{2} \underbrace{p(x^i \mid \mu_2, \Sigma_2)}_{\text{PDF of Gaussian 2}},$$

• We need the (1/2) factors so it still integrates to 1.

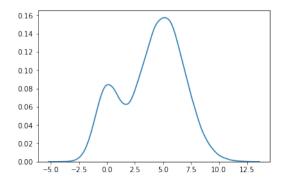


• If data comes from one Gaussian more often than the other, we could use

$$p(x^i \mid \mu_1, \mu_2, \Sigma_1, \Sigma_2, \pi_1, \pi_2) = \pi_1 \underbrace{p(x^i \mid \mu_1, \Sigma_1)}_{\text{PDF of Gaussian 1}} + \pi_2 \underbrace{p(x^i \mid \mu_2, \Sigma_2)}_{\text{PDF of Gaussian 2}},$$

where π_1 and π_2 are non-negative and sum to 1.

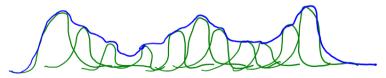
• π_1 represents "probability that we take a sample from Gaussian 1".

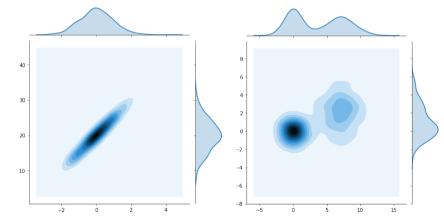


• In general we might have a mixture of k Gaussians with different weights.

$$p(x \mid \mu, \Sigma, \pi) = \sum_{c=1}^{k} \pi_c \underbrace{p(x \mid \mu_c, \Sigma_c)}_{\text{PDF of Gaussian } c},$$

- Where π_c are categorical distribution parameters (non-negative and sum to 1).
- We can use it to model complicated densities with Gaussians (like RBFs).
 - "Universal approximator": can model any continuous density on compact set.

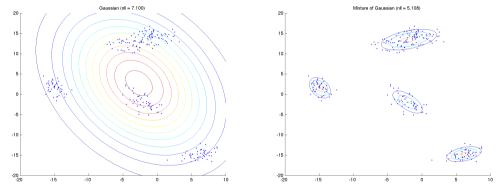




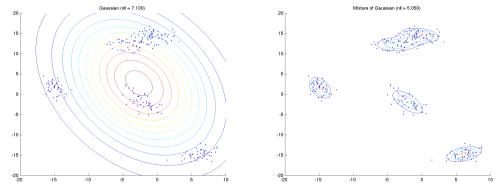
• Gaussian vs. mixture of 2 Gaussian densities in 2D:

• Marginals will also be mixtures of Gaussians.

• Gaussian vs. Mixture of 4 Gaussians for 2D multi-modal data:



• Gaussian vs. Mixture of 5 Gaussians for 2D multi-modal data:



Latent-Variable Representation of Mixtures

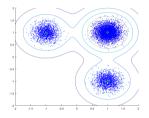
- For inference/learning in mixture models, we often introduce variables z^i .
 - Each z^i is a categorical variable in $\{1, 2, \ldots, k\}$ when we have k mixtures.
 - The value z^i represents "what mixture this example came from".
 - We do not observe the z^i values (they are called latent variables).
- Why this interpretation of "each x^i comes from one Gaussian"?
 - Consider a model where $p(z^i = c) = \pi_c$, and $x^i \mid z^i = c \sim \mathcal{N}(\mu_c, \Sigma_c)$.
 - Now marginalize over the z^i in this model:

$$p(x \mid \mu, \Sigma, \pi) = \sum_{c=1}^{k} p(x, z = c) = \sum_{c=1}^{k} p(z = c)p(x \mid z = c)$$
$$= \sum_{c=1}^{k} \pi_c \underbrace{p(x \mid \mu_c, \Sigma_c)}_{\text{PDF of Gaussian } c},$$

which is the PDF of the mixture of Gaussians model.

Ancestral Sampling in Mixture of Gaussians

- Generating samples with ancestral sampling in the latent variable representation:
 - **(**) Sample cluster z based on prior probabilities π_c (categorical distribution).
 - 2 Sample example x based on mean μ_z and covariance Σ_z of Gaussian z.



- Marginalization and computing conditionals is also easy.
- Decoding z or computing marginal $p(z \mid x)$ is easy (next slide).
- Decoding x in Gaussian mixtures is NP-hard.
- We usually fit these models with expectation maximization (EM).
- Choosing k: domain knowledge, test set likelihood, or marginal likellihood.

Inference Task: Computing Responsibilities

- Consider computing probability that example i came from mixture c.
 - We call this the responsibility of mixture c for example i,

$$\begin{split} r_{c}^{i} &= p(z = c \mid x^{i}) \\ &= \frac{p(z = c, x^{i})}{p(x^{i})} \\ &= \frac{p(z = c, x^{i})}{\sum_{c'=1}^{k} p(z' = c, x^{i})} \\ &= \frac{p(z = c) \, p(x^{i} \mid z = c))}{\sum_{c'=1}^{k} p(z' = c) \, p(x^{i} \mid z' = c)} \\ &= \frac{\pi_{c} \, p(x^{i} \mid \mu_{c}, \Sigma_{c})}{\sum_{c'=1}^{k} \pi_{c'} \, p(x^{i} \mid \mu_{c'}, \Sigma_{c'})} \end{split}$$
 (we know all these values)

• If you think the different mixtures as clusters, this is probability of being in cluster.

Notation Alert: π vs. z vs. r (MEMORIZE)

• In mixture models, many people confuse the quantities π , z, and r.

- Vector π has k elements in [0,1] and summing up to 1.
 - Number π_c is the "prior" probability that an example is in cluster c.
 - This is a parameter (we learn it from data).
- Matrix ${\bf R}$ is $n\times k$ matrix, summing to 1 across rows.
 - Number r_c^i is the "posterior" probability that example *i* is in cluster *c*.
 - Computing these values is an inference task (assumes known parameters).
- Vector \mathbf{z} has n elements in $\{1, 2, \dots, k\}$.
 - Category z^i is the actual mixture/cluster that generated example *i*.
 - This is a nuisance parameter (an unknown variable that is not a parameter).

Summary

- Mixture of Gaussians writes probability as convex comb. of Gaussian densities.
 - Can model arbitrary continuous densities.
- Latent-variable representation of mixtures with cluster variables z^i .
 - Allows ancestral sampling by sampling cluster than example.
 - Responsibility is probability that an example belongs to a cluster.

• E.g., for the rain data we could parameterize our node potentials using

$$\log(\phi_i(x_i)) = \begin{cases} w_1 & \text{no rain} \\ 0 & \text{rain} \end{cases}$$

- Why do we only need 1 parameter?
 - Scaling $\phi_i(1)$ and $\phi(2)$ by constant doesn't change distribution.
- In general, we only need (k-1) parameters for a k-state variable.
 - But if we're using regularization we may want to use k anyways (symmetry).

Example: Ising Model of Rain Data

• The Ising parameterization of edge potentials,

$$\log(\phi_{ij}(x_i, x_j)) = \begin{cases} w_2 & x_i = x_j \\ 0 & x_i \neq x_j \end{cases}$$

• Applying gradient descent gives MLE of

$$w = \begin{bmatrix} 0.16\\ 0.85 \end{bmatrix}, \quad \phi_i = \begin{bmatrix} \exp(w_1)\\ \exp(0) \end{bmatrix} = \begin{bmatrix} 1.17\\ 1 \end{bmatrix}, \quad \phi_{ij} = \begin{bmatrix} \exp(w_2) & \exp(0)\\ \exp(0) & \exp(w_2) \end{bmatrix} = \begin{bmatrix} 2.34 & 1\\ 1 & 2.34 \end{bmatrix},$$

preference towards no rain, and adjacent days being the same.

• Average NLL of 16.8 vs. 19.0 for independent model.

Full Model of Rain Data

• We could alternately use fully expressive edge potentials

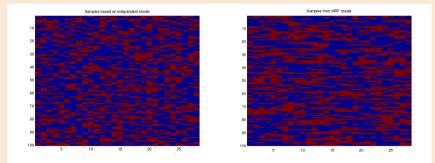
$$\log(\phi_{ij}(x_i, x_j)) = \begin{bmatrix} w_2 & w_3 \\ w_4 & w_5 \end{bmatrix}$$

but these don't improve the likelihood much.

- We could fix one of these at 0 due to the normalization.
 - But we often don't do this when using regularization.
- We could also have special potentials for the boundaries.
 - Many language models are homogeneous, except for start/end of sentences.

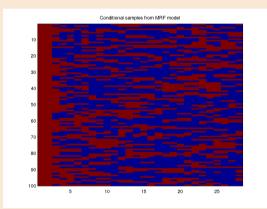
Example: Ising Model of Rain Data

Independent model vs. chain-UGM model with tied nodes and Ising tied edges:For this dataset, using untied or general edges doesn't change likelihood much.



Example: Ising Model of Rain Data

Samples from Ising chain-UGM model if it rains on the first day:



Example of Feature Function

- Consider the 2-node 1-edge UGM (1)–(2), where each state has 2 values.
 - So we have potentials $\phi_1(x_1)$, $\phi_2(x_2)$, and $\phi_{12}(x_1,x_2)$ and want to have

$$w^{\mathsf{T}}F(x) = w_{1,x_1} + w_{2,x_2} + w_{1,2,x_1,x_2}.$$

• With no parameter tying and $x = \begin{bmatrix} 2 & 1 \end{bmatrix}$, our parameter vector and features are

$$w = \begin{bmatrix} w_{1,1} \\ w_{1,2} \\ w_{2,1} \\ w_{2,2} \\ w_{1,2,1,1} \\ w_{1,2,2,2} \\ w_{1,2,2,1} \\ w_{1,2,2,2} \end{bmatrix}, \quad F(x) = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix},$$

Example of Feature Function

• If we instead had Ising potentials (just measuring whether $x_1 = x_2$) we would have

$$w^{\mathsf{T}}F(x) = w_{1,x_1} + w_{2,x_2} + w_{1,2,\mathsf{same}}$$

where $w_{1,2,same}$ is the parameter specifying how much we want $x_1 = x_2$.

• With no parameter tying and $x = \begin{bmatrix} 2 & 1 \end{bmatrix}$, our parameter vector and features are

$$w = \begin{bmatrix} w_{1,1} \\ w_{1,2} \\ w_{2,1} \\ w_{2,2} \\ w_{1,2,\text{same}} \end{bmatrix}, \quad F(x) = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix},$$

UGM Training Objective Function

• With log-linear parameterization, NLL for IID training examples is

$$f(w) = -\sum_{i=1}^{n} \log p(x^{i} \mid w) = -\sum_{i=1}^{n} \log \left(\frac{\exp(w^{\mathsf{T}}F(x^{i}))}{Z(w)}\right)$$
$$= -\sum_{i=1}^{n} w^{\mathsf{T}}F(x^{i}) + \sum_{i=1}^{n} \log Z(w)$$
$$= -w^{\mathsf{T}}F(\mathbf{X}) + n \log Z(w).$$

where the $F(\mathbf{X}) = \sum_{i} F(x^{i})$ are called the sufficient statistics of the dataset.

• Given sufficient statistics $F(\mathbf{X})$, we can throw out the examples x^i .

(only go through data once)

- Function f(w) is convex (it's linear plus a big log-sum-exp function).
 - But notice that Z depends on w

Log-Linear UGM Gradient

• For 1 example x, we showed that NLL with log-linear parameterization is

$$f(w) = -w^{\mathsf{T}} F(\mathbf{X}) + \log Z(w).$$

bonusl

• The partial derivative with respect to parameter w_j has a simple form

$$\nabla_{w_j} f(w) = -F_j(\mathbf{X}) + \sum_x \frac{\exp(w^\mathsf{T} F(x))}{Z(w)} F_j(x)$$
$$= -F_j(\mathbf{X}) + \sum_x p(x \mid w) F_j(x)$$
$$= -F_j(\mathbf{X}) + \mathbb{E}[F_j(x)].$$

• Observe that derivative of log(Z) is expected value of feature.

Brain Tumour Segmentation with Label Dependencies

 \bullet We got a bit more fancy and used edge features $x^{ij},$

$$p(y^{1}, y^{2}, \dots, y^{d} \mid x^{1}, x^{2}, \dots, x^{d}) = \frac{1}{Z} \exp\left(\sum_{i=1}^{d} y^{i} w^{\mathsf{T}} x^{i} + \sum_{(i,j)\in E} y^{i} y^{j} v^{\mathsf{T}} x^{ij}\right).$$

- For example, we could use $x^{ij} = 1/(1 + |x^i x^j|)$.
 - Encourages y_i and y_j to be more similar if x^i and x^j are more similar.

• This is a pairwise UGM with

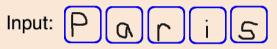
$$\phi_i(y^i) = \exp(y^i w^\mathsf{T} x^i), \quad \phi_{ij}(y^i, y^j) = \exp(y^i y^j v^\mathsf{T} x^{ij}),$$

so it didn't make inference any more complicated.

Modeling OCR Dependencies

bonus!

• What dependencies should we model for this problem?



Output: "Paris"

- $\phi(y_c, x_c)$: potential of individual letter given image.
- $\phi(y_{c-1},y_c)$: dependency between adjacent letters ('q-u').
- $\phi(y_{c-1}, y_c, x_{c-1}, x_c)$: adjacent letters and image dependency.
- $\phi_c(y_{c-1}, y_c)$: inhomogeneous dependency (French: 'e-r' ending).
- $\phi_c(y_{c-2}, y_{c-1}, y_c)$: third-order and inhomogeneous (English: 'i-n-g' end).
- $\phi(y \in \mathcal{D})$: is y in dictionary \mathcal{D} ?

Tractability of Discriminative Models

- Features can be very complicated, since we just condition on the x_c , .
- Given the x_c, tractability depends on the conditional UGM on the y_c.
 Inference tasks will be fast or slow, depending on the y_c graph.
- Besides "low treewidth", some other cases where exact computation is possible:
 - Semi-Markov chains (allow dependence on time you spend in a state).
 - For example, in rain data the seasons will be approximately 3 months.
 - Context-free grammars (allows potentials on recursively-nested parts of sequence).
 - Sum-product networks (restrict potentials to allow exact computation).
 - "Dictionary" feature is non-Markov, but exact computation still easy.
- We can alternately use our previous approximations:
 - Pseudo-likelihood (what we used).
 - 2 Monte Carlo approximate inference (eventually better but probably much slower).
 - Statistic approximate inference (fast, quality varies).

Structure Learning in UGMs

• Recall that in Ising UGMs, our edge potentials have the form

$$\phi_{ij}(x_i, x_j) = \exp(w_{ij} x_i x_j).$$

- If we set w_{ij} = 0, it sets φ_{ij}(x_i, x_j) = 1 for all x_i and x_j.
 Potential just "multiplies by 1", which is equivalent to removing the edge.
- L1-regularization of w_{ij} values performs structure learning in UGM.
- For general log-linear, each edge has multiple parameters $w_{i,j,s,s'}$.
 - In this case we can use "group L1-regularization" for structure learning.
 - Each group will be all parameters $w_{i,j,\cdot,\cdot}$ associated with an edge (i,j).

Structure Learning on Rain Data

ģ

23

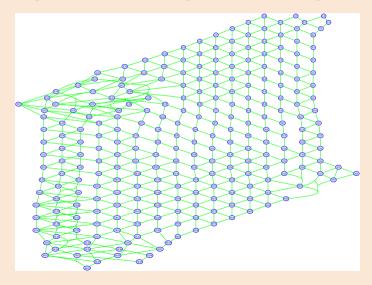
26

Large λ (and optimal tree): δ

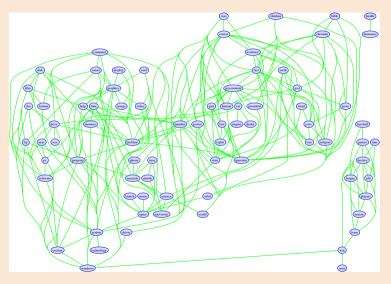
Small λ :

Structure Learning on USPS Digits

Structure learning of pairwise UGM with group-L1 on USPS digits:



Structure Learning on News Words Group-L1 on newsgroups data:

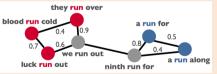


Structure Learning on News Words

Group-L1 on newsgroups data:

Posterior Regularization

- In some cases it might make sense to use posterior regularization:
 - Regularize the probabilities in the resulting model.
- Consider an NLP labeling task where
 - You have a small amount of labeled sentences.
 - You have a huge amount of unlabeled sentences.
- Maximize labeled likelihood, plus total-variation penalty on $p(y_c \mid x, w)$ values.
 - Give high regularization weights to words appearing in same trigrams:



http://jgillenw.com/conll2013-talk.pdf

Useful for "out of vocabulary" words (words that don't appear in labeled data).
Has been replaced in recent by continuous word representations like word2vec.

Avoiding Underflow when Computing Responsibilities

- Computing responsibility may underflow for high-dimensional x^i , due to $p(x^i \mid z^i = c, \Theta^t).$
- Usual ML solution: do all but last step in log-domain.

$$\log r_c^i = \log p(x^i \mid z^i = c, \Theta^t) + \log p(z^i = c \mid \Theta^t)$$
$$- \log \left(\sum_{c'=1}^k p(x^i \mid z^i = c', \Theta^t) p(z^i = c' \mid \Theta^t) \right).$$

• To compute last term, use "log-sum-exp" trick.

Log-Sum-Exp Trick

10

• To compute $\log(\sum_i \exp(v_i))$, set $\beta = \max_i \{v_i\}$ and use:

$$\log(\sum_{c} \exp(v_{i})) = \log(\sum_{i} \exp(v_{i} - \beta + \beta))$$
$$= \log(\sum_{i} \exp(v_{i} - \beta) \exp(\beta))$$
$$= \log(\exp(\beta)) \sum_{i} \exp(v_{i} - \beta))$$
$$= \log(\exp(\beta)) + \log(\sum_{i} \exp(v_{i} - \beta))$$
$$= \beta + \log(\sum_{i} \underbrace{\exp(v_{i} - \beta)}_{<1}).$$

 \bullet Avoids overflows due to computing \exp operator.