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Reminders

Project proposals due Friday

Assignment 3 due Monday

Assignment 4 released definitely by Monday, probably sooner



Last Time: DAG models

Directed acyclic graphical models: p(x) =
∏d

j=1 p(xj | xpa(j))
pa(j) ⊆ {1, . . . , j − 1} is the set of parents of j
Generalizes Markov chains (use pa(j) = {j − 1})
Every possible distribution can be written as one (use pa(j) = {1, . . . , j − 1})

Defines a graph (one node per xj , edges from parents to children)

Started d-separation to read conditional independences off of that graph



D-Separation Summary (MEMORIZE)
Checking whether DAG implies A is independent of B given C:

Consider each undirected path from any node in any A to any node in B.

Ignoring directions and observations.

Use directions/observations, check if any of below hold somewhere along each path:
1 P includes a “chain” with an observed middle node (e.g., Markov chain):

2 P includes a “fork” with an observed parent node (e.g., naive Bayes):

3 P includes a “v-structure” or “collider” (e.g., genetic inheritance):

where the “child” and all its descendants are unobserved.

If all paths are blocked by one of above, DAG implies the conditional independence.



D-Separation Summary (MEMORIZE)

We say that A and B are d-separated (conditionally independent) given C
if all undirected paths from A to B are “blocked”
because one of the following holds somewhere on the path:

1 P includes a “chain” with an observed middle node (e.g., Markov chain):

2 P includes a “fork” with an observed parent node (e.g., naive Bayes):

3 P includes a “v-structure” or “collider” (e.g., genetic inheritance):

where the “child” and all its descendants are unobserved.



Alarm Example

Case 1:

Earthquake ⊥̸⊥ Call.
Earthquake ⊥⊥ Call | Alarm.

Case 2:

Alarm ⊥̸⊥ Stuff Missing.
Alarm ⊥⊥ Stuff Missing | Burglary.



Alarm Example

Case 3:

Earthquake ⊥⊥ Burglary.
Earthquake ⊥̸⊥ Burglary | Alarm.

“Explaining away”: knowing one parent can make the other less/more likely.

Multiple Cases:

Call ⊥̸⊥ Stuff Missing.
Earthquake ⊥⊥ Stuff Missing.
Earthquake ⊥̸⊥ Stuff Missing | Call.



Discussion of D-Separation

D-separation lets you say if conditional independence is implied by assumptions:

(A and B are d-separated given C)⇒ A ⊥⊥ B | C.

However, there might be extra conditional independences in the distribution:
These would depend on specific choices of the DAG parameters.

For example, if we set Markov chain parameters so that p(xj | xj−1) = p(xj).

Or some orderings of the chain rule may reveal different independences.
Lack of d-separation doesn’t imply dependence.

Just that it’s not guaranteed to be independent by the graph structure.

Instead of restricting to {1, 2, . . . , j − 1}, can have general parent choices.

So x2 could be a parent of x1.

As long the graph is acyclic, there exists a valid ordering (chain rule makes sense).
(all DAGs have a “topological order” of variables where parents are before children)



Non-Uniqueness of Graph and Equivalent Graphs

Note that some graphs imply same conditional independences:

Equivalent graphs: same v-structures and other (undirected) edges are the same.
Examples of 3 equivalent graphs (left) and 3 non-equivalent graphs (right):



Beware of the “Causal” DAG

It can be helpful to use the language of causality when reasoning about DAGs.

You’ll find that they give the correct causal interpretation based on our intuition.

However, keep in mind that the arrows are not necessarily causal.

“A causes B” can have the same graph as “B causes A”!

There is work on causal DAGs which add semantics to deal with “interventions”.
But these require assuming that the arrow directions are causal.

Fitting a DAG to observational data doesn’t imply anything about causality.
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Linear Regression

As we saw last time, if the xi are IID, then we can represent linear regression as

or

From d-separation on this graph we have p(y | X, w) =
∏n

i=1 p(y
i | xi, w).

Can see our standard assumption: data is independent given parameters.
y1 ⊥̸⊥ y2, but y1 ⊥⊥ y2 | w.
x1 ⊥⊥ x2, but x1 ⊥̸⊥ x2 | y1, y2.

Discriminative model: here we don’t try to model things about p(xi).



IID Bernoulli-Beta Model

The Bernoulli-beta model as a DAG (with parameters and hyper-parameters):

Notice data is independent of hyper-parameters given parameters.

This is another of our standard independence assumptions.



Non-IID Bernoulli-Beta Model

The non-IID variant we considered with grouped data:

or

DAG reflects that we do not tie parameters across all training examples.

Notice that if you fix α and β then you can’t learn across groups:

The θj are d-separated given α and β.

Can also write more succinctly with nested plates.



Non-IID Bernoulli-Beta Model

Variant of the previous model with a hyper-hyper-parameter:

or

Needed to avoid degeneracy.



Naive Bayes with DAGs/Plates

For naive Bayes we have

yi ∼ Cat(θ), xi | (yi = c) ∼ Cat(θc).

or



Bayesian Linear Regression as a DAG

In Bayesian linear regression we assume

yi ∼ N (wTxi, 1), wj ∼ N (0, 1/λ),

which we can write as

or
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Density Estimators vs. Relationship Visualizers

Besides dependency visualization, we can use DAGs as density estimators.

Recall that DAGs model joint distribution using

p(x1, x2, . . . , xd) =

d∏
j=1

p(xj | xpa(j)).

We need to choose a parameterization for these conditional probabilities:
Tabular parameterization (discrete xj): can model any joint probability.

Common choice; sometimes set parameters from expert knowledge.

Gaussian (continuous xj): xj ∼ N (wTxpa(j), σ
2).

Called a Gaussian belief net. Joint distribution becomes a multivariate Gaussian.

Sigmoid (binary xj ∈ {−1,+1}): p(xj | xj−1, w) = 1/(1 + exp(−xjwTxpa(j))).

Called a sigmoid belief net.

Could use softmax, probabilistic random forest, neural network, and so on.

Our tricks for probabilistic supervised learning can be used for unsuperivsed learning.



Tabular Parameterization Example
Some companies sell software to help companies reason using tabular DAGs:

http://www.hugin.com/index.php/technology

http://www.hugin.com/index.php/technology


DAG Learning and Sampling

For j = 1 : d:
1 Set ȳi = xij and x̄i = xipa(j).

2 Solve a supervised learning problem using {X̄, ȳ}.
Gives you a model of p(xj | xpa(j)).

Can sample from DAGs using ancestral sampling:

Sample x1 from p(x1).
Sample x2 from p(x2 | xpa(2)).
...
Sample xd from p(xd | xpa(d)).

This allows us to do inference with Monte Carlo methods.

Conditional sampling can be hard; might need rejection sampling for conditionals.



MNIST Digits with Tabular DAG Model

Recall our latest MNIST model using a tabular DAG:

This model is pretty bad because you only see 8 parents.



MNIST Digits with Sigmoid Belief Network

Samples from sigmoid belief network:
(DAG with logistic regression for each variable)

where we use all previous pixels as parents (from 0 to 783 parents).

Models long-range dependencies but has a linear assumption.



Exact Inference in DAGs?

Can we do exact inference in DAGs like in Markov chains?

Continuous-state Gaussian DAGs:
Special case of multvariate Gaussian, so inference is tractable.

Most operations are O(d) or O(d3).

Continuous-state non-Gaussian DAGs:

Inference usually isn’t closed-form; need Monte Carlo or variational inference.
If parents are conjugate, then Gibbs sampling is easy to implement.

Discrete-state DAGs (whether tabular or sigmoid or other):

Inference takes exponential-time in the “treewidth” of the graph.
Exact inference is cheap in trees and forests, which have a treewidth of 1.

Low-treewidth graphs allow efficient exact inference; otherwise need approximations.



Inference in Forest DAGs (“Belief Propagation”)

Connected graphs with at most one parent per node are called trees.

If not connected, these kinds of graphs are forests; both are “singly-connected.”

We can generalize the CK equations to trees/forests:

p(xj = s) =
∑
xpa(j)

p(xj = s, xpa(j)) =
∑
xpa(j)

p(xj = s | xpa(j))︸ ︷︷ ︸
given

p(xpa(j)).

Trees/forests allow efficient dynamic programming methods as in Markov chains.

In particular, decoding and univariate marginals/conditionals in O(dk2).
Forward-backward applied to tree-structured graphs is called belief propagation.
It’s also possible to find the optimal tree given data (“structure learning”).
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Undirected Graphical Models (UGMs)
Undirected graphical models (UGMs) are another popular graphical model class.

Also called Markov random fields.

UGMs define joint distribution in terms of non-negative potential functions,

p(x1, x2, . . . , xd) ∝
∏
c∈C

ϕc(xc).

Define a potential ϕc for each set c where we want to model a direct relationship.

The most common choice is a pairwise UGM,

p(x1, x2, . . . , xd) ∝

 d∏
j=1

ϕj(xj)

 ∏
(i,j)∈E

ψij(xi, xj)

 .

This only has potentials on single variables (ϕ) and pairs of variables (ψ).
The “edge potentials” ψ are defined on edges of an undirected graph E .



Pairwise Undirected Graphical Models

Pairwise undirected graphical models factorize probability using

p(x1, x2, . . . , xd) ∝

 d∏
j=1

ϕj(xj)

 ∏
(i,j)∈E

ψij(xi, xj)

 .

Special cases:

Markov chains: E only has edges between adjacent nodes.
Multivaiate Gaussian: a specific choice of the ϕ and ψ functions.

Gaussians AKA “Gaussian graphical models” or “Gaussian Markov random fields”.

Ising model for binary xj uses

ϕj(xj) = exp(xiwi), ϕij(xi, xj) = exp(xixjwij),

where wi is the node weight and wij is the edge weight.

If wij > 0 it encourages neighbours to have same value (“attractive”).
If wij < 0 it encourages neighbours to have different values (“repulsive”).



Conditional Independence in UGMs
A UGM’s independence properties are described by an undirected graph.

For pairwise UGMs, the edges are given by the set of edges E .

If you have 3-variable or higher-order potentials:

Add an edge (i, j) if i and j are together in at least one c.

So these two factorizations have the same graph:

p(x1.x2, x3) ∝ ϕ12(x1, x2)ϕ13(x1, x3)ϕ23(x2, x3), p(x1, x2, x3) ∝ ϕ123(x1, x3, x3).

UGM implies A ⊥⊥ B | C if C separates all nodes in A from all nodes in B.

General version of what we did with the graph from Gaussians’ precision matrix.



Multivariate Gaussians as UGMs

Writing a Gaussian as a pairwise UGM:

p(x1, . . . , xd) ∝ exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)

= exp

−1

2

d∑
i=1

d∑
j=1

(xi − µi)(Σ−1)ij(xj − µj)


=

 d∏
j=1

e−
1
2
(Σ−1)jj(xj−µj)

2

 ∏
(i,j):(Σ−1)ij ̸=0

e−
1
2
(Σ−1)ij(xi−µi)(xj−µj)


Hence why zeros of the precision Σ−1 that determine conditional independence.



DAGs vs. UGMs

Neither DAGs or UGMs are “more powerful” than the other.

Any distribution can be written as a DAG, and as a UGM.
But you might need to use a highly connected graph.

Set of independences in DAG cannot always be written as UGM (and vice versa).

UGMs cannot reflect independences in common child graph: (x)→ (y)← (z).
DAGs cannot reflect independences in 4-node loop: (x)− (y)− (z)− (x).
Independences representable as both DAGs and UGMs are called decomposable.

An example is Markov chains: independences are same in DAG and UGM graphs.

DAGs are often used when it makes sense to work with conditionals,
or we have an idea of causal directions.

UGMs are often used when there are no obvious directions (like MNIST),
and are more often used when we want to add features to do supervised learning.



Tractability of UGMs

Without using ∝, a UGM probability would be

p(x) =
1

Z

∏
c∈C

ϕc(xc),

where Z is the constant that makes the probabilites sum up to 1.

Z =
∑
x1

∑
x2

· · ·
∑
xd

∏
c∈C

ϕc(xc) or Z =

∫
x1

∫
x2

· · ·
∫
xd

∏
c∈C

ϕc(xc)dxddxd−1 · · · dx1.

Whether you can compute Z (and do inference) depends on the choice of the ϕc:

Gaussian case: O(d3) in general, but O(d) for forests (no loops).
Continuous non-Gaussian: usually requires approximate inference.
Discrete case: #P-hard in general, but O(dk2) for forests (no loops).



Discrete DAGs vs. Discrete UGMs

Common inference tasks in graphical models:
1 Compute p(x) for an assignment to the variables x.
2 Generate a sample x from the distribution.
3 Compute univariate marginals p(xj).
4 Compute decoding argmaxx p(x).
5 Compute univariate conditional p(xj | xj′).

With discrete xi, all of the above are easy in tree-structured graphs.

For DAGs, a tree-structured graph has at most one parent.
For UGMs, a tree-structured graph has no cycles.

With discrete xi, the above may be harder for general graphs:

In DAGs the first two are easy, the others are NP-hard.
In UGMs all of these are NP-hard.



Inference in UGMs

The course does not “officially cover” details on inference in graphical models.

For however long is left today, we’ll cover some stuff as bonus slides.

These include:

Inference in non-tree DAGs/UGMs.
Learning the graph structure.
Treewidth of graphs, and efficient inference with low treewidth.
Exact decoding for binary attractive models using graph cuts.
ICM and alpha-expansion algorithms for approximate decoding.
Block Gibbs sampling in UGMs (UGMs are what Gibbs sampling was invented for).



Summary

Independence assumptions about data and parameters can be written as DAGs.

D-seperation lets us read conditional independences from DAGs.

Plate notation lets us compactly draw graphs with repeated patterns.

There are fancier versions of plate notation called “probabilistic programming”.

Parameter learning in DAGs:

Can fit each p(xj | xpa(j)) independently.
Tabular parameterization, or treat as supervised learning.

Sampling in DAGs is easy (ancestral sampling).

Exact inference in discrete DAGs is easy for trees.

But becomes exponential in “treewidth” of graph.

Undirected graphical models factorize probability into non-negative potentials.

Gaussians are a special case, but can place potentials on any subset of variables.
Inference is again exponential in “treewidth” of graph.

Next time: adding graphical models to neural networks.
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Inference in General DAGs

If we try to generalize the CK equations to DAGs we obtain

p(xj = s) =
∑
xpa(j)

p(xj = s, xpa(j)) =
∑
xpa(j)

p(xj = s | xpa(j))︸ ︷︷ ︸
given

p(xpa(j)).

What goes wrong if nodes have multiple parents?
The expression p(xpa(j)) is a joint distribution depending on multiple variables.

Consider the non-tree graph:



Inference in General DAGs

We can compute p(x4) in this non-tree using:

p(x4) =
∑
x3

∑
x2

∑
x1

p(x1, x2, x3, x4)

=
∑
x3

∑
x2

∑
x1

p(x4 | x2, x3)p(x3 | x1)p(x2 | x1)p(x1)

=
∑
x3

∑
x2

p(x4 | x2, x3)
∑
x1

p(x3 | x1)p(x2 | x1)p(x1)︸ ︷︷ ︸
M23(x2,x3)

Dependencies between {x1, x2, x3} mean our message depends on two variables.

p(x4) =
∑
x3

∑
x2

p(x4 | x2, x3)M23(x2, x3)

=
∑
x3

M34(x3, x4),



Inference in General DAGs

With 2-variable messages, our cost increases to O(dk3).

If we add the edge x1 → x4, then the cost is O(dk4).
(the same cost as enumerating all possible assignments)

Unfortunately, cost is not as simple as counting number of parents.

Even if each node has 2 parents, we may need huge messages.
Decoding is NP-hard and computing marginals is #P-hard in general.

We’ll see later that maximum message size is “treewidth” of a particular graph.

On the other hand, ancestral sampling is easy:

We can obtain Monte Carlo estimates of solutions to these NP-hard problems.



Conditional Sampling in DAGs

What about conditional sampling in DAGs?
Could be easy or hard depending on what we condition on.

For example, easy if we condition on the first variables in the order:
Just fix these and run ancestral sampling.

Hard to condition on the last variables in the order:
Conditioning on descendent makes ancestors dependent.
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DAG Structure Learning

Structure learning is the problem of choosing the graph.

Input is data X.
Output is a graph G.

The “easy” case is when we’re given the ordering of the variables.

So the parents of j must be chosen from {1, 2, . . . , j − 1}.

Given the ordering, structure learning reduces to feature selection:

Select features {x1, x2, . . . , xj−1} that best predict “label” xj .
We can use any feature selection method to solve these d problems.



Example: Structure Learning in Rain Data Given Ordering

Structure learning in rain data using L1-regularized logistic regression.
For different λ values, assuming chronological ordering.



DAG Structure Learning without an Ordering

Without an ordering, a common approach is “search and score”

Define a score for a particular graph structure (like BIC or other L0-regularizers).
Search through the space of possible DAGs.

“DAG-Search”: at each step greedily add, remove, or reverse an edge.

May have equivalent graphs with the same score (don’t trust edge direction).

Do not interpret causally a graph learned from data.

Structure learning is NP-hard in general, but finding the optimal tree is poly-time:
For symmetric scores, can be found by minimum spanning tree (“Chow-Liu”).

Score is symmetric if score(xj → xj′) is the same as score(xj′ → xj).

For asymetric scores, can be found by minimum spanning arborescence.



Structure Learning on USPS Digits
An optimal tree on USPS digits (16 by 16 images of digits).
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20 Newsgroups Data

Data containing presence of 100 words from newsgroups posts:

car drive files hockey mac league pc win

0 0 1 0 1 0 1 0
0 0 0 1 0 1 0 1
1 1 0 0 0 0 0 0
0 1 1 0 1 0 0 0
0 0 1 0 0 0 1 1

Structure learning should give some relationship between word occurrences.



Structure Learning on News Words
Optimal tree on newsgroups data:
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“Constraint-Based” DAG Structure Learning

Another common structure learning approach is “constraint-based”:

Based on performing a sequence of conditional independence tests.
Prune edge between xi and xj if you find variables S making them independent,

xi ⊥ xj | xS .

Challenge is considering exponential number of sets xS (heuristic: “PC algorithm”).
Assumes “faithfulness” (all independences are reflected in graph).

Otherwise it’s weird (a duplicated feature would be disconnected from everything.)
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Gaussians as Undirected Graphical Models

Multivariate Gaussian can be written as

p(x) ∝ exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
∝ exp

−1

2
xTΣ−1x+ xT Σ−1µ︸ ︷︷ ︸

v

 ,

and writing it in summation notation we can see that it’s a pairwise UGM:

p(x) ∝ exp(

−1

2

d∑
i=1

d∑
j=1

xixj(Σ
−1)ij +

d∑
i=1

xivi



=


d∏

i=1

d∏
j=1

exp

(
−1

2
xixj(Σ

−1)ij

)
︸ ︷︷ ︸

ϕij(xi,xj)


 d∏

i=1

exp (xivi)︸ ︷︷ ︸
ϕi(xi)


Above we include all edges. You can “remove” edges by setting (Σ−1)ij = 0.

“Gaussian graphical model” (GGM) or “Gaussian Markov random field” (GMRF).



General Pairwise UGM

For general discrete xi a generalization of Ising models is

p(x1, x2, . . . , xd) =
1

Z
exp

 d∑
i=1

wi,xi +
∑

(i,j)∈E

wi,j,xi,xj

 ,

which can represent any “positive” pairwise UGM (meaning p(x) > 0 for all x).

Interpretation of weights for this UGM:

If wi,1 > wi,2 then we prefer xi = 1 to xi = 2.
If wi,j,1,1 > wi,j,2,2 then we prefer (xi = 1, xj = 1) to (xi = 2, xj = 2).

As before, we can use parameter tieing:

We could use the same wi,xi for all positions i.
Ising model corresponds to a particular parameter tieing of the wi,j,xi,xj

.



Label Propagation (Graph-Based Semi-Supervised) as a UGM

Consider modeling the probability of a vector of labels ȳ ∈ Rt using

p(ȳ1, ȳ2, . . . , ȳt) ∝ exp

− n∑
i=1

t∑
j=1

wij(y
i − ȳi)2 − 1

2

t∑
i=1

t∑
j=1

w̄ij(ȳ
i − ȳj)2

 .

Decoding in this model is the label propagation problem.

This is a pairwise UGM:

ϕj(ȳ
j) = exp

(
−

n∑
i=1

wij(y
i − ȳj)2

)
, ϕij(ȳ

i, ȳj) = exp

(
−1

2
w̄ij(ȳ

i − ȳj)2
)
.



Factor Graphs

Factor graphs are a way to visualize UGMs that distinguishes different orders.
Use circles for variables, squares to represent dependencies.

Factor graph of p(x1, x2, x3) ∝ ϕ12(x1, x2)ϕ13(x1, x3)ϕ23(x2, x3):

Factor graph of p(x1, x2, x3) ∝ ϕ123(x1, x2, x3):



Other Graphical Models

Factor graphs: we use a square between variables that appear in same factor.

Can distinguish between a 3-way factor and 3 pairwise factors.

Chain-graphs: DAGs where each block can be a UGM.

Ancestral-graph:

Generalization of DAGs that is closed under conditioning.

Structural equation models (SEMs): generalization of DAGs that allows cycles.
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Moralization: Converting DAGs to UGMs

To address the NP-hard problems, DAGs and UGMs use same techniques.

We’ll focus on UGMs, but we can convert DAGs to UGMs:

p(x1, x2, . . . , xd) =

d∏
j=1

p(xj |xpa(j)) =
d∏

j=1

ϕj(xj , xpa(j))︸ ︷︷ ︸
=p(xj |xpa(j))

,

which is a UGM with Z = 1.

Graphically: we drop directions and “marry” parents (moralization).

May no longer see some independences, but doesn’t change computational cost.



Easy Cases: Chains, Trees and Forests

The forward-backward algorithm still works for chain-structured UGMs:
We compute the forward messages M and the backwards messages V .
With both M and V we can [conditionally] decode/marginalize/sample.

Belief propagation generalizes this to trees (undirected graphs with no cycles):
Pick an arbitrary node as the “root”, and order the nodes going away from the root.

Pass messages starting from the “leaves” going towards the root.

“Root” is like the last node in a Markov chain.
Backtrack from root to leaves to do decoding/sampling.
Send messages from the root going to the leaves to compute all marginals.

https://www.quora.com/

Probabilistic-graphical-models-what-are-the-relationships-between-sum-product-algorithm-belief-propagation-and-junction-tree-algorithm

https://www.quora.com/Probabilistic-graphical-models-what-are-the-relationships-between-sum-product-algorithm-belief-propagation-and-junction-tree-algorithm
https://www.quora.com/Probabilistic-graphical-models-what-are-the-relationships-between-sum-product-algorithm-belief-propagation-and-junction-tree-algorithm


Easy Cases: Chains, Trees and Forests

Recall the CK equations in Markov chains:

Mc(xc) =
∑
xp

p(xc | xp)Mp(xp).

For chain-structure UGMs we would have:

Mc(xc) ∝
∑
xp

ϕ(xp)ϕ(xp, xc)Mp(xp).

In tree-structured UGMs, parent p in the ordering may have multiple parents.

Message coming from “neighbour” i that itself has neighbours j and k would be

Mic(xc) ∝
∑
xi

ϕi(xi)ϕic(xi, xc)Mji(xi)Mki(xi),

Univariate marginals are proportional to ϕi(xi) times all “incoming” messages.
The“forward” and “backward” Markov chain messages are a special case.
Replace

∑
xi

with maxxi
for decoding.

“Sum-product” and “max-product” algorithms.



Exact Inference in UGMs

For general graphs, the cost of message passing depends on
1 Graph structure.
2 Variable order.

To see the effect of the order, consider Markov chain inference with bad ordering:

p(x5) =
∑
x5

∑
x4

∑
x3

∑
x2

∑
x1

p(x1)p(x2 | x1)p(x3 | x2)p(x4 | x3)p(x5 | x4)

=
∑
x5

∑
x1

∑
x4

∑
x3

∑
x2

p(x1)p(x2 | x1)p(x3 | x2)p(x4 | x3)p(x5 | x4)

=
∑
x5

∑
x1

p(x1)
∑
x3

∑
x4

p(x4 | x3)p(x5 | x4)
∑
x2

p(x2 | x1)p(x3 | x2)︸ ︷︷ ︸
M13(x1,x3)

So even though we have a chain, we have an M with k2 values instead of k.
Increases cost to O(dk3) instead of O(dk2).
Inference can be exponentially more expensive with the wrong ordering.



Exact Inference in UGMs

For general graphs, the cost of message passing depends on
1 Graph structure.
2 Variable order.

As a non-tree example, consider computing Z in a simple 4-node cycle:

Z =
∑
x4

∑
x3

∑
x2

∑
x1

ϕ12(x1, x2)ϕ23(x2, x3)ϕ34(x3, x4)ϕ14(x1, x4)

=
∑
x4

∑
x3

ϕ34(x3, x4)
∑
x2

ϕ23(x2, x3)
∑
x1

ϕ12(x1, x2)ϕ14(x1, x4)

=
∑
x4

∑
x3

ϕ34(x3, x4)
∑
x2

ϕ23(x2, x3)M24(x2, x4)

=
∑
x4

∑
x3

ϕ34(x3, x4)M34(x3, x4) =
∑
x4

M4(x4).

We again have an M with k2 values instead of k.
We can do inference tasks with this graph, but it costs O(dk3) instead of O(dk2).



Variable Order and Treewidth

Cost of message passing in general graphs is given by O(dkω+1).

Here, ω is the number of dimensions of the largest message.
For trees, ω = 1 so we get our usual cost of O(dk2).

The minimum value of ω across orderings for a given graph is called treewidth.
In terms of graph: “minimum size of largest clique, minus 1, over all triangulations”.

Also called “graph dimension” or “ω-tree”.

Intuitively, you can think of low treewidth as being “close to a tree”.

Trees have a treewidth of 1, and a single loop has a treewidth of 2.



Treewidth Examples

Examples of k-trees:

2-tree and 3-tree are trees if you use dotted circles to group nodes.



Treewidth Examples

Trees have ω = 1, so with the right order inference costs O(dk2).

A big loop has ω = 2, so cost with the right ordering is O(dk3).

The below grid-like structure has ω = 3, so cost is O(dk4).



Variable Order and Treewidth

Junction trees generalize belief propagation to general graphs (requires ordering).

This is the algorithm that achieves the O(dkω+1) runtime.

Computing ω and the optimal ordering is NP-hard.

But various heuristic ordering methods exist.

An m1 by m2 lattice has ω = min{m1,m2}.
So you can do exact inference on “wide chains” with Junction tree.
But for 28 by 28 MNIST digits it would cost O(784 · 229).

Some links if you want to read about treewidth:
https://www.win.tue.nl/~nikhil/courses/2015/2WO08/treewidth-erickson.pdf

https://math.mit.edu/~apost/courses/18.204-2016/18.204_Gerrod_Voigt_final_paper.pdf

For some graphs ω = (d− 1) so there is no gain over brute-force enumeration.

Many graphs have high treewidth so we need approximate inference.

https://www.win.tue.nl/~nikhil/courses/2015/2WO08/treewidth-erickson.pdf
https://math.mit.edu/~apost/courses/18.204-2016/18.204_Gerrod_Voigt_final_paper.pdf
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Iterated Conditional Mode (ICM)

The iterated conditional mode (ICM) algorithm for approximate decoding:

On each iteration k, choose a variable jt.
Maximie the joint probability in terms of xjt (with other variables fixed),

xt+1
j ∈ argmax cp(xt1, . . . , x

t
j−1, xj = c, xtj+1, . . . , x

t
d).

Equivalently, iterations correspond to finding mode of conditional p(xj | xt−j),

xt+1
j ∈ argmax cp(xj = c | xt−j),

where x−j means “xi for all i except xj”: x1, x2, . . . , xj−1, xj+1, . . . , xd.



ICM in Action

Start with some initial value: x0 =
[
2 2 3 1

]
.

Select random j like j = 3.

Set j to maximize p(x3 | x0−3): x
1 =

[
2 2 1 1

]
.

Select random j like j = 1.

Set j to maximize p(x1 | x1−1): x
2 =

[
3 2 1 1

]
.

Select random j like j = 2.

Set j to maximize p(x2 | x2−2): x
3 =

[
3 2 1 1

]
.

. . .

Repeat until you can no longer improve by single-variable changes.

Intead of random, could cycle through the variables in order.
Or you could greedily choose the variable that increases the probability the most.



Optimality and Globalization of ICM

Does ICM find the global optimum?

Decoding is usually non-convex, so doesn’t find global optimum.

ICM is an approximate decoding method.

There exist many globalization methods that can improve its performance:

Restarting with random initializations.
Global optimization methods:

Simulated annealing, genetic algorithms, ant colony optimization, GRASP, etc.



Using the Unnormalized Objective

How can you maximize p(x) in terms of xj if evaluating it is NP-hard?

Let’s define the unnormalized probability p̃ as

p̃(x) =
∏
c∈C

ϕc(xc).

So the normalized probability is given by

p(x) =
p̃(x)

Z
.

In UGMs evaluating Z is hard but evaluating p̃(x) is easy.

And for decoding we only need unnormalized probabilities,

argmaxxp(x) ≡ argmaxx
p̃(x)

Z
≡ argmaxxp̃(x),

so we can decode based on p̃ without knowing Z.



ICM Iteration Cost

How much does ICM cost?

Consider a pairwise UGM,

p̃(x) =

 d∏
j=1

ϕj(xj)

 ∏
(i,j)∈E

ϕij(xi, xj)

 .

Each ICM update would:
1 Set Mj(xj = s) to product of terms in p̃(x) involving xj , with xj set to s.
2 Set xj to the largest value of Mj(xj).

The variable xj has k values and appears in at most d factors here.
You can compute the k values of these d factors in O(dk) to find the largest.
If you only have m nodes in “Markov blanket”, this reduces to O(mk).

We will define “Markov blanket” in a couple slides.



ICM in Action
Consider using a UGM for binary image denoising:

We have

Unary potentials ϕj for each position.

Pairwise potentials ϕij for neighbours on grid.

Parameters are trained as CRF (later).

Goal is to produce a noise-free binary image (show video).



Digression: Closure of UGMs under Conditioning

UGMs are closed under conditioning:

If p(x) is a UGM, then p(xA | xB) can be written as a UGM (for partition A and B).

Conditioning on x2 and x3 in a chain,

gives a UGM defined on x1 and x4 that is disconnected:

Graphically, we “erase the black nodes and their edges”.

Notice that inference in the conditional UGM may be mucher easier.



Digression: Closure of UGMs under Conditioning

Mathematically, a 4-node pairwise UGM with a chain structure assumes

p(x1, x2, x3, x4) ∝ ϕ1(x1)ϕ2(x2)ϕ3(x3)ϕ4(x4)ϕ12(x1, x2)ϕ23(x2, x3)ϕ34(x3, x4).

Conditioning on x2 and x3 gives UGM over x1 and x4.

p(x1, x4 | x2, x3) =
1

Z ′ϕ
′
1(x1)ϕ

′
4(x4),

where new potentials “absorb” the shared potentials with observed nodes:

ϕ′1(x1) = ϕ1(x1)ϕ12(x1, x2), ϕ′4(x4) = ϕ4(x4)ϕ34(x3, x4).



Conditioning in UGMs

Conditioning on x2 and x3 in 4-node chain-UGM gives



Simpler Inference in Conditional UGMs

Consider the following graph which could describe bus stops:

If we condition on the “hubs”, the graph forms a forest (and inference is easy).
Simpler inference after conditioning is used by many approximate inference methods.



Digression: Local Markov Property and Markov Blanket

Approximate inference methods often use conditional p(xj | x−j),

where xk−j means “xki for all i except xkj ”: x
k
1 , x

k
2 , . . . , x

k
j−1, x

k
j+1, . . . , x

k
d.

In UGMs, the conditional simplifies due to conditional independence,

p(xj | x−j) = p(xj | xnei(j)),

this local Markov property means conditional only depends on neighbours.

We say that the neighbours of xj are its “Markov blanket”.

Markov blanket is the set nodes that make you independent of all other nodes.



Digression: Local Markov Property and Markov Blanket

In UGMs the Markov blanket is the neighbours.

Markov blanket in DAGs: parents, children, co-parents (parents of same children):
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Block-Structured Approximate Inference

Basic approximate inference methods like ICM and Gibb sampling:

Update one xj at a time.
Efficient because conditional UGM is 1 node.

Better approximate inference methods use block updates:

Update a block of xj values at once.
Efficient if conditional UGM allows exact inference.

If we choose the blocks cleverly, this works substantially better.



Block-Structured Approximate Inference

Consider a lattice-structure and the following two blocks (“red-black ordering”):

Given black nodes, conditional UGM on red nodes is a disconnected graph.
“I can optimally update the red nodes given the black nodes” (and vice versa).

You update d/2 nodes at once for cost of this is O(dk), and easy to parallelize.

Minimum number of blocks to disconnect the graph is graph colouring.



Block-Structured Approximate Inference

We could also consider general forest-structured blocks:

We can still optimally update the black nodes given the gray nodes in O(dk2).

This works much better than “one at a time”.



Block Gibbs Sampling in Action

Gibbs vs. tree-structured block-Gibbs samples:

With block sampling, the samples are far less correlated.

We can also do tree-structured block ICM.

Harder to get stuck if you get to update entire trees.



Block-Structured Approximate Inference

Or we could define a new tree-structured block on each iteration:

The above block updates around two thirds of the nodes optimally.
(Here we’re updating the black nodes.)



Block ICM Based on Graph Cuts

Consider a binary pairwise UGM with “attractive” potentials,

log ϕij(1, 1) + log ϕij(2, 2) ≥ log ϕij(1, 2) + log ϕij(2, 1).

In words: “neighbours prefer to have similar states”.

In this setting exact decoding can be formulated as a max-flow/min-cut problem.

Can be solved in polynomial time.

This is widely-used computer vision:

Want neighbouring pixels/super-pixels/regions to be more likely to get same label.



Graph Cut Example: “GrabCut”

http://cvg.ethz.ch/teaching/cvl/2012/grabcut-siggraph04.pdf

1 User draws a box around the object they want to segment.

2 Fit Gaussian mixture model to pixels inside the box, and to pixels outside the box.
3 Construct a pairwise UGM using:

ϕi(xi) set to GMM probability of pixel i being in class xi.
ϕij(xi, xj) set to Ising potential times RBF based on spatial/colour distance.

Use wij > 0 so the model is “attractive”.

4 Perform exact decoding in the binary attractive model using graph cuts.

http://cvg.ethz.ch/teaching/cvl/2012/grabcut-siggraph04.pdf


Graph Cut Example: “GrabCut”

GrabCut with extra user interaction:

http://cvg.ethz.ch/teaching/cvl/2012/grabcut-siggraph04.pdf

http://cvg.ethz.ch/teaching/cvl/2012/grabcut-siggraph04.pdf


Alpha-Beta Swap and Alpha-Expansions: ICM with Graph Cuts

If we have more than 2 states, we can’t use graph cuts.

Alpha-beta swaps are an approximate decoding method for “pairwise attractive”,

log ϕij(α, α) + log ϕij(β, β) ≥ log ϕij(α, β) + log ϕij(β, α).

Each step choose an α and β, optimally “swaps” labels among these nodes.

Alpha-expansions are another variation based on a slightly stronger assumption,

log ϕij(α, α) + log ϕij(β1, β2) ≥ log ϕij(α, β1) + log ϕij(β2, α).

Steps choose label α, and consider replacing the label of any node not labeled α.



Alpha-Beta Swap and Alpha-Expansions: ICM with Graph Cuts

These don’t find global optima in general, but make huge moves:

A somewhat-related MCMC method is the Swendson-Wang algorithm.



Example: Photomontage

Photomontage: combining different photos into one photo:

http://vision.middlebury.edu/MRF/pdf/MRF-PAMI.pdf

Here, xi corresponds to identity of original image at position i.

http://vision.middlebury.edu/MRF/pdf/MRF-PAMI.pdf


Example: Photomontage

Photomontage: combining different photos into one photo:

http://vision.middlebury.edu/MRF/pdf/MRF-PAMI.pdf

http://vision.middlebury.edu/MRF/pdf/MRF-PAMI.pdf


Outline

1 D-Separation

2 DAG Model Learning and Inference

3 Undirected Graphical Models (UGMs)

4 Bonus: Inference Details on Graphical Models

5 “Normal” bonus slides



Conditional Independence in Star Graphs

Consider the following star graph:

“5 aliens get together and make a baby alien”.

Unconditionally, the 5 aliens are independent.



Conditional Independence in Star Graphs

Consider the following star graph:

“5 aliens get together and make a baby alien”.

Conditioned on the baby, the 5 aliens are dependent.



Conditional Independence in Star Graphs

Consider the following star graph:

“An organism produces 5 clones”.

Unconditionally, the 5 clones are dependent.



Conditional Independence in Star Graphs

Consider the following star graph:

“An organism produces 5 clones”.

Conditioned on the original, the 5 clones are independent.



Does Semi-Supervised Learning Make Sense?

Should unlabeled examples always help supervised learning?
No!

Consider choosing unlabeled features x̄i uniformly at random.
Unlabeled examples collected in this way will not help.
By construction, distribution of x̄i says nothing about ȳi.

Example where SSL is not possible:
Try to detect food allergy by trying random combinations of food:

The actual random process isn’t important, as long as it isn’t affected by labels.
You can sample an infinite number of x̄i values, but they says nothing about labels.

Example where SSL is possible:
Trying to classify images as “cat” vs. “dog.:

Unlabeled data would need to be images of cats or dogs (not random images).
Unlabeled data contains information about what images of cats and dogs look like.
For example, there could be clusters or manifolds in the unlabeled images.



Does Semi-Supervised Learning Make Sense?

Let’s assume our semi-supervised learning model is represented by this DAG:

Assume we observe {X, y, X̄} and are interested in test labels ỹ:
There is a dependency between y and ỹ because of path through w.

Parameter w is tied between training and test distributions.
There is a dependency between X and ỹ because of path through w (given y).

But note that there is also a second path through D and X̃.
There is a dependency between X̄ and ỹ because of path through D and X̃.

Unlabeled data helps because it tells us about data-generating distribution D.



Does Semi-Supervised Learning Make Sense?

Now consider generating X̄ independent of D:

Assume we observe {X, y, X̄} and are interested in test labels ỹ:

Knowing X and y are useful for the same reasons as before.
But knowing X̄ is not useful:

Without knowing ȳ, X̄ is d-separated from ỹ (no dependence).



Tabular Parameterization Example

https://en.wikipedia.org/wiki/Bayesian_network

Some quantities can be directly read from the tables:

p(R = 1) = 0.2.

p(G = 1 | S = 0, R = 1) = 0.8.

Can calculate any probabilities using marginalization/product-rule/Bayes-rule (bonus).

https://en.wikipedia.org/wiki/Bayesian_network


Tabular Parameterization Example

https://en.wikipedia.org/wiki/Bayesian_network

Can calculate any probabilities using marginalization/product-rule/Bayes-rule, for example:

p(G = 1 | R = 1) = p(G = 1, S = 0 | R = 1) + p(G = 1, S = 1 | R = 1)

(
p(a | c) =

∑
b

p(a, b | c)
)

= p(G = 1 | S = 0, R = 1)p(S = 0 | R = 1) + p(G = 1 | S = 1, R = 1)p(S = 1 | R = 1)

= 0.8(0.99) + 0.99(0.01) = 0.81.

https://en.wikipedia.org/wiki/Bayesian_network


Dynamic Bayesian Networks

Dynamic Bayesian networks combine ideas from DAGs and Markov chains:
At each time, we have a set of variables xt.
The initial x0 comes from an “initial” DAG.
Given xt−1, we generate xt from a “transition” DAG.

https://www.cs.ubc.ca/~murphyk/Papers/dbnsem_uai98.pdf

Can be used to model multiple variables over time.
Unconditional sampling is easy but inference may be hard.

https://www.cs.ubc.ca/~murphyk/Papers/dbnsem_uai98.pdf
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