CPSC 440/540: Advanced Machine Learning
More DAGs

Mark Schmidt
(using materials by Danica Sutherland (building on materials from Mark Schmidt))

University of British Columbia

Winter 2023

Reminders admin

@ Project proposals due Friday
@ Assignment 3 due Monday
@ Assignment 4 released definitely by Monday, probably sooner

Last Time: DAG models

e Directed acyclic graphical models: p(x) = H;l:lp(acj | Tpa(s))
e pa(j) C{1,...,j — 1} is the set of parents of j
o Generalizes Markov chains (use pa(j) = {j — 1})
o Every possible distribution can be written as one (use pa(j) = {1,...,5 — 1})

@ Defines a graph (one node per z;, edges from parents to children)

@ Started d-separation to read conditional independences off of that graph

D-Separation Summary (MEMORIZE)
@ Checking whether DAG implies A is independent of B given C:

o Consider each undirected path from any node in any A to any node in B.
@ Ignoring directions and observations.
o Use directions/observations, check if any of below hold somewhere along each path:

@ P includes a “chain” with an observed middle node (e.g., Markov chain):

OO0

@ P includes a “fork” with an observed parent node (e.g., naive Bayes):

O@-0O

‘collider” (e.g., genetic inheritance):

© P includes a “v-structure” or

O
O

where the “child” and all its descendants are unobserved.

e If all paths are blocked by one of above, DAG implies the conditional independence.

D-Separation Summary (MEMORIZE)

e We say that A and B are d-separated (conditionally independent) given C'

if all undirected paths from A to B are “blocked”
because one of the following holds somewhere on the path:

@ P includes a “chain” with an observed middle node (e.g., Markov chain):

OO

@ P includes a “fork” with an observed parent node (e.g., naive Bayes):

O—@-0O

© P includes a “v-structure” or “collider” (e.g., genetic inheritance):

0 K
O

where the “child” and all its descendants are unobserved.

Alarm Example

o Case 1:

e Earthquake Y Call.

o Earthquake L Call | Alarm.
o Case 2:

o Alarm JX Stuff Missing.
o Alarm L Stuff Missing | Burglary.

Alarm Example
p,,l‘ce

o Case 3:
o Earthquake L Burglary.
o Earthquake X Burglary | Alarm.
o “Explaining away”: knowing one parent can make the other less/more likely.
@ Multiple Cases:
o Call X Stuff Missing.

e Earthquake L Stuff Missing.
o Earthquake [Stuff Missing | Call.

Discussion of D-Separation

@ D-separation lets you say if conditional independence is implied by assumptions:

(A and B are d-separated given C') = A 1 B | C.

@ However, there might be extra conditional independences in the distribution:
e These would depend on specific choices of the DAG parameters.
o For example, if we set Markov chain parameters so that p(x; | z;—1) = p(x;).

e Or some orderings of the chain rule may reveal different independences.
e Lack of d-separation doesn’t imply dependence.

@ Just that it's not guaranteed to be independent by the graph structure.

o Instead of restricting to {1,2,...,j — 1}, can have general parent choices.
e So x5 could be a parent of 7.

@ As long the graph is acyclic, there exists a valid ordering (chain rule makes sense).

(all DAGs have a “topological order” of variables where parents are before children)

Non-Uniqueness of Graph and Equivalent Graphs bﬂ"is-[

@ Note that some graphs imply same conditional independences:
o Equivalent graphs: same v-structures and other (undirected) edges are the same.
o Examples of 3 equivalent graphs (left) and 3 non-equivalent graphs (right):

O—O—0 O—O—0
O—O0—0 O—O—0
O O O—O—0

©

Beware of the “Causal” DAG bonus!

@ It can be helpful to use the language of causality when reasoning about DAGs.
e You'll find that they give the correct causal interpretation based on our intuition.

@ However, keep in mind that the arrows are not necessarily causal.

e “A causes B" can have the same graph as “B causes A"!

@ There is work on causal DAGs which add semantics to deal with “interventions”.
e But these require assuming that the arrow directions are causal.
o Fitting a DAG to observational data doesn't imply anything about causality.

Outline

@ D-Separation
@ Seeing Our Old Favourites as DAGs

Linear Regression

@ As we saw last time, if the 2° are 11D, then we can represent linear regression as

n
o From d-separation on this graph we have p(y | X,w) = [\, p(¢* | 2%, w).
o Can see our standard assumption: data is independent given parameters.

o y' X v% butyt L 9% | w.
o ! I 22, but ' ¥ 22 |y, y%

or

@ Discriminative model: here we don't try to model things about p(z?).

[ID Bernoulli-Beta Model

@ The Bernoulli-beta model as a DAG (with parameters and hyper-parameters):

@ Notice data is independent of hyper-parameters given parameters.
e This is another of our standard independence assumptions.

Non-IID Bernoulli-Beta Model

@ The non-1ID variant we considered with grouped data:

< ﬁ\ D @

ef e @
b © .

@ DAG reflects that we do not tie parameters across all training examples.
@ Notice that if you fix o and 3 then you can't learn across groups:
o The 0; are d-separated given o and 3.

@ Can also write more succinctly with nested plates.

Non-IID Bernoulli-Beta Model

@ Variant of the previous model with a hyper-hyper-parameter:

Lﬂ)@ o

@ Needed to avoid degeneracy.

Naive Bayes with DAGs/Plates

@ For naive Bayes we have

y' ~ Cat(), z'|(y" =c)~ Cat(h,).

@

)
@/@ é{%\@? 9
0©® @ &0

or

Bayesian Linear Regression as a DAG
@ In Bayesian linear regression we assume
Yy~ N(wTah 1), wj~ N(0,1/X),

which we can write as

or

Outline

© DAG Model Learning and Inference

Density Estimators vs. Relationship Visualizers

@ Besides dependency visualization, we can use DAGs as density estimators.

@ Recall that DAGs model joint distribution using

d

p(l’l,l’g,. . '7'1:(1) = Hp(x] ‘ xpa(]))
7j=1

@ We need to choose a parameterization for these conditional probabilities:
o Tabular parameterization (discrete z;): can model any joint probability.
e Common choice; sometimes set parameters from expert knowledge.
o Gaussian (continuous x;): @; ~ N (w'Tpa(j), 02).
o Called a Gaussian belief net. Joint distribution becomes a multivariate Gaussian.
o Sigmoid (binary z; € {—1,+1}): p(z; | zj_1,w) = 1/(1 + exp(—z;w T pa(j)))-
o Called a sigmoid belief net.
e Could use softmax, probabilistic random forest, neural network, and so on.
@ Our tricks for probabilistic supervised learning can be used for unsuperivsed learning.

Tabular Parameterization Example
Some companies sell software to help companies reason using tabular DAGs:

LIGHTS
SRR ™ 100.0000 IO FUEL PUMP FUEL LINE FUEL
0.0000 fault 98,464 7RIS ok 1 5.7860 ok
1.5353 fault 3.0706 fault EETEIEL fault

BATTERY

100.0000 73 m.-,

o.0000 fault

=2° 1

ENGINE STARTS

FUEL GAUGE
0.0000 ok
Fuel Sge foutt

0.0000 ok
100,0000 RT3

http://www.hugin.com/index.php/technology

http://www.hugin.com/index.php/technology

DAG Learning and Sampling

@ Forj=1:d:
Q Sety' =ufand ' =] . i
@ Solve a supervised learning problem using {X, 7}.
o Gives you a model of p(z; | Tpa(s))-

@ Can sample from DAGs using ancestral sampling:
o Sample 1 from p(z1).
o Sample x5 from p(z2 | Tpac2))-
°:
o Sample g from p(z4 | Tpa(ay)-

@ This allows us to do inference with Monte Carlo methods.
e Conditional sampling can be hard; might need rejection sampling for conditionals.

MNIST Digits with Tabular DAG Model

@ Recall our latest MNIST model using a tabular DAG:

5 10 15 20 25

5 10 15 20 25

@ This model is pretty bad because you only see 8 parents.

MNIST Digits with Sigmoid Belief Network

@ Samples from sigmoid belief network:

(DAG with logistic regression for each variable)

where we use all previous pixels as parents (from 0 to 783 parents).
e Models long-range dependencies but has a linear assumption.

Exact Inference in DAGs?
@ Can we do exact inference in DAGs like in Markov chains?

@ Continuous-state Gaussian DAGs:
e Special case of multvariate Gaussian, so inference is tractable.
o Most operations are O(d) or O(d*).

@ Continuous-state non-Gaussian DAGs:

o Inference usually isn't closed-form; need Monte Carlo or variational inference.
e If parents are conjugate, then Gibbs sampling is easy to implement.

@ Discrete-state DAGs (whether tabular or sigmoid or other):

e Inference takes exponential-time in the “treewidth” of the graph.
e Exact inference is cheap in trees and forests, which have a treewidth of 1.

o Low-treewidth graphs allow efficient exact inference; otherwise need approximations.

Inference in Forest DAGs (“Belief Propagation”)

@ Connected graphs with at most one parent per node are called trees.

e If not connected, these kinds of graphs are forests; both are “singly-connected.”

@ We can generalize the CK equations to trees/forests:

plag=s)= > plz;=52m;) = Y p(x; =5 | Tpag)) P(Zpag)):

Tpa(j) Tpa(j) o

given

@ Trees/forests allow efficient dynamic programming methods as in Markov chains.
o In particular, decoding and univariate marginals/conditionals in O(dk?).
e Forward-backward applied to tree-structured graphs is called belief propagation.
e It's also possible to find the optimal tree given data (“structure learning”).

Outline

© Undirected Graphical Models (UGMs)

Undirected Graphical Models (UGMs)

e Undirected graphical models (UGMs) are another popular graphical model class.
e Also called Markov random fields.

@ UGMs define joint distribution in terms of non-negative potential functions,

p(x1, @, ..., xq) X H Ge(xe).

ceC

@ Define a potential ¢, for each set ¢ where we want to model a direct relationship.

@ The most common choice is a pairwise UGM,

d
plar, wg, ... xg) o | [65()) IT (i)
j=1

(3,5)€E

This only has potentials on single variables (¢) and pairs of variables (7).
e The “edge potentials” v are defined on edges of an undirected graph £.

Pairwise Undirected Graphical Models

@ Pairwise undirected graphical models factorize probability using

d
plar, za, ... xa) o | [85(x;) I i)
j=1

(3,7)€€

@ Special cases:

e Markov chains: £ only has edges between adjacent nodes.
e Multivaiate Gaussian: a specific choice of the ¢ and v functions.

o Gaussians AKA "Gaussian graphical models” or “Gaussian Markov random fields” .

o Ising model for binary z; uses

¢j(l’j) = exp(w;w;), ¢ij($i7xj) = exp(ﬂﬂmjwij),

where w; is the node weight and wj; is the edge weight.

o If w;; > 0 it encourages neighbours to have same value (“attractive”).
e If w;; < 0 it encourages neighbours to have different values (“repulsive”).

Conditional Independence in UGMs
@ A UGM'’s independence properties are described by an undirected graph.
e For pairwise UGMs, the edges are given by the set of edges £.

(+) c

A

D E
_/
@ If you have 3-variable or higher-order potentials:
o Add an edge (i,7) if i and j are together in at least one c.

@ So these two factorizations have the same graph:
p(w1.02,23) < P12(w1, T2)P13(w1, 23)P23(T2, 23), p(T1, T2, T3) X P123(71, T3, X3).

@ UGM implies A 1L B | C if C separates all nodes in A from all nodes in B.
o General version of what we did with the graph from Gaussians' precision matrix.

Multivariate Gaussians as UGMs bonus!

@ Writing a Gaussian as a pairwise UGM:

plorsszd) e (~ (o= T =)

d
= exp —% Z > (@i —) (55 — pg)

d
— (H 6%(21)13(%#])2) (H eé(zl)u(fvzuz)(%m))
j=1 (4,5):(371)3570

@ Hence why zeros of the precision ! that determine conditional independence.

DAGs vs. UGMs

@ Neither DAGs or UGMs are “more powerful” than the other.

o Any distribution can be written as a DAG, and as a UGM.
e But you might need to use a highly connected graph.

@ Set of independences in DAG cannot always be written as UGM (and vice versa).

o UGMs cannot reflect independences in common child graph: (z) — (y) + (2).
o DAGs cannot reflect independences in 4-node loop: (z) — (y) — (2) — ().
o Independences representable as both DAGs and UGMs are called decomposable.

@ An example is Markov chains: independences are same in DAG and UGM graphs.

@ DAGs are often used when it makes sense to work with conditionals,
or we have an idea of causal directions.

@ UGMs are often used when there are no obvious directions (like MNIST),
and are more often used when we want to add features to do supervised learning.

Tractability of UGMs

@ Without using o<, a UGM probability would be
1
p(@) = [oelao)
where Z is the constant that makes the probabilites sum up to 1.
Z:ZZZH¢C(xC) or Z:/ / / Hgﬁc(xc)dajddxd,l'”dwl.
x1 Jx2 T4

1 T2 xq ceC ceC

@ Whether you can compute Z (and do inference) depends on the choice of the ¢.:
o Gaussian case: O(d?) in general, but O(d) for forests (no loops).
e Continuous non-Gaussian: usually requires approximate inference.
o Discrete case: #P-hard in general, but O(dk?) for forests (no loops).

Discrete DAGs vs. Discrete UGMs

@ Common inference tasks in graphical models:
@ Compute p(z) for an assignment to the variables x.
@ Generate a sample x from the distribution.
© Compute univariate marginals p(z;).
@ Compute decoding arg max,, p(x).
© Compute univariate conditional p(z; | ;).

@ With discrete x;, all of the above are easy in tree-structured graphs.

o For DAGs, a tree-structured graph has at most one parent.
o For UGMs, a tree-structured graph has no cycles.

e With discrete x;, the above may be harder for general graphs:

o In DAGs the first two are easy, the others are NP-hard.
e In UGMs all of these are NP-hard.

Inference in UGMs

@ The course does not “officially cover” details on inference in graphical models.

@ For however long is left today, we'll cover some stuff as bonus slides.

@ These include:

Inference in non-tree DAGs/UGMs.

Learning the graph structure.

Treewidth of graphs, and efficient inference with low treewidth.

Exact decoding for binary attractive models using graph cuts.

ICM and alpha-expansion algorithms for approximate decoding.

Block Gibbs sampling in UGMs (UGMs are what Gibbs sampling was invented for).

Summary

Independence assumptions about data and parameters can be written as DAGs.

D-seperation lets us read conditional independences from DAGs.
@ Plate notation lets us compactly draw graphs with repeated patterns.

e There are fancier versions of plate notation called “probabilistic programming”.
o Parameter learning in DAGs:

o Can fit each p(x; | pa(;)) independently.
e Tabular parameterization, or treat as supervised learning.

Sampling in DAGs is easy (ancestral sampling).

Exact inference in discrete DAGs is easy for trees.
o But becomes exponential in “treewidth” of graph.

Undirected graphical models factorize probability into non-negative potentials.

o Gaussians are a special case, but can place potentials on any subset of variables.
o Inference is again exponential in “treewidth” of graph.

@ Next time: adding graphical models to neural networks.

Outline

@ Bonus: Inference Details on Graphical Models
@ DAG Inference

Inference in General DAGs

o If we try to generalize the CK equations to DAGs we obtain

plaj=s)= > p(z;=52pn) = Y p(z; =5 Tpag)) P(Tpag)):

Tpa(j) Tpa(j) V-

@ What goes wrong if nodes have multiple parents?

o The expression p(z,,,(;)) is a joint distribution depending on multiple variables.

o Consider the non-tree graph:

bonus,(

Inference in General DAGs bonus!

@ We can compute p(x4) in this non-tree using:

p(z4) = Z Z Zp@h T2, T3, Ta)

r3 T2 X1

— ZZZ])($4 | $2,I3)p($3 | I1)p($2 | xl)p(ajl)

3 T2 X1

= ZZp(x4 ’ 1’2,:]}3) ZP('fS | 331)])(1172 ‘ Jil)p($1)

3 T2 1

~~

Ma3(22,73)
e Dependencies between {x1, z2, 23} mean our message depends on two variables.

pla) =D plaa | w2, w5) Mos (w2, 3)

T3 T2

= Msy(z3,24),

T3

Inference in General DAGs bonus!

o With 2-variable messages, our cost increases to O(dk?).

o If we add the edge z1 — x4, then the cost is O(dk?).

(the same cost as enumerating all possible assignments)

@ Unfortunately, cost is not as simple as counting number of parents.

e Even if each node has 2 parents, we may need huge messages.
e Decoding is NP-hard and computing marginals is #P-hard in general.

o We'll see later that maximum message size is “treewidth” of a particular graph.

@ On the other hand, ancestral sampling is easy:
e We can obtain Monte Carlo estimates of solutions to these NP-hard problems.

Conditional Sampling in DAGs

@ What about conditional sampling in DAGs?
e Could be easy or hard depending on what we condition on.

@ For example, easy if we condition on the first variables in the order:

e Just fix these and run ancestral sampling.
@ o ©

VSV
N

@ Hard to condition on the last variables in the order:
e Conditioning on descendent makes ancestors dependent.

bonus,(

Outline

@ Bonus: Inference Details on Graphical Models

@ Structure Learning

DAG Structure Learning bonus!

@ Structure learning is the problem of choosing the graph.

e Input is data X.
e Output is a graph G.

@ The “easy” case is when we're given the ordering of the variables.
e So the parents of j must be chosen from {1,2,...,5 — 1}.

@ Given the ordering, structure learning reduces to feature selection:

o Select features {z1,2,...,2;_1} that best predict “label” ;.
o We can use any feature selection method to solve these d problems.

Example: Structure Learning in Rain Data Given Ordering bonus!

@ Structure learning in rain data using L1-regularized logistic regression.
o For different A values, assuming chronological ordering.

@ 0 Q 0
® ® ® ®
® @ @ @

9) 0) @

9 @ ® o

9 0 0 0
© () (1) ()
® @ @)
®© @ ® @

¢ W o @

® ® © ®

QQ @ 16) @

®

DAG Structure Learning without an Ordering bonus!

@ Without an ordering, a common approach is “search and score”

o Define a score for a particular graph structure (like BIC or other LO-regularizers).
e Search through the space of possible DAGs.

o "“DAG-Search”: at each step greedily add, remove, or reverse an edge.

e May have equivalent graphs with the same score (don't trust edge direction).
e Do not interpret causally a graph learned from data.

@ Structure learning is NP-hard in general, but finding the optimal tree is poly-time:
o For symmetric scores, can be found by minimum spanning tree (“Chow-Liu").
@ Score is symmetric if score(xz; — x;/) is the same as score(z;; — ;).

e For asymetric scores, can be found by minimum spanning arborescence.

Structure Learning on USPS Digits
An optimal tree on USPS digits (16 by 16 images of digits).

00

00000 p0e00e
®OOOOROO®

0eeee
@@99

@@eeeeeeeee

:@:.

> oo

GH— @ ®

e 20 @ C§<3
:ob :
@ @ o@
@@ @ @@@
@@@@@@
OB ®® @
POO®® ® @
@@@ ® @
@ @ @@ @
@ @@ @ @
0o oo o8 ©
_go o S
@ @ :
@@ @
& @
@D @D

:: :

@@
@

bonus,‘

20 Newsgroups Data bonus!

o Data containing presence of 100 words from newsgroups posts:

car | drive | files | hockey | mac | league | pc | win
0 0 1 0 1 0 1 0
0 0 0 1 0 1 0 1
1 1 0 0 0 0 0 0
0 1 1 0 1 0 0 0
0 0 1 0 0 0 1 1

@ Structure learning should give some relationship between word occurrences.

Structure Learning on News Words
Optimal tree on newsgroups data:

)
FEE ® SO @
o ©FEmman D@D
@@@-b @® @ --@‘bw.-?. > () (>
SCroOs

1.‘.‘"::

-@@

.. >
6@@ d-@-@

bonus,‘

“Constraint-Based” DAG Structure Learning bonus!

@ Another common structure learning approach is “constraint-based"”:

e Based on performing a sequence of conditional independence tests.
o Prune edge between x; and z; if you find variables S making them independent,

ariJ_xj | Is.

o Challenge is considering exponential number of sets g (heuristic: “PC algorithm™).
o Assumes “faithfulness” (all independences are reflected in graph).

@ Otherwise it's weird (a duplicated feature would be disconnected from everything.)

Outline

@ Bonus: Inference Details on Graphical Models

@ More UGMs

Gaussians as Undirected Graphical Models bonus!

@ Multivariate Gaussian can be written as

1 1
p)ocexp | —=(x—p) Bz —p)) xexp | —=z'2 7z +2" S|,
2 2 N~

and writing it in summation notation we can see that it's a pairwise UGM:

1 d d d
p(x) X exp((_2 Z Z xil‘j(Z_l)ij aF Z .’L‘i’l)i)

i=1 j=1

d d | » d
= HHGXP<—2%'%'(E)z’j) L[leXp(wivi)

1=1j5=1
= @i(xs)

bij(zi,xj)

@ Above we include all edges. You can “remove” edges by setting (E_l)ij = 0.
e “Gaussian graphical model” (GGM) or “Gaussian Markov random field" (GMRF).

General Pairwise UGM

e For general discrete z; a generalization of Ising models is

p($1, Z2,...,T = eXp § Wy z; + E Wi jxiz; |

(i,)€E

which can represent any “positive” pairwise UGM (meaning p(x) > 0 for all z).

@ Interpretation of weights for this UGM:
o If w;1 > w; 2 then we prefer z; =1 to z; = 2.
o If Wi, 5.1,1 > W;,5,2,2 then we prefer (1‘1 = 1,1‘j = 1) to (l‘z = 2,$j = 2)

@ As before, we can use parameter tieing:

o We could use the same w; ;, for all positions 3.
o Ising model corresponds to a particular parameter tieing of the w; j z, «-

bon MS,(

Label Propagation (Graph-Based Semi-Supervised) as a UGM

e Consider modeling the probability of a vector of labels i € R? using

t ot
p(7", 7%, ..., 7") o exp ZZwa -7 ;;; (@ -7

=1 j=1

@ Decoding in this model is the label propagation problem.

@ This is a pairwise UGM:

bonus,(

o

o 1 o
i (7) _eXP< wa ¥ —)) ., 0y, Y) = exp <—2wij(§z—§])2>-

Factor Graphs

@ Factor graphs are a way to visualize UGMs that distinguishes different orders.

e Use circles for variables, squares to represent dependencies.

e Factor graph of p(x1,x9,x3) x ¢12(x1, 2)P13(21, T3)P23(x2, 3):

#@\3

©eq
2)—h— 3
e Factor graph of p(x1,x9, x3) x ¢123(x1, 22, 73):

B
& %

bon MS,‘

Other Graphical Models bonus!

Factor graphs: we use a square between variables that appear in same factor.
e Can distinguish between a 3-way factor and 3 pairwise factors.

Chain-graphs: DAGs where each block can be a UGM.

Ancestral-graph:
o Generalization of DAGs that is closed under conditioning.

@ Structural equation models (SEMs): generalization of DAGs that allows cycles.

Outline

@ Bonus: Inference Details on Graphical Models

@ Treewidth

Moralization: Converting DAGs to UGMs bonus!

@ To address the NP-hard problems, DAGs and UGMs use same techniques.
e We'll focus on UGMs, but we can convert DAGs to UGMs:

d
p(@1, 72, .. za) = [[P@lzpag) H 63 (T, Tpa(j
1 _,_/
J (gc]\wmm)

which is a UGM with Z = 1.
e Graphically: we drop directions and “marry” parents (moralization).

O\@\f O\{\o /fi\/

o May no longer see some mdependences, but doesn’t change computational cost.

Easy Cases: Chains, Trees and Forests bonus!

@ The forward-backward algorithm still works for chain-structured UGMs:
o We compute the forward messages M and the backwards messages V.
o With both M and V' we can [conditionally] decode/marginalize/sample.

o Belief propagation generalizes this to trees (undirected graphs with no cycles):
e Pick an arbitrary node as the “root”, and order the nodes going away from the root.
@ Pass messages starting from the “leaves” going towards the root.
e "“Root" is like the last node in a Markov chain.

o Backtrack from root to leaves to do decoding/sampling.
@ Send messages from the root going to the leaves to compute all marginals.

Ox

https://www.quora.com/

Probabilistic-graphical-models-what-are-the-relationships-between-sum-product-algorithm-belief-propagation-and-junction-tree-

https://www.quora.com/Probabilistic-graphical-models-what-are-the-relationships-between-sum-product-algorithm-belief-propagation-and-junction-tree-algorithm
https://www.quora.com/Probabilistic-graphical-models-what-are-the-relationships-between-sum-product-algorithm-belief-propagation-and-junction-tree-algorithm

Easy Cases: Chains, Trees and Forests bonus!

@ Recall the CK equations in Markov chains:

M(z.) = Zp(mc | xp)Mp(xp)'

@ For chain-structure UGMs we would have:

M () o Z ¢(xp)d(Tp, Tc) Mp(zp).

In tree-structured UGMs, parent p in the ordering may have multiple parents.
Message coming from “neighbour” ¢ that itself has neighbours j and & would be

Mic(we) o<) i) bie(@s, we) Mija () Mpi (),

T4

@ Univariate marginals are proportional to ¢;(x;) times all “incoming” messages.
e The"forward” and “backward” Markov chain messages are a special case.
o Replace >, with max,, for decoding.
@ “Sum-product” and “max-product” algorithms.

Exact Inference in UGMs bonus!

@ For general graphs, the cost of message passing depends on
@ Graph structure.
@ Variable order.
@ To see the effect of the order, consider Markov chain inference with bad ordering:

=3 3NN p@)p(@n | 21)p(@s | 22)p(es | 2s)p(ws | 24)

s T4 xr3)]

=Y D 35" pl@)p(s | w1)p(ws | w2)p(xa | 23)p(ws | 2a)

5 L1 T4 T3 T2

_ZZPJM ZZP$4|$3 $5|$4 ZP$2|$1 $3|$2)

5 X1 T3 T4

M3 (z1,23)

@ So even though we have a chain, we have an M with k? values instead of k.
o Increases cost to O(dk®) instead of O(dk?).
o Inference can be exponentially more expensive with the wrong ordering.

Exact Inference in UGMs

@ For general graphs, the cost of message passing depends on
@ Graph structure.
@ Variable order.

@ As a non-tree example, consider computing Z in a simple 4-node cycle:

Z = Z Z Z Z p12(1, T2) P23(T2, T3) P34(T3, T4) P14(T1, T4)

T4 T3 T2 X1

=3 dsalws, s Z¢23 T2, T3 Z¢12 T1, T2)$14(T1, T4)

T4 T3

= ZZ¢34 T3, T4 Z¢23 T2, T3]\/f24(1132,964)
= ZZ¢34 (z3, 24) M34(z3, T4) ZM4 (z4).

T4 T3

e We again have an M with k? values instead of k.

bonus,(

o We can do inference tasks with this graph, but it costs O(dk?) instead of O(dk?).

Variable Order and Treewidth bﬂnis.‘

o Cost of message passing in general graphs is given by O(dk“T1).
e Here, w is the number of dimensions of the largest message.
o For trees, w = 1 so we get our usual cost of O(dk?).

@ The minimum value of w across orderings for a given graph is called treewidth.
o In terms of graph: “minimum size of largest clique, minus 1, over all triangulations”.

o Also called “graph dimension” or “w-tree”.

o Intuitively, you can think of low treewidth as being “close to a tree”.
@ Trees have a treewidth of 1, and a single loop has a treewidth of 2.

Treewidth Examples

@ Examples of k-trees:

2""“&’? g 1(("0
[=Crey

o——{{ wi—o 3¢ —J"n ‘ w_ﬁ%‘ =

d(_.\

_
(2

@ 2-tree and 3-tree are trees if you use dotted circles to group nodes.

bonus,(

Treewidth Examples bonus!

@ Trees have w = 1, so with the right order inference costs O(dk?).
ol
0

o A big loop has w = 2, so cost with the right ordering is O(dk?).
Q;O o

o The below grid-like structure has w = 3, so cost is O(dk?).

S

Variable Order and Treewidth bonus!

e

@ Junction trees generalize belief propagation to general graphs (requires ordering).
o This is the algorithm that achieves the O(dk“™1) runtime.

Computing w and the optimal ordering is NP-hard.
e But various heuristic ordering methods exist.

An my by mq lattice has w = min{my, ma}.
e So you can do exact inference on “wide chains” with Junction tree.
o But for 28 by 28 MNIST digits it would cost O(784 - 229).

@ Some links if you want to read about treewidth:

@ https://www.win.tue.nl/~nikhil/courses/2015/2W008/treewidth-erickson.pdf
@ https://math.mit.edu/~apost/courses/18.204-2016/18.204_Gerrod_Voigt_final_paper.pdf

For some graphs w = (d — 1) so there is no gain over brute-force enumeration.
e Many graphs have high treewidth so we need approximate inference.

https://www.win.tue.nl/~nikhil/courses/2015/2WO08/treewidth-erickson.pdf
https://math.mit.edu/~apost/courses/18.204-2016/18.204_Gerrod_Voigt_final_paper.pdf

Outline

@ Bonus: Inference Details on Graphical Models

e |ICM

lterated Conditional Mode (ICM) bonus!

@ The iterated conditional mode (ICM) algorithm for approximate decoding:

e On each iteration k, choose a variable j;.
e Maximie the joint probability in terms of z;, (with other variables fixed),

t

+1 t t ot t
T, € argmaxep(Ty, ..., L1, %5 = Ty, -1 Tq)-

o Equivalently, iterations correspond to finding mode of conditional p(z; | 2),

t+1

Tj

€ argmaxcp(z; = c | xij),

where z_; means “z; for all i except z;": x1,%2,...,%j—1,%j41,...,%d-

[CM in Action bonus!

@ Start with some initial value: z° = [2 2 3 1]

@ Select random j like j = 3.

o Set j to maximize p(z3 | 2%5): z' =[2 2 1 1].
@ Select random j like j = 1.

e Set j to maximize p(z1 | 21,): 22 =[3 2 1 1].
@ Select random j like j = 2.

e Set j to maximize p(z2 | 22,): 2* =[3 2 1 1J.
° ...

@ Repeat until you can no longer improve by single-variable changes.

e Intead of random, could cycle through the variables in order.
e Or you could greedily choose the variable that increases the probability the most.

Optimality and Globalization of ICM bonus!

@ Does ICM find the global optimum?

@ Decoding is usually non-convex, so doesn't find global optimum.
e ICM is an approximate decoding method.

@ There exist many globalization methods that can improve its performance:

@ Restarting with random initializations.
o Global optimization methods:

e Simulated annealing, genetic algorithms, ant colony optimization, GRASP, etc.

Using the Unnormalized Objective bonus!

@ How can you maximize p(x) in terms of z; if evaluating it is NP-hard?

Let's define the unnormalized probability p as

ple) = [] pelao)-

ceC

@ So the normalized probability is given by

pl) = 22,

Z
In UGMs evaluating Z is hard but evaluating p(z) is easy.

@ And for decoding we only need unnormalized probabilities,
_ p(z) _ .
arg max rp(x) = arg max T~ = argmax xp(x),

so we can decode based on p without knowing Z.

ICM lteration Cost

How much does ICM cost?

(]

Consider a pairwise UGM,

d
pla) = | T] ¢5(xs) I i)
Jj=1 (i,j)EE
e Each ICM update would:

Q Set Mj(xz; = s) to product of terms in p(z) involving x;, with z; set to s.
@ Set z; to the largest value of M;(x;).

(]

The variable z; has £k values and appears in at most d factors here.

e You can compute the k values of these d factors in O(dk) to find the largest.

o If you only have m nodes in “Markov blanket”, this reduces to O(mk).
o We will define “Markov blanket” in a couple slides.

bon MS,(

ICM in Action bonus!

Consider using a UGM for binary image denoising;:

We have
@ Unary potentials ¢; for each position.
e Pairwise potentials ¢;; for neighbours on grid.
o Parameters are trained as CRF (later).
Goal is to produce a noise-free binary image (show video).

Digression: Closure of UGMs under Conditioning bonus!

e

@ UGMs are closed under conditioning:
o If p(z) is a UGM, then p(z 4 |) can be written as a UGM (for partition A and B).

e Conditioning on x2 and z3 in a chain,

» @ @ ©

gives a UGM defined on x; and x4 that is disconnected:

O

@ Graphically, we “erase the black nodes and their edges”.

@ Notice that inference in the conditional UGM may be mucher easier.

Digression: Closure of UGMs under Conditioning bonus!

@ Mathematically, a 4-node pairwise UGM with a chain structure assumes
p(z1, T2, T3, T4) X @1(21)P2(22)P3(23)Pa(Ta) Pr12(21, T2) P23 (T2, 3) P34 (T3, T4)-
e Conditioning on x2 and z3 gives UGM over x; and z4.
P, 24 | 2,2) = 642164 (2),
where new potentials “absorb” the shared potentials with observed nodes:

P1 (1) = d1(21)d12(x1, x2), Ph(wa) = Pa(wa)Paa(zs, z4).

Conditioning in UGMs

@ Conditioning on x5 and x3 in 4-node chain-UGM gives
p(T1, T, T3, 74)

p(z2,T3)

F01(z1) d2(x2) ¢3(z3) du(za) dr (21, 22) d2 (72, 3) P3 (3, 74)
Yot 2, 791 (@) b2 (w2) da(w3) da () 1 (2, 72) 2 (w2, 73) da (3, 7))

plz1, v4|z2, 23) =

 pdi(@) da(x2) da(w3) pa(wa) (21, m2) (w2, 23) 3 (3, 74)
a 792(72)fa(w3) po (w2, 73) 2oy o1 b1() ba () (2, w2) (3,)
_ (@) da(wa) (w1, 72) (w3, 74)
2o, P1(@) ha () 1 (), w2) Pa(ws,)
_ (@) d(x)

bonus,(

Simpler Inference in Conditional UGMs bonus!

@ Consider the following graph which could describe bus stops:

o If we condition on the “hubs”, the graph forms a forest (and inference is easy).
e Simpler inference after conditioning is used by many approximate inference methods.

Digression: Local Markov Property and Markov Blanket bonus!

@ Approximate inference methods often use conditional p(z; | z_;),

k k Ko ko k

; , k k k
o where x ; means “r; for all ¢ except 2 2 PR R P AR PRRUR. 5 B

@ In UGMs, the conditional simplifies due to conditional independence,
p(z; | z—5) = p(; | Zneis))

this local Markov property means conditional only depends on neighbours.
@ We say that the neighbours of z; are its “Markov blanket”.

@ Markov blanket is the set nodes that make you independent of all other nodes.

Digression: Local Markov Property and Markov Blanket bonus!

@ In UGMs the Markov blanket is the neighbours.

@ Markov blanket in DAGs: parents, children, co-parents (parents of same children):

@"‘O

VA

Outline

@ Bonus: Inference Details on Graphical Models

@ Block Inference

Block-Structured Approximate Inference bonus!

@ Basic approximate inference methods like ICM and Gibb sampling:

o Update one z; at a time.
o Efficient because conditional UGM is 1 node.

@ Better approximate inference methods use block updates:

o Update a block of x; values at once.
o Efficient if conditional UGM allows exact inference.

o If we choose the blocks cleverly, this works substantially better.

Block-Structured Approximate Inference bﬁ"is-[

o Consider a lattice-structure and the following two blocks (“red-black ordering”):

@ Given black nodes, conditional UGM on red nodes is a disconnected graph.
o "l can optimally update the red nodes given the black nodes” (and vice versa).
@ You update d/2 nodes at once for cost of this is O(dk), and easy to parallelize.

@ Minimum number of blocks to disconnect the graph is graph colouring.

Block-Structured Approximate Inference bonus!

@ We could also consider general forest-structured blocks:

@ We can still optimally update the black nodes given the gray nodes in O(dk?).
e This works much better than “one at a time”.

Block Gibbs Sampling in Action bonus!

@ Gibbs vs. tree-structured block-Gibbs samples:

Samples from Gibbs sampler Samples from Block Gibbs sampler
s 5 5 s s 5 s s 5 5
10 10 10 10 10 10 10 10 10 10
15 15 15 15 15 15 15 15 15 15
2 2 » » 2 » 2 2 » »
2 2 2 2 2 2 2 2 2 2
E kS £ E E £ E E £ £

10200 102D DN 02030 10200 2% 102 10203 0232 023
s 5 5 s s 5 s s 5 5
10 10 10 10 10 10 10 10 10 10
15 15 15 15 15 15 15 s IS 1
2 2 2 » 2 2 2 2 2 2
2 S S 2 2 2 2 2 2 2
E Y Y E E 0 E E Y 0

0% 02 @ 0203 023 1023 T2 % 102 w0 d0 20 @ 02 3 02 30

o With block sampling, the samples are far less correlated.
@ We can also do tree-structured block ICM.
e Harder to get stuck if you get to update entire trees.

Block-Structured Approximate Inference bonus!

@ Or we could define a new tree-structured block on each iteration:

4.6 0.6 S50 05

LS5O FS

@ The above block updates around two thirds of the nodes optimally.
(Here we're updating the black nodes.)

Block ICM Based on Graph Cuts bonus!

Consider a binary pairwise UGM with “attractive” potentials,

log ¢i;(1,1) 4 log ¢;;(2,2) > log ¢;;(1,2) + log ¢;;(2, 1).

In words: ‘“neighbours prefer to have similar states”.

(]

In this setting exact decoding can be formulated as a max-flow/min-cut problem.
e Can be solved in polynomial time.

This is widely-used computer vision:
e Want neighbouring pixels/super-pixels/regions to be more likely to get same label.

Graph Cut Example: “GrabCut” bonus!

Figure 1: Three examples of GrabCut. The user drags a rectangle loosely around an object. The object is then extracted automatically.

http://cvg.ethz.ch/teaching/cvl/2012/grabcut-siggraph04.pdf

© User draws a box around the object they want to segment.

@ Fit Gaussian mixture model to pixels inside the box, and to pixels outside the box.
© Construct a pairwise UGM using:

o ¢;(z;) set to GMM probability of pixel ¢ being in class z;.
o ¢;j(x;,x;) set to Ising potential times RBF based on spatial /colour distance.
@ Use w;; > 0 so the model is “attractive”.

@ Perform exact decoding in the binary attractive model using graph cuts.

http://cvg.ethz.ch/teaching/cvl/2012/grabcut-siggraph04.pdf

Graph Cut Example: “GrabCut” bonus!

@ GrabCut with extra user interaction:

—

=]

7
No User
Interaction

{ B
&
g

http://cvg.ethz.ch/teaching/cvl/2012/grabcut-siggraph04.pdf

http://cvg.ethz.ch/teaching/cvl/2012/grabcut-siggraph04.pdf

Alpha-Beta Swap and Alpha-Expansions: |ICM with Graph Cuts bﬁf‘is-[

o If we have more than 2 states, we can’t use graph cuts.

@ Alpha-beta swaps are an approximate decoding method for “pairwise attractive”,

log ¢ij(a, @) + log ¢45(8, B) > log ¢ij(c, B) + log ¢i;(8,).
e Each step choose an « and 3, optimally “swaps” labels among these nodes.

@ Alpha-expansions are another variation based on a slightly stronger assumption,

log ¢ij(av, @) + log ¢ (61, B2) > log ¢ij(c, B1) + log ¢ij (B2,).

o Steps choose label «, and consider replacing the label of any node not labeled a.

Alpha-Beta Swap and Alpha-Expansions: |ICM with Graph Cuts b/"“is-‘

@ These don't find global optima in general, but make huge moves:

Figure 1: From left to right: Initial labeling, labeling after «S-swap, labeling after a-expansion, labeling after
a-expansion B-shrink. The optimal labeling of the « pixels is outlined by a white triangle, and is achieved from

the initial labeling by one guespansion getritdapayc. e)(g‘(,,,qp MelC
o A somewhat-related MCMC method is the Swendson-Wang algorithm.

Example: Photomontage bonus!

° Photomontage comblnlng dlfferent photos |nto one photo:

http://vision.middlebury.edu/MRF/pdf/MRF-PAMI.pdf

@ Here, z; corresponds to identity of original image at position 1.

http://vision.middlebury.edu/MRF/pdf/MRF-PAMI.pdf

Example: Photomontage bonus!

@ Photomontage: combining different photos into one photo:

http://vision.middlebury.edu/MRF/pdf/MRF-PAMI.pdf

http://vision.middlebury.edu/MRF/pdf/MRF-PAMI.pdf

Outline

© ‘Normal” bonus slides

Conditional Independence in Star Graphs

@ Consider the following star graph:

O
510

@ "5 aliens get together and make a baby alien”.
e Unconditionally, the 5 aliens are independent.

bonus,(

Conditional Independence in Star Graphs

@ Consider the following star graph:

O
510

@ "5 aliens get together and make a baby alien”.

o Conditioned on the baby, the 5 aliens are dependent.

bonus,(

Conditional Independence in Star Graphs

@ Consider the following star graph:

@

O

@ "“An organism produces 5 clones”.
e Unconditionally, the 5 clones are dependent.

bonMS,(

Conditional Independence in Star Graphs bonus!

@ Consider the following star graph:

@

O

@ "“An organism produces 5 clones”.
o Conditioned on the original, the 5 clones are independent.

Does Semi-Supervised Learning Make Sense? bonus!

@ Should unlabeled examples always help supervised learning?
e No!

e Consider choosing unlabeled features ' uniformly at random.

e Unlabeled examples collected in this way will not help.
e By construction, distribution of Z* says nothing about 7*.

@ Example where SSL is not possible:
e Try to detect food allergy by trying random combinations of food:
o The actual random process isn't important, as long as it isn't affected by labels.
@ You can sample an infinite number of Z* values, but they says nothing about labels.
@ Example where SSL is possible:
e Trying to classify images as “cat” vs. “dog.:

o Unlabeled data would need to be images of cats or dogs (not random images).
@ Unlabeled data contains information about what images of cats and dogs look like.
o For example, there could be clusters or manifolds in the unlabeled images.

Does Semi-Supervised Learning Make Sense? bonus!

@ Let's assume our semi-supervised Iearning model is represented by this DAG:

‘/é\’
I

®
\/@

@ Assume we observe {X,y, X} and are interested in test labels ¥:
e There is a dependency between y and § because of path through w.
o Parameter w is tied between training and test distributions.
o There is a dependency between X and gy because of path through w (given y).
@ But note that there is also a second path through D and X. _
o There is a dependency between X and 7 because of path through D and X.
o Unlabeled data helps because it tells us about data-generating distribution D.

Does Semi-Supervised Learning Make Sense? bonus!

o Now consider generating X independent of D:

og\“
2

@ Assume we observe {X,y, X} and are interested in test labels 7:

o Knowing X and y are useful for the same reasons as before.
e But knowing X is not useful:

e Without knowing 7, X is d-separated from 7 (no dependence).

Tabular Parameterization Example bonus!

SPRINKLER RAIN
RAIN| T T F

F

SPRINKLER »

06 02 08
001 o0se

GRASS WET
SPRINKLER RAIN| T F

01
099 0.01

e
H o
=

Rttps://en.uikipediatore/niki/Bayesiant natwork
Some quantities can be directly read from the tables:
p(R=1)=0.2.
p(G=1|S=0,R=1)=0.2..

Can calculate any probabilities using marginalization/product-rule/Bayes-rule (bonus).

https://en.wikipedia.org/wiki/Bayesian_network

Tabular Parameterization Example bonus!

SPRINKLER RAIN
RAIN| T T F

F

4o
06 02 08
0.01 0.8%

GRASS WET

SPRINKLER RAN| T F
F F 0.0 10
F T 08 0
T F 09 01
T T 099 0.01

https://en.wikipedia.org/wiki/Bayesian_network

Can calculate any probabilities using marginalization/product-rule/Bayes-rule, for example:

p(G=1|R=1)=p(G=1,S=0|R=1)+p(G=1,S=1|R=1) <p(a|c)Zp(a,b|c)>
b

=p(G=1|S=0,R=1)p(S=0|R=1)+p(G=1|S=1,R=1)p(S=1|R=1)
= 0.8(0.99) + 0.99(0.01) = 0.81.

https://en.wikipedia.org/wiki/Bayesian_network

Dynamic Bayesian Networks bonus!

@ Dynamic Bayesian networks combine ideas from DAGs and Markov chains:
o At each time, we have a set of variables z¢.
o The initial z° comes from an “initial” DAG.
o Given z'~!, we generate z! from a “transition” DAG.

Figure 1: (a) A prior network and transition network defin-
ing a DPN for the attributes X;, X,, X5. (b) The corre-
sponding “unrolled” network.
https://www.cs.ubc.ca/~murphyk/Papers/dbnsem_uai98.pdf
@ Can be used to model multiple variables over time.
e Unconditional sampling is easy but inference may be hard.

https://www.cs.ubc.ca/~murphyk/Papers/dbnsem_uai98.pdf

	D-Separation
	Seeing Our Old Favourites as DAGs

	DAG Model Learning and Inference
	Undirected Graphical Models (UGMs)
	Bonus: Inference Details on Graphical Models
	DAG Inference
	Structure Learning
	More UGMs
	Treewidth
	ICM
	Block Inference

	``Normal'' bonus slides

