CPSC 440/540: Advanced Machine Learning More DAGs

Mark Schmidt (using materials by Danica Sutherland (building on materials from Mark Schmidt))

University of British Columbia

Winter 2023

- Project proposals due Friday
- Assignment 3 due Monday
- Assignment 4 released definitely by Monday, probably sooner

Last Time: DAG models

- Directed acyclic graphical models: $p(x) = \prod_{j=1}^{d} p(x_j \mid x_{\text{pa}(j)})$
 - $\operatorname{pa}(j) \subseteq \{1, \dots, j-1\}$ is the set of parents of j
 - Generalizes Markov chains (use $pa(j) = \{j 1\}$)
 - Every possible distribution can be written as one (use $\operatorname{pa}(j) = \{1, \ldots, j-1\}$)
- Defines a graph (one node per x_j , edges from parents to children)
- Started *d*-separation to read conditional independences off of that graph

D-Separation Summary (MEMORIZE)

- Checking whether DAG implies A is independent of B given C:
 - Consider each undirected path from any node in any A to any node in B.
 - Ignoring directions and observations.
 - Use directions/observations, check if any of below hold somewhere along each path:
 - I includes a "chain" with an observed middle node (e.g., Markov chain):

- 2 P includes a "fork" with an observed parent node (e.g., naive Bayes):
- Includes a "v-structure" or "collider" (e.g., genetic inheritance):

where the "child" and all its descendants are unobserved.

• If all paths are blocked by one of above, DAG implies the conditional independence.

D-Separation Summary (MEMORIZE)

- We say that A and B are d-separated (conditionally independent) given C if all undirected paths from A to B are "blocked" because one of the following holds somewhere on the path:
 - *P* includes a "chain" with an observed middle node (e.g., Markov chain):

where the "child" and all its descendants are unobserved.

Alarm Example

- Case 1:

 - Earthquake ⊥ Call | Alarm.
- Case 2:

 - Alarm \bot Stuff Missing | Burglary.

Alarm Example

- Case 3:
 - Earthquake ⊥ Burglary.
 - - "Explaining away": knowing one parent can make the other less/more likely.
- Multiple Cases:
 - Call ⊥ Stuff Missing.
 - Earthquake $\bot\!\!\!\bot$ Stuff Missing.
 - Earthquake ⊥ Stuff Missing | Call.

Discussion of D-Separation

• D-separation lets you say if conditional independence is implied by assumptions:

 $(A \text{ and } B \text{ are d-separated given } C) \Rightarrow A \perp B \mid C.$

- However, there might be extra conditional independences in the distribution:
 - These would depend on specific choices of the DAG parameters.
 - For example, if we set Markov chain parameters so that $p(x_j | x_{j-1}) = p(x_j)$.
 - Or some orderings of the chain rule may reveal different independences.
 - Lack of d-separation doesn't imply dependence.
 - Just that it's not guaranteed to be independent by the graph structure.
- Instead of restricting to $\{1, 2, \ldots, j-1\}$, can have general parent choices.
 - So x_2 could be a parent of x_1 .
- As long the graph is acyclic, there exists a valid ordering (chain rule makes sense).
 (all DAGs have a "topological order" of variables where parents are before children)

Non-Uniqueness of Graph and Equivalent Graphs

• Note that some graphs imply same conditional independences:

- Equivalent graphs: same v-structures and other (undirected) edges are the same.
- Examples of 3 equivalent graphs (left) and 3 non-equivalent graphs (right):

- It can be helpful to use the language of causality when reasoning about DAGs.
 You'll find that they give the correct causal interpretation based on our intuition.
- However, keep in mind that the arrows are not necessarily causal.
 - "A causes B" can have the same graph as "B causes A"!
- There is work on causal DAGs which add semantics to deal with "interventions".
 But these require assuming that the arrow directions are causal.
 - Fitting a DAG to observational data doesn't imply anything about causality.

Outline

1 D-Separation

- Seeing Our Old Favourites as DAGs
- 2 DAG Model Learning and Inference
- 3 Undirected Graphical Models (UGMs)
- 4 Bonus: Inference Details on Graphical Models
- 5 "Normal" bonus slides

Linear Regression

• As we saw last time, if the x^i are IID, then we can represent linear regression as

• From *d*-separation on this graph we have $p(\mathbf{y} \mid \mathbf{X}, w) = \prod_{i=1}^{n} p(y^i \mid x^i, w)$.

• Can see our standard assumption: data is independent given parameters.

•
$$y^1 \not\perp y^2$$
, but $y^1 \perp y^2 \mid w$.

- $x^1 \perp x^2$, but $x^1 \not\perp x^2 \mid y^1, y^2$.
- Discriminative model: here we don't try to model things about $p(x^i)$.

IID Bernoulli-Beta Model

• The Bernoulli-beta model as a DAG (with parameters and hyper-parameters):

- Notice data is independent of hyper-parameters given parameters.
 - This is another of our standard independence assumptions.

Non-IID Bernoulli-Beta Model

• The non-IID variant we considered with grouped data:

• DAG reflects that we do not tie parameters across all training examples.

or

- \bullet Notice that if you fix α and β then you can't learn across groups:
 - The θ_j are d-separated given α and β .
- Can also write more succinctly with nested plates.

Non-IID Bernoulli-Beta Model

• Variant of the previous model with a hyper-hyper-parameter:

or

• Needed to avoid degeneracy.

Naive Bayes with DAGs/Plates

• For naive Bayes we have

$$y^i \sim \operatorname{Cat}(\theta), \quad x^i \mid (y^i = c) \sim \operatorname{Cat}(\theta_c).$$

Bayesian Linear Regression as a DAG

• In Bayesian linear regression we assume

$$y^i \sim \mathcal{N}(w^{\mathsf{T}}x^i, 1), \quad w_j \sim \mathcal{N}(0, 1/\lambda),$$

which we can write as

Outline

1 D-Separation

2 DAG Model Learning and Inference

③ Undirected Graphical Models (UGMs)

4 Bonus: Inference Details on Graphical Models

5 "Normal" bonus slides

Density Estimators vs. Relationship Visualizers

- Besides dependency visualization, we can use DAGs as density estimators.
- Recall that DAGs model joint distribution using

$$p(x_1, x_2, \dots, x_d) = \prod_{j=1}^d p(x_j \mid x_{\text{pa}(j)}).$$

- We need to choose a parameterization for these conditional probabilities:
 - Tabular parameterization (discrete x_j): can model any joint probability.
 - Common choice; sometimes set parameters from expert knowledge.
 - Gaussian (continuous x_j): $x_j \sim \mathcal{N}(w^{\mathsf{T}} x_{\mathrm{pa}(j)}, \sigma^2)$.
 - Called a Gaussian belief net. Joint distribution becomes a multivariate Gaussian.
 - Sigmoid (binary $x_j \in \{-1, +1\}$): $p(x_j \mid x_{j-1}, w) = 1/(1 + \exp(-x_j w^{\mathsf{T}} x_{\operatorname{pa}(j)}))$.
 - Called a sigmoid belief net.
 - Could use softmax, probabilistic random forest, neural network, and so on.
 - Our tricks for probabilistic supervised learning can be used for unsuperivsed learning.

Tabular Parameterization Example

Some companies sell software to help companies reason using tabular DAGs:

DAG Learning and Sampling

• For
$$j = 1 : d$$
:
• Set $\bar{y}^i = x^i_j$ and $\bar{x}^i = x^i_{\text{pa}(j)}$.

- 2 Solve a supervised learning problem using $\{\bar{X}, \bar{y}\}$.
 - Gives you a model of $p(x_j \mid x_{pa(j)})$.
- Can sample from DAGs using ancestral sampling:
 - Sample x_1 from $p(x_1)$.
 - Sample x_2 from $p(x_2 \mid x_{\text{pa}(2)})$.
 - Sample x_d from p(x_d | x_{pa(d)}).
- This allows us to do inference with Monte Carlo methods.
 - Conditional sampling can be hard; might need rejection sampling for conditionals.

MNIST Digits with Tabular DAG Model

• Recall our latest MNIST model using a tabular DAG:

• This model is pretty bad because you only see 8 parents.

MNIST Digits with Sigmoid Belief Network

• Samples from sigmoid belief network:

(DAG with logistic regression for each variable)

where we use all previous pixels as parents (from 0 to 783 parents).

• Models long-range dependencies but has a linear assumption.

Exact Inference in DAGs?

- Can we do exact inference in DAGs like in Markov chains?
- Continuous-state Gaussian DAGs:
 - Special case of multvariate Gaussian, so inference is tractable.
 - Most operations are O(d) or $O(d^3)$.
- Continuous-state non-Gaussian DAGs:
 - Inference usually isn't closed-form; need Monte Carlo or variational inference.
 - If parents are conjugate, then Gibbs sampling is easy to implement.
- Discrete-state DAGs (whether tabular or sigmoid or other):
 - Inference takes exponential-time in the "treewidth" of the graph.
 - Exact inference is cheap in trees and forests, which have a treewidth of 1.
 - Low-treewidth graphs allow efficient exact inference; otherwise need approximations.

Inference in Forest DAGs ("Belief Propagation")

• Connected graphs with at most one parent per node are called trees.

- If not connected, these kinds of graphs are forests; both are "singly-connected."
- We can generalize the CK equations to trees/forests:

$$p(x_j = s) = \sum_{x_{\mathrm{pa}(j)}} p(x_j = s, x_{\mathrm{pa}(j)}) = \sum_{x_{\mathrm{pa}(j)}} \underbrace{p(x_j = s \mid x_{\mathrm{pa}(j)})}_{\text{given}} p(x_{\mathrm{pa}(j)}).$$

- Trees/forests allow efficient dynamic programming methods as in Markov chains.
 - In particular, decoding and univariate marginals/conditionals in $O(dk^2)$.
 - Forward-backward applied to tree-structured graphs is called belief propagation.
 - It's also possible to find the optimal tree given data ("structure learning").

Outline

1 D-Separation

- DAG Model Learning and Inference
- 3 Undirected Graphical Models (UGMs)
- 4 Bonus: Inference Details on Graphical Models
- 5 "Normal" bonus slides

Undirected Graphical Models (UGMs)

- Undirected graphical models (UGMs) are another popular graphical model class.
 Also called Markov random fields.
- UGMs define joint distribution in terms of non-negative potential functions,

$$p(x_1, x_2, \dots, x_d) \propto \prod_{c \in \mathcal{C}} \phi_c(x_c).$$

- Define a potential ϕ_c for each set c where we want to model a direct relationship.
- The most common choice is a pairwise UGM,

$$p(x_1, x_2, \dots, x_d) \propto \left(\prod_{j=1}^d \phi_j(x_j)\right) \left(\prod_{(i,j)\in\mathcal{E}} \psi_{ij}(x_i, x_j)\right)$$

This only has potentials on single variables (ϕ) and pairs of variables (ψ).

 $\bullet\,$ The "edge potentials" ψ are defined on edges of an undirected graph ${\cal E}.$

Pairwise Undirected Graphical Models

• Pairwise undirected graphical models factorize probability using

$$p(x_1, x_2, \dots, x_d) \propto \left(\prod_{j=1}^d \phi_j(x_j)\right) \left(\prod_{(i,j)\in\mathcal{E}} \psi_{ij}(x_i, x_j)\right)$$

Special cases:

- Markov chains: ${\mathcal E}$ only has edges between adjacent nodes.
- $\bullet\,$ Multivaiate Gaussian: a specific choice of the ϕ and ψ functions.
 - Gaussians AKA "Gaussian graphical models" or "Gaussian Markov random fields".
- Ising model for binary x_j uses

$$\phi_j(x_j) = \exp(x_i w_i), \quad \phi_{ij}(x_i, x_j) = \exp(x_i x_j w_{ij}),$$

where w_i is the node weight and w_{ij} is the edge weight.

- If $w_{ij} > 0$ it encourages neighbours to have same value ("attractive").
- If $w_{ij} < 0$ it encourages neighbours to have different values ("repulsive").

Conditional Independence in UGMs

- A UGM's independence properties are described by an undirected graph.
 - For pairwise UGMs, the edges are given by the set of edges \mathcal{E} .

- If you have 3-variable or higher-order potentials:
 - Add an edge (i, j) if i and j are together in at least one c.
- So these two factorizations have the same graph:

 $p(x_1.x_2, x_3) \propto \phi_{12}(x_1, x_2)\phi_{13}(x_1, x_3)\phi_{23}(x_2, x_3), \quad p(x_1, x_2, x_3) \propto \phi_{123}(x_1, x_3, x_3).$

- UGM implies $A \perp B \mid C$ if C separates all nodes in A from all nodes in B.
 - General version of what we did with the graph from Gaussians' precision matrix.

Multivariate Gaussians as UGMs

• Writing a Gaussian as a pairwise UGM:

$$p(x_1, \dots, x_d) \propto \exp\left(-\frac{1}{2}(x-\mu)^{\mathsf{T}}\Sigma^{-1}(x-\mu)\right)$$

= $\exp\left(-\frac{1}{2}\sum_{i=1}^d \sum_{j=1}^d (x_i - \mu_i)(\Sigma^{-1})_{ij}(x_j - \mu_j)\right)$
= $\left(\prod_{j=1}^d e^{-\frac{1}{2}(\Sigma^{-1})_{jj}(x_j - \mu_j)^2}\right)\left(\prod_{(i,j):(\Sigma^{-1})_{ij} \neq 0} e^{-\frac{1}{2}(\Sigma^{-1})_{ij}(x_i - \mu_i)(x_j - \mu_j)}\right)$

• Hence why zeros of the precision Σ^{-1} that determine conditional independence.

DAGs vs. UGMs

- Neither DAGs or UGMs are "more powerful" than the other.
 - Any distribution can be written as a DAG, and as a UGM.
 - But you might need to use a highly connected graph.
- Set of independences in DAG cannot always be written as UGM (and vice versa).
 - UGMs cannot reflect independences in common child graph: $(x) \rightarrow (y) \leftarrow (z)$.
 - DAGs cannot reflect independences in 4-node loop: (x) (y) (z) (x).
 - Independences representable as both DAGs and UGMs are called decomposable.
 - An example is Markov chains: independences are same in DAG and UGM graphs.
- DAGs are often used when it makes sense to work with conditionals, or we have an idea of causal directions.
- UGMs are often used when there are no obvious directions (like MNIST), and are more often used when we want to add features to do supervised learning.

Tractability of UGMs

 \bullet Without using \propto , a UGM probability would be

$$p(x) = \frac{1}{Z} \prod_{c \in \mathcal{C}} \phi_c(x_c),$$

where Z is the constant that makes the probabilites sum up to 1.

$$Z = \sum_{x_1} \sum_{x_2} \cdots \sum_{x_d} \prod_{c \in \mathcal{C}} \phi_c(x_c) \quad \text{or} \quad Z = \int_{x_1} \int_{x_2} \cdots \int_{x_d} \prod_{c \in \mathcal{C}} \phi_c(x_c) \mathrm{d}x_d \mathrm{d}x_{d-1} \cdots \mathrm{d}x_1.$$

• Whether you can compute Z (and do inference) depends on the choice of the ϕ_c :

- Gaussian case: $O(d^3)$ in general, but O(d) for forests (no loops).
- Continuous non-Gaussian: usually requires approximate inference.
- Discrete case: #P-hard in general, but $O(dk^2)$ for forests (no loops).

Discrete DAGs vs. Discrete UGMs

- Common inference tasks in graphical models:
 - Compute p(x) for an assignment to the variables x.
 - **2** Generate a sample x from the distribution.
 - **(**) Compute univariate marginals $p(x_j)$.
 - Compute decoding $\arg \max_x p(x)$.
 - **6** Compute univariate conditional $p(x_j | x_{j'})$.
- With discrete x_i , all of the above are easy in tree-structured graphs.
 - For DAGs, a tree-structured graph has at most one parent.
 - For UGMs, a tree-structured graph has no cycles.
- With discrete x_i , the above may be harder for general graphs:
 - In DAGs the first two are easy, the others are NP-hard.
 - In UGMs all of these are NP-hard.

Inference in UGMs

- The course does not "officially cover" details on inference in graphical models.
- For however long is left today, we'll cover some stuff as bonus slides.
- These include:
 - Inference in non-tree DAGs/UGMs.
 - Learning the graph structure.
 - Treewidth of graphs, and efficient inference with low treewidth.
 - Exact decoding for binary attractive models using graph cuts.
 - ICM and alpha-expansion algorithms for approximate decoding.
 - Block Gibbs sampling in UGMs (UGMs are what Gibbs sampling was invented for).

Summary

- Independence assumptions about data and parameters can be written as DAGs.
- D-seperation lets us read conditional independences from DAGs.
- Plate notation lets us compactly draw graphs with repeated patterns.
 - There are fancier versions of plate notation called "probabilistic programming".
- Parameter learning in DAGs:
 - Can fit each $p(x_j \mid x_{\mathrm{pa}(j)})$ independently.
 - Tabular parameterization, or treat as supervised learning.
- Sampling in DAGs is easy (ancestral sampling).
- Exact inference in discrete DAGs is easy for trees.
 - But becomes exponential in "treewidth" of graph.
- Undirected graphical models factorize probability into non-negative potentials.
 - Gaussians are a special case, but can place potentials on any subset of variables.
 - Inference is again exponential in "treewidth" of graph.
- Next time: adding graphical models to neural networks.

Outline

2 DAG Model Learning and Inference

3 Undirected Graphical Models (UGMs)

- Bonus: Inference Details on Graphical Models
 DAG Inference
 - Structure Learning
 - More UGMs
 - Treewidth
 - ICM
 - Block Inference

5 "Normal" bonus slides
Inference in General DAGs

bonus!

• If we try to generalize the CK equations to DAGs we obtain

$$p(x_j = s) = \sum_{x_{\mathrm{pa}(j)}} p(x_j = s, x_{\mathrm{pa}(j)}) = \sum_{x_{\mathrm{pa}(j)}} \underbrace{p(x_j = s \mid x_{\mathrm{pa}(j)})}_{\text{given}} p(x_{\mathrm{pa}(j)}).$$

- What goes wrong if nodes have multiple parents?
 - The expression $p(x_{pa(j)})$ is a joint distribution depending on multiple variables.
- Consider the non-tree graph:

Inference in General DAGs

$$p(x_4) = \sum_{x_3} \sum_{x_2} \sum_{x_1} p(x_1, x_2, x_3, x_4)$$

= $\sum_{x_3} \sum_{x_2} \sum_{x_1} p(x_4 \mid x_2, x_3) p(x_3 \mid x_1) p(x_2 \mid x_1) p(x_1)$
= $\sum_{x_3} \sum_{x_2} p(x_4 \mid x_2, x_3) \underbrace{\sum_{x_1} p(x_3 \mid x_1) p(x_2 \mid x_1) p(x_1)}_{M_{23}(x_2, x_3)}$

bonusl

• Dependencies between $\{x_1, x_2, x_3\}$ mean our message depends on two variables.

$$p(x_4) = \sum_{x_3} \sum_{x_2} p(x_4 \mid x_2, x_3) M_{23}(x_2, x_3)$$
$$= \sum_{x_2} M_{34}(x_3, x_4),$$

Inference in General DAGs

- With 2-variable messages, our cost increases to $O(dk^3)$.
- If we add the edge $x_1 \rightarrow x_4$, then the cost is $O(dk^4)$.

(the same cost as enumerating all possible assignments)

- Unfortunately, cost is not as simple as counting number of parents.
 - Even if each node has 2 parents, we may need huge messages.
 - Decoding is NP-hard and computing marginals is #P-hard in general.
 - We'll see later that maximum message size is "treewidth" of a particular graph.
- On the other hand, ancestral sampling is easy:
 - We can obtain Monte Carlo estimates of solutions to these NP-hard problems.

Conditional Sampling in DAGs

- What about conditional sampling in DAGs?
 - Could be easy or hard depending on what we condition on.
- For example, easy if we condition on the first variables in the order:
 - Just fix these and run ancestral sampling.

- Hard to condition on the last variables in the order:
 - Conditioning on descendent makes ancestors dependent.

Outline

2 DAG Model Learning and Inference

3 Undirected Graphical Models (UGMs)

- Bonus: Inference Details on Graphical Models
 DAG Inference
 - Structure Learning
 - More UGMs
 - Treewidth
 - ICM
 - Block Inference

5 "Normal" bonus slides

DAG Structure Learning

- Structure learning is the problem of choosing the graph.
 - Input is data X.
 - Output is a graph G.
- The "easy" case is when we're given the ordering of the variables.
 - So the parents of j must be chosen from $\{1,2,\ldots,j-1\}.$
- Given the ordering, structure learning reduces to feature selection:
 - Select features $\{x_1, x_2, \ldots, x_{j-1}\}$ that best predict "label" x_j .
 - $\bullet\,$ We can use any feature selection method to solve these d problems.

Example: Structure Learning in Rain Data Given Ordering

bonus!

Structure learning in rain data using L1-regularized logistic regression.
 For different λ values, assuming chronological ordering.

DAG Structure Learning without an Ordering

- Without an ordering, a common approach is "search and score"
 - Define a score for a particular graph structure (like BIC or other L0-regularizers).
 - Search through the space of possible DAGs.
 - "DAG-Search": at each step greedily add, remove, or reverse an edge.
- May have equivalent graphs with the same score (don't trust edge direction).
 - Do not interpret causally a graph learned from data.
- Structure learning is NP-hard in general, but finding the optimal tree is poly-time:
 - For symmetric scores, can be found by minimum spanning tree ("Chow-Liu").
 - Score is symmetric if score $(x_j \rightarrow x_{j'})$ is the same as score $(x_{j'} \rightarrow x_j)$.
 - For asymetric scores, can be found by minimum spanning arborescence.

Structure Learning on USPS Digits

An optimal tree on USPS digits (16 by 16 images of digits).

• Data containing presence of 100 words from newsgroups posts:

car	drive	files	hockey	mac	league	рс	win
0	0	1	0	1	0	1	0
0	0	0	1	0	1	0	1
1	1	0	0	0	0	0	0
0	1	1	0	1	0	0	0
0	0	1	0	0	0	1	1

• Structure learning should give some relationship between word occurrences.

Structure Learning on News Words

Optimal tree on newsgroups data:

bonusl

- Another common structure learning approach is "constraint-based":
 - Based on performing a sequence of conditional independence tests.
 - Prune edge between x_i and x_j if you find variables S making them independent,

$$x_i \perp x_j \mid x_S.$$

- Challenge is considering exponential number of sets x_S (heuristic: "PC algorithm").
- Assumes "faithfulness" (all independences are reflected in graph).
 - Otherwise it's weird (a duplicated feature would be disconnected from everything.)

Outline

2 DAG Model Learning and Inference

3 Undirected Graphical Models (UGMs)

4 Bonus: Inference Details on Graphical Models

- DAG Inference
- Structure Learning

More UGMs

- Treewidth
- ICM
- Block Inference

5 "Normal" bonus slides

bonus!

Gaussians as Undirected Graphical Models

• Multivariate Gaussian can be written as

$$p(x) \propto \exp\left(-\frac{1}{2}(x-\mu)^{\mathsf{T}}\Sigma^{-1}(x-\mu)\right) \propto \exp\left(-\frac{1}{2}x^{\mathsf{T}}\Sigma^{-1}x + x^{\mathsf{T}}\underbrace{\Sigma^{-1}\mu}_{v}\right),$$

and writing it in summation notation we can see that it's a pairwise UGM:

$$p(x) \propto \exp\left(\left(-\frac{1}{2}\sum_{i=1}^{d}\sum_{j=1}^{d}x_ix_j(\Sigma^{-1})_{ij} + \sum_{i=1}^{d}x_iv_i\right)\right)$$
$$= \left(\prod_{i=1}^{d}\prod_{j=1}^{d}\underbrace{\exp\left(-\frac{1}{2}x_ix_j(\Sigma^{-1})_{ij}\right)}_{\phi_{ij}(x_i,x_j)}\right) \left(\prod_{i=1}^{d}\underbrace{\exp\left(x_iv_i\right)}_{\phi_i(x_i)}\right)$$

Above we include all edges. You can "remove" edges by setting (Σ⁻¹)_{ij} = 0.
"Gaussian graphical model" (GGM) or "Gaussian Markov random field" (GMRF).

General Pairwise UGM

• For general discrete x_i a generalization of Ising models is

$$p(x_1, x_2, \dots, x_d) = \frac{1}{Z} \exp\left(\sum_{i=1}^d w_{i,x_i} + \sum_{(i,j)\in E} w_{i,j,x_i,x_j}\right),$$

which can represent any "positive" pairwise UGM (meaning p(x) > 0 for all x).

- Interpretation of weights for this UGM:
 - If $w_{i,1} > w_{i,2}$ then we prefer $x_i = 1$ to $x_i = 2$.
 - If $w_{i,j,1,1} > w_{i,j,2,2}$ then we prefer $(x_i = 1, x_j = 1)$ to $(x_i = 2, x_j = 2)$.
- As before, we can use parameter tieing:
 - We could use the same w_{i,x_i} for all positions *i*.
 - Ising model corresponds to a particular parameter tieing of the w_{i,j,x_i,x_j} .

Label Propagation (Graph-Based Semi-Supervised) as a UGM

$$p(\bar{y}^1, \bar{y}^2, \dots, \bar{y}^t) \propto \exp\left(-\sum_{i=1}^n \sum_{j=1}^t w_{ij}(y^i - \bar{y}^i)^2 - \frac{1}{2} \sum_{i=1}^t \sum_{j=1}^t \bar{w}_{ij}(\bar{y}^i - \bar{y}^j)^2\right).$$

Donusl

- Decoding in this model is the label propagation problem.
- This is a pairwise UGM:

$$\phi_j(\bar{y}^j) = \exp\left(-\sum_{i=1}^n w_{ij}(y^i - \bar{y}^j)^2\right), \quad \phi_{ij}(\bar{y}^i, \bar{y}^j) = \exp\left(-\frac{1}{2}\bar{w}_{ij}(\bar{y}^i - \bar{y}^j)^2\right).$$

Factor Graphs

Factor graphs are a way to visualize UGMs that distinguishes different orders.
 Use circles for variables, squares to represent dependencies.

bonusl

- Factor graph of $p(x_1, x_2, x_3) \propto \phi_{12}(x_1, x_2)\phi_{13}(x_1, x_3)\phi_{23}(x_2, x_3)$:

• Factor graph of $p(x_1, x_2, x_3) \propto \phi_{123}(x_1, x_2, x_3)$:

- Factor graphs: we use a square between variables that appear in same factor.
 Can distinguish between a 3-way factor and 3 pairwise factors.
- Chain-graphs: DAGs where each block can be a UGM.
- Ancestral-graph:
 - Generalization of DAGs that is closed under conditioning.
- Structural equation models (SEMs): generalization of DAGs that allows cycles.

Outline

2 DAG Model Learning and Inference

3 Undirected Graphical Models (UGMs)

4 Bonus: Inference Details on Graphical Models

- DAG Inference
- Structure Learning
- More UGMs
- Treewidth
- ICM
- Block Inference

5 "Normal" bonus slides

Moralization: Converting DAGs to UGMs

- $\bullet\,$ To address the NP-hard problems, DAGs and UGMs use same techniques.
- We'll focus on UGMs, but we can convert DAGs to UGMs:

$$p(x_1, x_2, \dots, x_d) = \prod_{j=1}^d p(x_j | x_{\mathrm{pa}(j)}) = \prod_{j=1}^d \underbrace{\phi_j(x_j, x_{\mathrm{pa}(j)})}_{=p(x_j | x_{\mathrm{pa}(j)})},$$

which is a UGM with Z = 1.

• Graphically: we drop directions and "marry" parents (moralization).

• May no longer see some independences, but doesn't change computational cost.

Easy Cases: Chains, Trees and Forests

- The forward-backward algorithm still works for chain-structured UGMs:
 - $\bullet\,$ We compute the forward messages M and the backwards messages V.
 - With both M and V we can [conditionally] decode/marginalize/sample.
- Belief propagation generalizes this to trees (undirected graphs with no cycles):
 - Pick an arbitrary node as the "root", and order the nodes going away from the root.
 - Pass messages starting from the "leaves" going towards the root.
 - "Root" is like the last node in a Markov chain.
 - Backtrack from root to leaves to do decoding/sampling.
 - Send messages from the root going to the leaves to compute all marginals.

$$X_1$$

 $m_{12}(x_2)$ $m_{12}(x_3)$
 $m_{23}(x_2)$ $m_{23}(x_3)$ $m_{24}(x_4)$ X_4
 $M_{23}(x_3)$ $M_{24}(x_4)$ X_4

https://www.quora.com/

Easy Cases: Chains, Trees and Forests

$$M_c(x_c) = \sum_{x_p} p(x_c \mid x_p) M_p(x_p).$$

• For chain-structure UGMs we would have:

$$M_c(x_c) \propto \sum_{x_p} \phi(x_p) \phi(x_p, x_c) M_p(x_p).$$

- In tree-structured UGMs, parent p in the ordering may have multiple parents.
- \bullet Message coming from "neighbour" i that itself has neighbours j and k would be

$$M_{ic}(x_c) \propto \sum_{x_i} \phi_i(x_i) \phi_{ic}(x_i, x_c) M_{ji}(x_i) M_{ki}(x_i),$$

- Univariate marginals are proportional to $\phi_i(x_i)$ times all "incoming" messages.
 - The "forward" and "backward" Markov chain messages are a special case.
 - Replace \sum_{x_i} with \max_{x_i} for decoding.
 - "Sum-product" and "max-product" algorithms.

Exact Inference in UGMs

- For general graphs, the cost of message passing depends on
 - Graph structure.
 - 2 Variable order.
- To see the effect of the order, consider Markov chain inference with bad ordering:

$$p(x_5) = \sum_{x_5} \sum_{x_4} \sum_{x_3} \sum_{x_2} \sum_{x_1} p(x_1) p(x_2 \mid x_1) p(x_3 \mid x_2) p(x_4 \mid x_3) p(x_5 \mid x_4)$$

$$= \sum_{x_5} \sum_{x_1} \sum_{x_4} \sum_{x_3} \sum_{x_2} p(x_1) p(x_2 \mid x_1) p(x_3 \mid x_2) p(x_4 \mid x_3) p(x_5 \mid x_4)$$

$$= \sum_{x_5} \sum_{x_1} p(x_1) \sum_{x_3} \sum_{x_4} p(x_4 \mid x_3) p(x_5 \mid x_4) \underbrace{\sum_{x_2} p(x_2 \mid x_1) p(x_3 \mid x_2)}_{M_{13}(x_1, x_3)}$$

- So even though we have a chain, we have an M with k^2 values instead of k.
 - Increases cost to $O(dk^3)$ instead of $O(dk^2)$.
 - Inference can be exponentially more expensive with the wrong ordering.

Exact Inference in UGMs

- For general graphs, the cost of message passing depends on
 - Graph structure.
 - ② Variable order.
- As a non-tree example, consider computing Z in a simple 4-node cycle:

$$Z = \sum_{x_4} \sum_{x_3} \sum_{x_2} \sum_{x_1} \phi_{12}(x_1, x_2) \phi_{23}(x_2, x_3) \phi_{34}(x_3, x_4) \phi_{14}(x_1, x_4)$$

$$= \sum_{x_4} \sum_{x_3} \phi_{34}(x_3, x_4) \sum_{x_2} \phi_{23}(x_2, x_3) \sum_{x_1} \phi_{12}(x_1, x_2) \phi_{14}(x_1, x_4)$$

$$= \sum_{x_4} \sum_{x_3} \phi_{34}(x_3, x_4) \sum_{x_2} \phi_{23}(x_2, x_3) M_{24}(x_2, x_4)$$

$$= \sum_{x_4} \sum_{x_3} \phi_{34}(x_3, x_4) M_{34}(x_3, x_4) = \sum_{x_4} M_4(x_4).$$

• We again have an M with k^2 values instead of k.

• We can do inference tasks with this graph, but it costs $O(dk^3)$ instead of $O(dk^2)$.

Variable Order and Treewidth

- Cost of message passing in general graphs is given by $O(dk^{\omega+1})$.
 - Here, ω is the number of dimensions of the largest message.
 - For trees, $\omega = 1$ so we get our usual cost of $O(dk^2)$.
- The minimum value of ω across orderings for a given graph is called treewidth.
 - In terms of graph: "minimum size of largest clique, minus 1, over all triangulations".
 - Also called "graph dimension" or " $\omega\text{-tree}$ ".
 - Intuitively, you can think of low treewidth as being "close to a tree".
 - Trees have a treewidth of 1, and a single loop has a treewidth of 2.

Treewidth Examples

• Examples of k-trees:

• 2-tree and 3-tree are trees if you use dotted circles to group nodes.

Treewidth Examples

• Trees have $\omega = 1$, so with the right order inference costs $O(dk^2)$.

• A big loop has $\omega = 2$, so cost with the right ordering is $O(dk^3)$.

• The below grid-like structure has $\omega = 3$, so cost is $O(dk^4)$.

Variable Order and Treewidth

- Junction trees generalize belief propagation to general graphs (requires ordering).
 - This is the algorithm that achieves the $O(dk^{\omega+1})$ runtime.
- Computing ω and the optimal ordering is NP-hard.
 - But various heuristic ordering methods exist.
- An m_1 by m_2 lattice has $\omega = \min\{m_1, m_2\}$.
 - So you can do exact inference on "wide chains" with Junction tree.
 - But for 28 by 28 MNIST digits it would cost $O(784 \cdot 2^{29})$.
- Some links if you want to read about treewidth:
 - https://www.win.tue.nl/~nikhil/courses/2015/2W008/treewidth-erickson.pdf
 - https://math.mit.edu/~apost/courses/18.204-2016/18.204_Gerrod_Voigt_final_paper.pdf
- For some graphs $\omega = (d-1)$ so there is no gain over brute-force enumeration.
 - Many graphs have high treewidth so we need approximate inference.

Outline

2 DAG Model Learning and Inference

3 Undirected Graphical Models (UGMs)

4 Bonus: Inference Details on Graphical Models

- DAG Inference
- Structure Learning
- More UGMs
- Treewidth
- ICM
- Block Inference

5 "Normal" bonus slides

Iterated Conditional Mode (ICM)

- The iterated conditional mode (ICM) algorithm for approximate decoding:
 - On each iteration k, choose a variable j_t .
 - Maximie the joint probability in terms of x_{j_t} (with other variables fixed),

$$x_{j}^{t+1} \in \arg\max cp(x_{1}^{t}, \dots, x_{j-1}^{t}, x_{j} = c, x_{j+1}^{t}, \dots, x_{d}^{t}).$$

• Equivalently, iterations correspond to finding mode of conditional $p(x_j \mid x_{-j}^t)$,

$$x_j^{t+1} \in \arg\max cp(x_j = c \mid x_{-j}^t),$$

where x_{-j} means " x_i for all i except x_j ": $x_1, x_2, \ldots, x_{j-1}, x_{j+1}, \ldots, x_d$.

ICM in Action

- Select random j like j = 3.
- Set j to maximize $p(x_3 \mid x_{-3}^0)$: $x^1 = \begin{bmatrix} 2 & 2 & 1 & 1 \end{bmatrix}$.
- Select random j like j = 1.
- Set j to maximize $p(x_1 \mid x_{-1}^1)$: $x^2 = \begin{bmatrix} 3 & 2 & 1 & 1 \end{bmatrix}$.
- Select random j like j = 2.
- Set j to maximize $p(x_2 \mid x_{-2}^2)$: $x^3 = \begin{bmatrix} 3 & 2 & 1 & 1 \end{bmatrix}$.
- . . .
- Repeat until you can no longer improve by single-variable changes.
 - Intead of random, could cycle through the variables in order.
 - Or you could greedily choose the variable that increases the probability the most.

Optimality and Globalization of ICM

- Does ICM find the global optimum?
- Decoding is usually non-convex, so doesn't find global optimum.
 - ICM is an approximate decoding method.
- There exist many globalization methods that can improve its performance:
 - Restarting with random initializations.
 - Global optimization methods:
 - Simulated annealing, genetic algorithms, ant colony optimization, GRASP, etc.

Using the Unnormalized Objective

- How can you maximize p(x) in terms of x_j if evaluating it is NP-hard?
- $\bullet\,$ Let's define the unnormalized probability \tilde{p} as

$$\tilde{p}(x) = \prod_{c \in \mathcal{C}} \phi_c(x_c).$$

• So the normalized probability is given by

$$p(x) = \frac{\tilde{p}(x)}{Z}$$

- In UGMs evaluating Z is hard but evaluating $\tilde{p}(x)$ is easy.
- And for decoding we only need unnormalized probabilities,

$$\arg \max xp(x) \equiv \arg \max x \frac{\tilde{p}(x)}{Z} \equiv \arg \max x \tilde{p}(x),$$

so we can decode based on \tilde{p} without knowing Z.

ICM Iteration Cost

- How much does ICM cost?
- Consider a pairwise UGM,

$$\tilde{p}(x) = \left(\prod_{j=1}^{d} \phi_j(x_j)\right) \left(\prod_{(i,j)\in E} \phi_{ij}(x_i, x_j)\right).$$

- Each ICM update would:
 - Set M_j(x_j = s) to product of terms in p̃(x) involving x_j, with x_j set to s.
 Set x_j to the largest value of M_j(x_j).
- The variable x_j has k values and appears in at most d factors here.
 - You can compute the k values of these d factors in ${\cal O}(dk)$ to find the largest.
 - If you only have m nodes in "Markov blanket", this reduces to ${\cal O}(mk).$
 - We will define "Markov blanket" in a couple slides.

ICM in Action

Consider using a UGM for binary image denoising:

bonusl

We have

- Unary potentials ϕ_j for each position.
- Pairwise potentials ϕ_{ij} for neighbours on grid.
- Parameters are trained as CRF (later).

Goal is to produce a noise-free binary image (show video).

Digression: Closure of UGMs under Conditioning

- UGMs are closed under conditioning:
 - If p(x) is a UGM, then $p(x_A \mid x_B)$ can be written as a UGM (for partition A and B).
- Conditioning on x_2 and x_3 in a chain, x_1 x_2 x_3 x_4 gives a UGM defined on x_1 and x_4 that is disconnected: x_1 x_4
- Graphically, we "erase the black nodes and their edges".
- Notice that inference in the conditional UGM may be mucher easier.
Digression: Closure of UGMs under Conditioning

• Mathematically, a 4-node pairwise UGM with a chain structure assumes

 $p(x_1, x_2, x_3, x_4) \propto \phi_1(x_1)\phi_2(x_2)\phi_3(x_3)\phi_4(x_4)\phi_{12}(x_1, x_2)\phi_{23}(x_2, x_3)\phi_{34}(x_3, x_4).$

bonusl

• Conditioning on x_2 and x_3 gives UGM over x_1 and x_4 .

$$p(x_1, x_4 \mid x_2, x_3) = \frac{1}{Z'} \phi'_1(x_1) \phi'_4(x_4),$$

where new potentials "absorb" the shared potentials with observed nodes:

$$\phi_1'(x_1) = \phi_1(x_1)\phi_{12}(x_1, x_2), \quad \phi_4'(x_4) = \phi_4(x_4)\phi_{34}(x_3, x_4).$$

Conditioning in UGMs

bonus!

 \bullet Conditioning on x_2 and x_3 in 4-node chain-UGM gives

$$p(x_1, x_4 | x_2, x_3) = \frac{p(x_1, x_2, x_3, x_4)}{p(x_2, x_3)}$$

$$= \frac{\frac{1}{Z}\phi_1(x_1)\phi_2(x_2)\phi_3(x_3)\phi_4(x_4)\phi_1(x_1, x_2)\phi_2(x_2, x_3)\phi_3(x_3, x_4)}{\sum_{x_1', x_4'} \frac{1}{Z}\phi_1(x_1')\phi_2(x_2)\phi_3(x_3)\phi_4(x_4)\phi_1(x_1, x_2)\phi_2(x_2, x_3)\phi_3(x_3, x_4)}{\frac{1}{Z}\phi_2(x_2)\phi_3(x_3)\phi_2(x_2, x_3)\sum_{x_1', x_4'} \phi_1(x_1')\phi_4(x_4')\phi_1(x_1', x_2)\phi_3(x_3, x_4)}$$

$$= \frac{\phi_1(x_1)\phi_4(x_4)\phi_1(x_1, x_2)\phi_3(x_3, x_4)}{\sum_{x_1', x_4'} \phi_1(x_1')\phi_4(x_4')\phi_1(x_1', x_2)\phi_3(x_3, x_4')}$$

$$= \frac{\phi_1(x_1)\phi_4(x_4)}{\sum_{x_1', x_4'} \phi_1(x_1')\phi_4(x_4')}$$

Simpler Inference in Conditional UGMs

• Consider the following graph which could describe bus stops:

If we condition on the "hubs", the graph forms a forest (and inference is easy).
Simpler inference after conditioning is used by many approximate inference methods.

Digression: Local Markov Property and Markov Blanket

- Approximate inference methods often use conditional p(x_j | x_{-j}),
 where x^k_{-j} means "x^k_i for all i except x^k_j": x^k₁, x^k₂,...,x^k_{j-1}, x^k_{j+1},...,x^k_d.
- In UGMs, the conditional simplifies due to conditional independence,

$$p(x_j \mid x_{-j}) = p(x_j \mid x_{\mathsf{nei}(j)}),$$

this local Markov property means conditional only depends on neighbours.

- We say that the neighbours of x_j are its "Markov blanket".
- Markov blanket is the set nodes that make you independent of all other nodes.

Digression: Local Markov Property and Markov Blanket

• In UGMs the Markov blanket is the neighbours.

• Markov blanket in DAGs: parents, children, co-parents (parents of same children):

Outline

2 DAG Model Learning and Inference

3 Undirected Graphical Models (UGMs)

4 Bonus: Inference Details on Graphical Models

- DAG Inference
- Structure Learning
- More UGMs
- Treewidth
- ICM
- Block Inference

- Basic approximate inference methods like ICM and Gibb sampling:
 - Update one x_j at a time.
 - Efficient because conditional UGM is 1 node.
- Better approximate inference methods use block updates:
 - Update a block of x_j values at once.
 - Efficient if conditional UGM allows exact inference.
- If we choose the blocks cleverly, this works substantially better.

• Consider a lattice-structure and the following two blocks ("red-black ordering"):

• Given black nodes, conditional UGM on red nodes is a disconnected graph.

- "I can optimally update the red nodes given the black nodes" (and vice versa).
 - $\bullet\,$ You update d/2 nodes at once for cost of this is O(dk), and easy to parallelize.

• Minimum number of blocks to disconnect the graph is graph colouring.

• We could also consider general forest-structured blocks:

bonusl

We can still optimally update the black nodes given the gray nodes in O(dk²).
This works much better than "one at a time".

Block Gibbs Sampling in Action

- With block sampling, the samples are far less correlated.
- We can also do tree-structured block ICM.
 - Harder to get stuck if you get to update entire trees.

• Or we could define a new tree-structured block on each iteration:

bonusl

• The above block updates around two thirds of the nodes optimally. (Here we're updating the black nodes.)

Block ICM Based on Graph Cuts

bonus!

• Consider a binary pairwise UGM with "attractive" potentials,

 $\log \phi_{ij}(1,1) + \log \phi_{ij}(2,2) \ge \log \phi_{ij}(1,2) + \log \phi_{ij}(2,1).$

- In words: "neighbours prefer to have similar states".
- In this setting exact decoding can be formulated as a max-flow/min-cut problem.
 - Can be solved in polynomial time.
- This is widely-used computer vision:
 - Want neighbouring pixels/super-pixels/regions to be more likely to get same label.

Graph Cut Example: "GrabCut"

Figure 1: Three examples of GrabCut. The user drags a rectangle loosely around an object. The object is then extracted automatically.

http://cvg.ethz.ch/teaching/cvl/2012/grabcut-siggraph04.pdf

- User draws a box around the object they want to segment.
- If Gaussian mixture model to pixels inside the box, and to pixels outside the box.
- Onstruct a pairwise UGM using:
 - $\phi_i(x_i)$ set to GMM probability of pixel *i* being in class x_i .
 - $\phi_{ij}(x_i, x_j)$ set to Ising potential times RBF based on spatial/colour distance.
 - Use $w_{ij} > 0$ so the model is "attractive".
- Our perform exact decoding in the binary attractive model using graph cuts.

Graph Cut Example: "GrabCut"

• GrabCut with extra user interaction:

http://cvg.ethz.ch/teaching/cvl/2012/grabcut-siggraph04.pdf

Alpha-Beta Swap and Alpha-Expansions: ICM with Graph Cuts

- If we have more than 2 states, we can't use graph cuts.
- Alpha-beta swaps are an approximate decoding method for "pairwise attractive", $\log \phi_{ii}(\alpha, \alpha) + \log \phi_{ii}(\beta, \beta) \ge \log \phi_{ii}(\alpha, \beta) + \log \phi_{ii}(\beta, \alpha).$

- $\bullet\,$ Each step choose an α and $\beta,$ optimally "swaps" labels among these nodes.
- Alpha-expansions are another variation based on a slightly stronger assumption,

 $\log \phi_{ij}(\alpha, \alpha) + \log \phi_{ij}(\beta_1, \beta_2) \ge \log \phi_{ij}(\alpha, \beta_1) + \log \phi_{ij}(\beta_2, \alpha).$

• Steps choose label $\alpha,$ and consider replacing the label of any node not labeled $\alpha.$

Alpha-Beta Swap and Alpha-Expansions: ICM with Graph Cuts

bonus!

• These don't find global optima in general, but make huge moves:

Figure 1: From left to right: Initial labeling, labeling after $\alpha\beta$ -swap, labeling after α -expansion, labeling after α -expansion β -shrink. The optimal labeling of the α pixels is outlined by a white triangle, and is achieved from the initial labeling by one α -expension β -shrink move. $ex^{-s}wap move$

• A somewhat-related MCMC method is the Swendson-Wang algorithm.

Example: Photomontage

• Photomontage: combining different photos into one photo:

http://vision.middlebury.edu/MRF/pdf/MRF-PAMI.pdf

• Here, x_i corresponds to identity of original image at position i.

Example: Photomontage

• Photomontage: combining different photos into one photo:

Outline

1 D-Separation

- 2 DAG Model Learning and Inference
- 3 Undirected Graphical Models (UGMs)
- 4 Bonus: Inference Details on Graphical Models
- 5 "Normal" bonus slides

- "5 aliens get together and make a baby alien".
 - Unconditionally, the 5 aliens are independent.

- "5 aliens get together and make a baby alien".
 - Conditioned on the baby, the 5 aliens are dependent.

- "An organism produces 5 clones".
 - Unconditionally, the 5 clones are dependent.

- "An organism produces 5 clones".
 - Conditioned on the original, the 5 clones are independent.

Does Semi-Supervised Learning Make Sense?

- Should unlabeled examples always help supervised learning?
 No!
- Consider choosing unlabeled features \bar{x}^i uniformly at random.
 - Unlabeled examples collected in this way will not help.
 - By construction, distribution of \bar{x}^i says nothing about \bar{y}^i .
- Example where SSL is not possible:
 - Try to detect food allergy by trying random combinations of food:
 - The actual random process isn't important, as long as it isn't affected by labels.
 - You can sample an infinite number of $ar{x}^i$ values, but they says nothing about labels.
- Example where SSL is possible:
 - Trying to classify images as "cat" vs. "dog.:
 - Unlabeled data would need to be images of cats or dogs (not random images).
 - Unlabeled data contains information about what images of cats and dogs look like.
 - For example, there could be clusters or manifolds in the unlabeled images.

Does Semi-Supervised Learning Make Sense?

• Let's assume our semi-supervised learning model is represented by this DAG:

- Assume we observe $\{X, y, \overline{X}\}$ and are interested in test labels \tilde{y} :
 - There is a dependency between y and \tilde{y} because of path through w.
 - $\bullet\,$ Parameter w is tied between training and test distributions.
 - There is a dependency between X and \tilde{y} because of path through w (given y).
 - But note that there is also a second path through D and \tilde{X} .
 - There is a dependency between \bar{X} and \tilde{y} because of path through D and \tilde{X} .
 - Unlabeled data helps because it tells us about data-generating distribution D.

Does Semi-Supervised Learning Make Sense?

• Now consider generating \bar{X} independent of D:

- Assume we observe $\{X, y, \overline{X}\}$ and are interested in test labels \tilde{y} :
 - Knowing X and y are useful for the same reasons as before.
 - But knowing \bar{X} is not useful:
 - Without knowing \bar{y} , \bar{X} is *d*-separated from \tilde{y} (no dependence).

Tabular Parameterization Example

https://en.wikipedia.org/wiki/Bayesian_network

Some quantities can be directly read from the tables:

```
p(R = 1) = 0.2.
p(G = 1 \mid S = 0, R = 1) = 0.8.
```

Can calculate any probabilities using marginalization/product-rule/Bayes-rule (bonus).

Tabular Parameterization Example

https://en.wikipedia.org/wiki/Bayesian_network

Can calculate any probabilities using marginalization/product-rule/Bayes-rule, for example:

$$p(G = 1 | R = 1) = p(G = 1, S = 0 | R = 1) + p(G = 1, S = 1 | R = 1) \quad \left(p(a | c) = \sum_{b} p(a, b | c) \right)$$
$$= p(G = 1 | S = 0, R = 1)p(S = 0 | R = 1) + p(G = 1 | S = 1, R = 1)p(S = 1 | R = 1)$$
$$= 0.8(0.99) + 0.99(0.01) = 0.81.$$

Dynamic Bayesian Networks

- Dynamic Bayesian networks combine ideas from DAGs and Markov chains:
 - At each time, we have a set of variables x^t .
 - The initial x^0 comes from an "initial" DAG.
 - Given x^{t-1} , we generate x^t from a "transition" DAG.

Figure 1: (a) A prior network and transition network defining a DPN for the attributes X_1 , X_2 , X_3 . (b) The corresponding "unrolled" network.

https://www.cs.ubc.ca/~murphyk/Papers/dbnsem_uai98.pdf

- Can be used to model multiple variables over time.
 - Unconditional sampling is easy but inference may be hard.