CPSC 440/540: Advanced Machine Learning

 More DAGsMark Schmidt
(using materials by Danica Sutherland (building on materials from Mark Schmidt))

University of British Columbia
Winter 2023

Reminders

- Project proposals due Friday
- Assignment 3 due Monday
- Assignment 4 released definitely by Monday, probably sooner

Last Time: DAG models

- Directed acyclic graphical models: $p(x)=\prod_{j=1}^{d} p\left(x_{j} \mid x_{\mathrm{pa}(j)}\right)$
- $\mathrm{pa}(j) \subseteq\{1, \ldots, j-1\}$ is the set of parents of j
- Generalizes Markov chains (use pa $(j)=\{j-1\}$)
- Every possible distribution can be written as one (use pa $(j)=\{1, \ldots, j-1\}$)
- Defines a graph (one node per x_{j}, edges from parents to children)
- Started d-separation to read conditional independences off of that graph

D-Separation Summary (MEMORIZE)

- Checking whether DAG implies A is independent of B given C :
- Consider each undirected path from any node in any A to any node in B.
- Ignoring directions and observations.
- Use directions/observations, check if any of below hold somewhere along each path:
(1) P includes a "chain" with an observed middle node (e.g., Markov chain):

(2) P includes a "fork" with an observed parent node (e.g., naive Bayes):

(3) P includes a "v-structure" or "collider" (e.g., genetic inheritance):

where the "child" and all its descendants are unobserved.
- If all paths are blocked by one of above, DAG implies the conditional independence.

D-Separation Summary (MEMORIZE)

- We say that A and B are d-separated (conditionally independent) given C if all undirected paths from A to B are "blocked" because one of the following holds somewhere on the path:
(1) P includes a "chain" with an observed middle node (e.g., Markov chain):

(2) P includes a "fork" with an observed parent node (e.g., naive Bayes):

(3) P includes a "v-structure" or "collider" (e.g., genetic inheritance):

where the "child" and all its descendants are unobserved.

Alarm Example

- Case 1 :
- Earthquake 뇨 Call.
- Earthquake \Perp Call | Alarm.
- Case 2:
- Alarm \nVdash Stuff Missing.
- Alarm \Perp Stuff Missing | Burglary.

Alarm Example

- Case 3:
- Earthquake \Perp Burglary.
- Earthquake 쁠urglary | Alarm.
- "Explaining away": knowing one parent can make the other less/more likely.
- Multiple Cases:
- Call \nVdash Stuff Missing.
- Earthquake \Perp Stuff Missing.
- Earthquake \nVdash Stuff Missing | Call.

Discussion of D-Separation

- D-separation lets you say if conditional independence is implied by assumptions:

$$
(A \text { and } B \text { are d-separated given } C) \Rightarrow A \Perp B \mid C .
$$

- However, there might be extra conditional independences in the distribution:
- These would depend on specific choices of the DAG parameters.
- For example, if we set Markov chain parameters so that $p\left(x_{j} \mid x_{j-1}\right)=p\left(x_{j}\right)$.
- Or some orderings of the chain rule may reveal different independences.
- Lack of d-separation doesn't imply dependence.
- Just that it's not guaranteed to be independent by the graph structure.
- Instead of restricting to $\{1,2, \ldots, j-1\}$, can have general parent choices.
- So x_{2} could be a parent of x_{1}.
- As long the graph is acyclic, there exists a valid ordering (chain rule makes sense). (all DAGs have a "topological order" of variables where parents are before children)

Non-Uniqueness of Graph and Equivalent Graphs

- Note that some graphs imply same conditional independences:
- Equivalent graphs: same v-structures and other (undirected) edges are the same.
- Examples of 3 equivalent graphs (left) and 3 non-equivalent graphs (right):

Beware of the "Causal" DAG

- It can be helpful to use the language of causality when reasoning about DAGs.
- You'll find that they give the correct causal interpretation based on our intuition.
- However, keep in mind that the arrows are not necessarily causal.
- " A causes B " can have the same graph as " B causes A "
- There is work on causal DAGs which add semantics to deal with "interventions".
- But these require assuming that the arrow directions are causal.
- Fitting a DAG to observational data doesn't imply anything about causality.

Outline

(1) D-Separation

- Seeing Our Old Favourites as DAGs
(2) DAG Model Learning and Inference
(3) Undirected Graphical Models (UGMs)

4 Bonus: Inference Details on Graphical Models
(5) "Normal" bonus slides

Linear Regression

- As we saw last time, if the x^{i} are IID, then we can represent linear regression as

- From d-separation on this graph we have $p(\mathbf{y} \mid \mathbf{X}, w)=\prod_{i=1}^{n} p\left(y^{i} \mid x^{i}, w\right)$.
- Can see our standard assumption: data is independent given parameters.
- $y^{1} \nVdash y^{2}$, but $y^{1} \Perp y^{2} \mid w$.
- $x^{1} \Perp x^{2}$, but $x^{1} \Vdash x^{2} \mid y^{1}, y^{2}$.
- Discriminative model: here we don't try to model things about $p\left(x^{i}\right)$.

IID Bernoulli-Beta Model

- The Bernoulli-beta model as a DAG (with parameters and hyper-parameters):

- Notice data is independent of hyper-parameters given parameters.
- This is another of our standard independence assumptions.

Non-IID Bernoulli-Beta Model

- The non-IID variant we considered with grouped data:

- DAG reflects that we do not tie parameters across all training examples.
- Notice that if you fix α and β then you can't learn across groups:
- The θ_{j} are d-separated given α and β.
- Can also write more succinctly with nested plates.

Non-IID Bernoulli-Beta Model

- Variant of the previous model with a hyper-hyper-parameter:

- Needed to avoid degeneracy.

Naive Bayes with DAGs/Plates

- For naive Bayes we have

$$
y^{i} \sim \operatorname{Cat}(\theta), \quad x^{i} \mid\left(y^{i}=c\right) \sim \operatorname{Cat}\left(\theta_{c}\right)
$$

Bayesian Linear Regression as a DAG

- In Bayesian linear regression we assume

$$
y^{i} \sim \mathcal{N}\left(w^{\top} x^{i}, 1\right), \quad w_{j} \sim \mathcal{N}(0,1 / \lambda)
$$

which we can write as

Outline

(1) D-Separation
(2) DAG Model Learning and Inference
(3) Undirected Graphical Models (UGMs)

4 Bonus: Inference Details on Graphical Models
(5) "Normal" bonus slides

Density Estimators vs. Relationship Visualizers

- Besides dependency visualization, we can use DAGs as density estimators.
- Recall that DAGs model joint distribution using

$$
p\left(x_{1}, x_{2}, \ldots, x_{d}\right)=\prod_{j=1}^{d} p\left(x_{j} \mid x_{\mathrm{pa}(j)}\right)
$$

- We need to choose a parameterization for these conditional probabilities:
- Tabular parameterization (discrete x_{j}): can model any joint probability.
- Common choice; sometimes set parameters from expert knowledge.
- Gaussian (continuous x_{j}): $x_{j} \sim \mathcal{N}\left(w^{\top} x_{\mathrm{pa}(j)}, \sigma^{2}\right)$.
- Called a Gaussian belief net. Joint distribution becomes a multivariate Gaussian.
- Sigmoid (binary $\left.x_{j} \in\{-1,+1\}\right): p\left(x_{j} \mid x_{j-1}, w\right)=1 /\left(1+\exp \left(-x_{j} w^{\top} x_{\mathrm{pa}(j)}\right)\right)$.
- Called a sigmoid belief net.
- Could use softmax, probabilistic random forest, neural network, and so on.
- Our tricks for probabilistic supervised learning can be used for unsuperivsed learning.

Tabular Parameterization Example

Some companies sell software to help companies reason using tabular DAGs:

DAG Learning and Sampling

- For $j=1: d$:
(1) Set $\bar{y}^{i}=x_{j}^{i}$ and $\bar{x}^{i}=x_{\mathrm{pa}(j)}^{i}$.
(2) Solve a supervised learning problem using $\{\bar{X}, \bar{y}\}$.
- Gives you a model of $p\left(x_{j} \mid x_{\mathrm{pa}(j)}\right)$.
- Can sample from DAGs using ancestral sampling:
- Sample x_{1} from $p\left(x_{1}\right)$.
- Sample x_{2} from $p\left(x_{2} \mid x_{\mathrm{pa}(2)}\right)$.
- .
- Sample x_{d} from $p\left(x_{d} \mid x_{\mathrm{pa}(d)}\right)$.
- This allows us to do inference with Monte Carlo methods.
- Conditional sampling can be hard; might need rejection sampling for conditionals.

MNIST Digits with Tabular DAG Model

- Recall our latest MNIST model using a tabular DAG:

- This model is pretty bad because you only see 8 parents.

MNIST Digits with Sigmoid Belief Network

- Samples from sigmoid belief network:
(DAG with logistic regression for each variable)

where we use all previous pixels as parents (from 0 to 783 parents).
- Models long-range dependencies but has a linear assumption.

Exact Inference in DAGs?

- Can we do exact inference in DAGs like in Markov chains?
- Continuous-state Gaussian DAGs:
- Special case of multvariate Gaussian, so inference is tractable.
- Most operations are $O(d)$ or $O\left(d^{3}\right)$.
- Continuous-state non-Gaussian DAGs:
- Inference usually isn't closed-form; need Monte Carlo or variational inference.
- If parents are conjugate, then Gibbs sampling is easy to implement.
- Discrete-state DAGs (whether tabular or sigmoid or other):
- Inference takes exponential-time in the "treewidth" of the graph.
- Exact inference is cheap in trees and forests, which have a treewidth of 1 .
- Low-treewidth graphs allow efficient exact inference; otherwise need approximations.

Inference in Forest DAGs ("Belief Propagation")

- Connected graphs with at most one parent per node are called trees.

- If not connected, these kinds of graphs are forests; both are "singly-connected."
- We can generalize the CK equations to trees/forests:

$$
p\left(x_{j}=s\right)=\sum_{x_{\mathrm{pa}(j)}} p\left(x_{j}=s, x_{\mathrm{pa}(j)}\right)=\sum_{x_{\mathrm{pa}(j)}}^{p\left(x_{j}=s \mid x_{\mathrm{pa}(j)}\right)} p\left(x_{\mathrm{pa}(j)}\right)
$$

- Trees/forests allow efficient dynamic programming methods as in Markov chains.
- In particular, decoding and univariate marginals/conditionals in $O\left(d k^{2}\right)$.
- Forward-backward applied to tree-structured graphs is called belief propagation.
- It's also possible to find the optimal tree given data ("structure learning").

Outline

(1) D-Separation
(2) DAG Model Learning and Inference
(3) Undirected Graphical Models (UGMs)

4 Bonus: Inference Details on Graphical Models
(5) "Normal" bonus slides

Undirected Graphical Models (UGMs)

- Undirected graphical models (UGMs) are another popular graphical model class.
- Also called Markov random fields.
- UGMs define joint distribution in terms of non-negative potential functions,

$$
p\left(x_{1}, x_{2}, \ldots, x_{d}\right) \propto \prod_{c \in \mathcal{C}} \phi_{c}\left(x_{c}\right)
$$

- Define a potential ϕ_{c} for each set c where we want to model a direct relationship.
- The most common choice is a pairwise UGM,

$$
p\left(x_{1}, x_{2}, \ldots, x_{d}\right) \propto\left(\prod_{j=1}^{d} \phi_{j}\left(x_{j}\right)\right)\left(\prod_{(i, j) \in \mathcal{E}} \psi_{i j}\left(x_{i}, x_{j}\right)\right)
$$

This only has potentials on single variables (ϕ) and pairs of variables (ψ).

- The "edge potentials" ψ are defined on edges of an undirected graph \mathcal{E}.

Pairwise Undirected Graphical Models

- Pairwise undirected graphical models factorize probability using

$$
p\left(x_{1}, x_{2}, \ldots, x_{d}\right) \propto\left(\prod_{j=1}^{d} \phi_{j}\left(x_{j}\right)\right)\left(\prod_{(i, j) \in \mathcal{E}} \psi_{i j}\left(x_{i}, x_{j}\right)\right)
$$

- Special cases:
- Markov chains: \mathcal{E} only has edges between adjacent nodes.
- Multivaiate Gaussian: a specific choice of the ϕ and ψ functions.
- Gaussians AKA "Gaussian graphical models" or "Gaussian Markov random fields".
- Ising model for binary x_{j} uses

$$
\phi_{j}\left(x_{j}\right)=\exp \left(x_{i} w_{i}\right), \quad \phi_{i j}\left(x_{i}, x_{j}\right)=\exp \left(x_{i} x_{j} w_{i j}\right),
$$

where w_{i} is the node weight and $w_{i j}$ is the edge weight.

- If $w_{i j}>0$ it encourages neighbours to have same value ("attractive").
- If $w_{i j}<0$ it encourages neighbours to have different values ("repulsive").

Conditional Independence in UGMs

- A UGM's independence properties are described by an undirected graph.
- For pairwise UGMs, the edges are given by the set of edges \mathcal{E}.

- If you have 3 -variable or higher-order potentials:
- Add an edge (i, j) if i and j are together in at least one c.
- So these two factorizations have the same graph:

$$
p\left(x_{1} \cdot x_{2}, x_{3}\right) \propto \phi_{12}\left(x_{1}, x_{2}\right) \phi_{13}\left(x_{1}, x_{3}\right) \phi_{23}\left(x_{2}, x_{3}\right), \quad p\left(x_{1}, x_{2}, x_{3}\right) \propto \phi_{123}\left(x_{1}, x_{3}, x_{3}\right)
$$

- UGM implies $A \Perp B \mid C$ if C separates all nodes in A from all nodes in B.
- General version of what we did with the graph from Gaussians' precision matrix.

Multivariate Gaussians as UGMs

- Writing a Gaussian as a pairwise UGM:

$$
\begin{aligned}
p\left(x_{1}, \ldots, x_{d}\right) & \propto \exp \left(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right) \\
& =\exp \left(-\frac{1}{2} \sum_{i=1}^{d} \sum_{j=1}^{d}\left(x_{i}-\mu_{i}\right)\left(\Sigma^{-1}\right)_{i j}\left(x_{j}-\mu_{j}\right)\right) \\
& =\left(\prod_{j=1}^{d} e^{-\frac{1}{2}\left(\Sigma^{-1}\right)_{j j}\left(x_{j}-\mu_{j}\right)^{2}}\right)\left(\prod_{(i, j):\left(\Sigma^{-1}\right)_{i j} \neq 0} e^{-\frac{1}{2}\left(\Sigma^{-1}\right)_{i j}\left(x_{i}-\mu_{i}\right)\left(x_{j}-\mu_{j}\right)}\right)
\end{aligned}
$$

- Hence why zeros of the precision Σ^{-1} that determine conditional independence.

DAGs vs. UGMs

- Neither DAGs or UGMs are "more powerful" than the other.
- Any distribution can be written as a DAG, and as a UGM.
- But you might need to use a highly connected graph.
- Set of independences in DAG cannot always be written as UGM (and vice versa).
- UGMs cannot reflect independences in common child graph: $(x) \rightarrow(y) \leftarrow(z)$.
- DAGs cannot reflect independences in 4-node loop: $(x)-(y)-(z)-(x)$.
- Independences representable as both DAGs and UGMs are called decomposable.
- An example is Markov chains: independences are same in DAG and UGM graphs.
- DAGs are often used when it makes sense to work with conditionals, or we have an idea of causal directions.
- UGMs are often used when there are no obvious directions (like MNIST), and are more often used when we want to add features to do supervised learning.

Tractability of UGMs

- Without using \propto, a UGM probability would be

$$
p(x)=\frac{1}{Z} \prod_{c \in \mathcal{C}} \phi_{c}\left(x_{c}\right)
$$

where Z is the constant that makes the probabilites sum up to 1 .

$$
Z=\sum_{x_{1}} \sum_{x_{2}} \cdots \sum_{x_{d}} \prod_{c \in \mathcal{C}} \phi_{c}\left(x_{c}\right) \quad \text { or } \quad Z=\int_{x_{1}} \int_{x_{2}} \cdots \int_{x_{d}} \prod_{c \in \mathcal{C}} \phi_{c}\left(x_{c}\right) \mathrm{d} x_{d} \mathrm{~d} x_{d-1} \cdots \mathrm{~d} x_{1} .
$$

- Whether you can compute Z (and do inference) depends on the choice of the ϕ_{c} :
- Gaussian case: $O\left(d^{3}\right)$ in general, but $O(d)$ for forests (no loops).
- Continuous non-Gaussian: usually requires approximate inference.
- Discrete case: \#P-hard in general, but $O\left(d k^{2}\right)$ for forests (no loops).

Discrete DAGs vs. Discrete UGMs

- Common inference tasks in graphical models:
(1) Compute $p(x)$ for an assignment to the variables x.
(2) Generate a sample x from the distribution.
(3) Compute univariate marginals $p\left(x_{j}\right)$.
(9) Compute decoding $\arg \max _{x} p(x)$.
(5) Compute univariate conditional $p\left(x_{j} \mid x_{j^{\prime}}\right)$.
- With discrete x_{i}, all of the above are easy in tree-structured graphs.
- For DAGs, a tree-structured graph has at most one parent.
- For UGMs, a tree-structured graph has no cycles.
- With discrete x_{i}, the above may be harder for general graphs:
- In DAGs the first two are easy, the others are NP-hard.
- In UGMs all of these are NP-hard.

Inference in UGMs

- The course does not "officially cover" details on inference in graphical models.
- For however long is left today, we'll cover some stuff as bonus slides.
- These include:
- Inference in non-tree DAGs/UGMs.
- Learning the graph structure.
- Treewidth of graphs, and efficient inference with low treewidth.
- Exact decoding for binary attractive models using graph cuts.
- ICM and alpha-expansion algorithms for approximate decoding.
- Block Gibbs sampling in UGMs (UGMs are what Gibbs sampling was invented for).

Summary

- Independence assumptions about data and parameters can be written as DAGs.
- D-seperation lets us read conditional independences from DAGs.
- Plate notation lets us compactly draw graphs with repeated patterns.
- There are fancier versions of plate notation called "probabilistic programming".
- Parameter learning in DAGs:
- Can fit each $p\left(x_{j} \mid x_{\mathrm{pa}(j)}\right)$ independently.
- Tabular parameterization, or treat as supervised learning.
- Sampling in DAGs is easy (ancestral sampling).
- Exact inference in discrete DAGs is easy for trees.
- But becomes exponential in "treewidth" of graph.
- Undirected graphical models factorize probability into non-negative potentials.
- Gaussians are a special case, but can place potentials on any subset of variables.
- Inference is again exponential in "treewidth" of graph.
- Next time: adding graphical models to neural networks.

Outline

(1) D-Separation
(2) DAG Model Learning and Inference
(3) Undirected Graphical Models (UGMs)

4 Bonus: Inference Details on Graphical Models - DAG Inference

- Structure Learning
- More UGMs
- Treewidth
- ICM
- Block Inference
"Normal"
bonus slides

Inference in General DAGs

- If we try to generalize the CK equations to DAGs we obtain

$$
p\left(x_{j}=s\right)=\sum_{x_{\mathrm{pa}(j)}} p\left(x_{j}=s, x_{\mathrm{pa}(j)}\right)=\sum_{x_{\mathrm{pa}(j)}}^{p\left(x_{j}=s \mid x_{\mathrm{pa}(j)}\right)} p\left(x_{\mathrm{pa}(j)}\right)
$$

- What goes wrong if nodes have multiple parents?
- The expression $p\left(x_{\mathrm{pa}(j)}\right)$ is a joint distribution depending on multiple variables.
- Consider the non-tree graph:

Inference in General DAGs

- We can compute $p\left(x_{4}\right)$ in this non-tree using:

$$
\begin{aligned}
p\left(x_{4}\right) & =\sum_{x_{3}} \sum_{x_{2}} \sum_{x_{1}} p\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
& =\sum_{x_{3}} \sum_{x_{2}} \sum_{x_{1}} p\left(x_{4} \mid x_{2}, x_{3}\right) p\left(x_{3} \mid x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{1}\right) \\
& =\sum_{x_{3}} \sum_{x_{2}} p\left(x_{4} \mid x_{2}, x_{3}\right) \underbrace{\sum_{x_{1}} p\left(x_{3} \mid x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{1}\right)}_{M_{23}\left(x_{2}, x_{3}\right)}
\end{aligned}
$$

- Dependencies between $\left\{x_{1}, x_{2}, x_{3}\right\}$ mean our message depends on two variables.

$$
\begin{aligned}
p\left(x_{4}\right) & =\sum_{x_{3}} \sum_{x_{2}} p\left(x_{4} \mid x_{2}, x_{3}\right) M_{23}\left(x_{2}, x_{3}\right) \\
& =\sum_{x_{3}} M_{34}\left(x_{3}, x_{4}\right)
\end{aligned}
$$

Inference in General DAGs

- With 2-variable messages, our cost increases to $O\left(d k^{3}\right)$.
- If we add the edge $x_{1} \rightarrow x_{4}$, then the cost is $O\left(d k^{4}\right)$.
(the same cost as enumerating all possible assignments)
- Unfortunately, cost is not as simple as counting number of parents.
- Even if each node has 2 parents, we may need huge messages.
- Decoding is NP-hard and computing marginals is \#P-hard in general.
- We'll see later that maximum message size is "treewidth" of a particular graph.
- On the other hand, ancestral sampling is easy:
- We can obtain Monte Carlo estimates of solutions to these NP-hard problems.

Conditional Sampling in DAGs

- What about conditional sampling in DAGs?
- Could be easy or hard depending on what we condition on.
- For example, easy if we condition on the first variables in the order:
- Just fix these and run ancestral sampling.

- Hard to condition on the last variables in the order:
- Conditioning on descendent makes ancestors dependent.

Outline

(1) D-Separation
(2) DAG Model Learning and Inference
(3) Undirected Graphical Models (UGMs)

4 Bonus: Inference Details on Graphical Models

- DAG Inference
- Structure Learning
- More UGMs
- Treewidth
- ICM
- Block Inference
"Normal"
bonus slides

DAG Structure Learning

- Structure learning is the problem of choosing the graph.
- Input is data X.
- Output is a graph G.
- The "easy" case is when we're given the ordering of the variables.
- So the parents of j must be chosen from $\{1,2, \ldots, j-1\}$.
- Given the ordering, structure learning reduces to feature selection:
- Select features $\left\{x_{1}, x_{2}, \ldots, x_{j-1}\right\}$ that best predict "label" x_{j}.
- We can use any feature selection method to solve these d problems.

Example: Structure Learning in Rain Data Given Ordering

- Structure learning in rain data using L1-regularized logistic regression.
- For different λ values, assuming chronological ordering.

(8) (2)

DAG Structure Learning without an Ordering

- Without an ordering, a common approach is "search and score"
- Define a score for a particular graph structure (like BIC or other L0-regularizers).
- Search through the space of possible DAGs.
- "DAG-Search" : at each step greedily add, remove, or reverse an edge.
- May have equivalent graphs with the same score (don't trust edge direction).
- Do not interpret causally a graph learned from data.
- Structure learning is NP-hard in general, but finding the optimal tree is poly-time:
- For symmetric scores, can be found by minimum spanning tree ("Chow-Liu").
- Score is symmetric if $\operatorname{score}\left(x_{j} \rightarrow x_{j^{\prime}}\right)$ is the same as $\operatorname{score}\left(x_{j^{\prime}} \rightarrow x_{j}\right)$.
- For asymetric scores, can be found by minimum spanning arborescence.

Structure Learning on USPS Digits

An optimal tree on USPS digits (16 by 16 images of digits).

20 Newsgroups Data

- Data containing presence of 100 words from newsgroups posts:

car	drive	files	hockey	mac	league	pc	win
0	0	1	0	1	0	1	0
0	0	0	1	0	1	0	1
1	1	0	0	0	0	0	0
0	1	1	0	1	0	0	0
0	0	1	0	0	0	1	1

- Structure learning should give some relationship between word occurrences.

Structure Learning on News Words

Optimal tree on newsgroups data:

$$
\begin{aligned}
& \text { (bible) Christian (jesus) (religion } \\
& \text { movement (israel) } \\
& \text { children (power president rights (state) war }
\end{aligned}
$$

$$
\begin{aligned}
& \text { cancer disease doctor (vitamin) }
\end{aligned}
$$

"Constraint-Based" DAG Structure Learning

- Another common structure learning approach is "constraint-based":
- Based on performing a sequence of conditional independence tests.
- Prune edge between x_{i} and x_{j} if you find variables S making them independent,

$$
x_{i} \perp x_{j} \mid x_{S} .
$$

- Challenge is considering exponential number of sets x_{S} (heuristic: "PC algorithm").
- Assumes "faithfulness" (all independences are reflected in graph).
- Otherwise it's weird (a duplicated feature would be disconnected from everything.)

Outline

(1) D-Separation
(2) DAG Model Learning and Inference
(3) Undirected Graphical Models (UGMs)

4 Bonus: Inference Details on Graphical Models

- DAG Inference
- Structure Learning
- More UGMs
- Treewidth
- ICM
- Block Inference
"Normal"
bonus slides

Gaussians as Undirected Graphical Models

- Multivariate Gaussian can be written as

$$
p(x) \propto \exp \left(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right) \propto \exp (-\frac{1}{2} x^{\top} \Sigma^{-1} x+x^{\top} \underbrace{\Sigma^{-1} \mu}_{v}),
$$

and writing it in summation notation we can see that it's a pairwise UGM:

$$
\begin{aligned}
p(x) & \propto \exp \left(\left(-\frac{1}{2} \sum_{i=1}^{d} \sum_{j=1}^{d} x_{i} x_{j}\left(\Sigma^{-1}\right)_{i j}+\sum_{i=1}^{d} x_{i} v_{i}\right)\right. \\
& =(\prod_{i=1}^{d} \prod_{j=1}^{d} \underbrace{\exp \left(-\frac{1}{2} x_{i} x_{j}\left(\Sigma^{-1}\right)_{i j}\right)}_{\phi_{i j}\left(x_{i}, x_{j}\right)})(\prod_{i=1}^{d} \underbrace{\exp \left(x_{i} v_{i}\right)}_{\phi_{i}\left(x_{i}\right)})
\end{aligned}
$$

- Above we include all edges. You can "remove" edges by setting $\left(\Sigma^{-1}\right)_{i j}=0$.
- "Gaussian graphical model" (GGM) or "Gaussian Markov random field" (GMRF).

General Pairwise UGM

- For general discrete x_{i} a generalization of Ising models is

$$
p\left(x_{1}, x_{2}, \ldots, x_{d}\right)=\frac{1}{Z} \exp \left(\sum_{i=1}^{d} w_{i, x_{i}}+\sum_{(i, j) \in E} w_{i, j, x_{i}, x_{j}}\right)
$$

which can represent any "positive" pairwise UGM (meaning $p(x)>0$ for all x).

- Interpretation of weights for this UGM:
- If $w_{i, 1}>w_{i, 2}$ then we prefer $x_{i}=1$ to $x_{i}=2$.
- If $w_{i, j, 1,1}>w_{i, j, 2,2}$ then we prefer $\left(x_{i}=1, x_{j}=1\right)$ to $\left(x_{i}=2, x_{j}=2\right)$.
- As before, we can use parameter tieing:
- We could use the same $w_{i, x_{i}}$ for all positions i.
- Ising model corresponds to a particular parameter tieing of the $w_{i, j, x_{i}, x_{j}}$.

Label Propagation (Graph-Based Semi-Supervised) as a UGM

- Consider modeling the probability of a vector of labels $\bar{y} \in \mathbb{R}^{t}$ using

$$
p\left(\bar{y}^{1}, \bar{y}^{2}, \ldots, \bar{y}^{t}\right) \propto \exp \left(-\sum_{i=1}^{n} \sum_{j=1}^{t} w_{i j}\left(y^{i}-\bar{y}^{i}\right)^{2}-\frac{1}{2} \sum_{i=1}^{t} \sum_{j=1}^{t} \bar{w}_{i j}\left(\bar{y}^{i}-\bar{y}^{j}\right)^{2}\right) .
$$

- Decoding in this model is the label propagation problem.
- This is a pairwise UGM:

$$
\phi_{j}\left(\bar{y}^{j}\right)=\exp \left(-\sum_{i=1}^{n} w_{i j}\left(y^{i}-\bar{y}^{j}\right)^{2}\right), \quad \phi_{i j}\left(\bar{y}^{i}, \bar{y}^{j}\right)=\exp \left(-\frac{1}{2} \bar{w}_{i j}\left(\bar{y}^{i}-\bar{y}^{j}\right)^{2}\right) .
$$

Factor Graphs

- Factor graphs are a way to visualize UGMs that distinguishes different orders.
- Use circles for variables, squares to represent dependencies.
- Factor graph of $p\left(x_{1}, x_{2}, x_{3}\right) \propto \phi_{12}\left(x_{1}, x_{2}\right) \phi_{13}\left(x_{1}, x_{3}\right) \phi_{23}\left(x_{2}, x_{3}\right)$:

- Factor graph of $p\left(x_{1}, x_{2}, x_{3}\right) \propto \phi_{123}\left(x_{1}, x_{2}, x_{3}\right)$:

Other Graphical Models

- Factor graphs: we use a square between variables that appear in same factor.
- Can distinguish between a 3 -way factor and 3 pairwise factors.
- Chain-graphs: DAGs where each block can be a UGM.
- Ancestral-graph:
- Generalization of DAGs that is closed under conditioning.
- Structural equation models (SEMs): generalization of DAGs that allows cycles.

Outline

(1) D-Separation
(2) DAG Model Learning and Inference
(3) Undirected Graphical Models (UGMs)

4 Bonus: Inference Details on Graphical Models

- DAG Inference
- Structure Learning
- More UGMs
- Treewidth
- ICM
- Block Inference
"Normal"
bonus slides

Moralization: Converting DAGs to UGMs

- To address the NP-hard problems, DAGs and UGMs use same techniques.
- We'll focus on UGMs, but we can convert DAGs to UGMs:

$$
p\left(x_{1}, x_{2}, \ldots, x_{d}\right)=\prod_{j=1}^{d} p\left(x_{j} \mid x_{\mathrm{pa}(j)}\right)=\prod_{j=1}^{d} \underbrace{\phi_{j}\left(x_{j}, x_{\mathrm{pa}(j)}\right)}_{=p\left(x_{j} \mid x_{\mathrm{pa}(j)}\right)}
$$

which is a UGM with $Z=1$.

- Graphically: we drop directions and "marry" parents (moralization).

- May no longer see some independences, but doesn't change computational cost.

Easy Cases: Chains, Trees and Forests

- The forward-backward algorithm still works for chain-structured UGMs:
- We compute the forward messages M and the backwards messages V.
- With both M and V we can [conditionally] decode/marginalize/sample.
- Belief propagation generalizes this to trees (undirected graphs with no cycles):
- Pick an arbitrary node as the "root", and order the nodes going away from the root.
- Pass messages starting from the "leaves" going towards the root.
- "Root" is like the last node in a Markov chain.
- Backtrack from root to leaves to do decoding/sampling.
- Send messages from the root going to the leaves to compute all marginals.

Easy Cases: Chains, Trees and Forests

- Recall the CK equations in Markov chains:

$$
M_{c}\left(x_{c}\right)=\sum_{x_{p}} p\left(x_{c} \mid x_{p}\right) M_{p}\left(x_{p}\right) .
$$

- For chain-structure UGMs we would have:

$$
M_{c}\left(x_{c}\right) \propto \sum_{x_{p}} \phi\left(x_{p}\right) \phi\left(x_{p}, x_{c}\right) M_{p}\left(x_{p}\right) .
$$

- In tree-structured UGMs, parent p in the ordering may have multiple parents.
- Message coming from "neighbour" i that itself has neighbours j and k would be

$$
M_{i c}\left(x_{c}\right) \propto \sum_{x_{i}} \phi_{i}\left(x_{i}\right) \phi_{i c}\left(x_{i}, x_{c}\right) M_{j i}\left(x_{i}\right) M_{k i}\left(x_{i}\right),
$$

- Univariate marginals are proportional to $\phi_{i}\left(x_{i}\right)$ times all "incoming" messages.
- The "forward" and "backward" Markov chain messages are a special case.
- Replace $\sum_{x_{i}}$ with $\max _{x_{i}}$ for decoding.
- "Sum-product" and "max-product" algorithms.

Exact Inference in UGMs

- For general graphs, the cost of message passing depends on
(1) Graph structure.
(2) Variable order.
- To see the effect of the order, consider Markov chain inference with bad ordering:

$$
\begin{aligned}
p\left(x_{5}\right) & =\sum_{x_{5}} \sum_{x_{4}} \sum_{x_{3}} \sum_{x_{2}} \sum_{x_{1}} p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}\right) p\left(x_{4} \mid x_{3}\right) p\left(x_{5} \mid x_{4}\right) \\
& =\sum_{x_{5}} \sum_{x_{1}} \sum_{x_{4}} \sum_{x_{3}} \sum_{x_{2}} p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}\right) p\left(x_{4} \mid x_{3}\right) p\left(x_{5} \mid x_{4}\right) \\
& =\sum_{x_{5}} \sum_{x_{1}} p\left(x_{1}\right) \sum_{x_{3}} \sum_{x_{4}} p\left(x_{4} \mid x_{3}\right) p\left(x_{5} \mid x_{4}\right) \underbrace{\sum_{x_{2}} p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}\right)}_{M_{13}\left(x_{1}, x_{3}\right)}
\end{aligned}
$$

- So even though we have a chain, we have an M with k^{2} values instead of k.
- Increases cost to $O\left(d k^{3}\right)$ instead of $O\left(d k^{2}\right)$.
- Inference can be exponentially more expensive with the wrong ordering.

Exact Inference in UGMs

- For general graphs, the cost of message passing depends on
(1) Graph structure.
(2) Variable order.
- As a non-tree example, consider computing Z in a simple 4-node cycle:

$$
\begin{aligned}
Z & =\sum_{x_{4}} \sum_{x_{3}} \sum_{x_{2}} \sum_{x_{1}} \phi_{12}\left(x_{1}, x_{2}\right) \phi_{23}\left(x_{2}, x_{3}\right) \phi_{34}\left(x_{3}, x_{4}\right) \phi_{14}\left(x_{1}, x_{4}\right) \\
& =\sum_{x_{4}} \sum_{x_{3}} \phi_{34}\left(x_{3}, x_{4}\right) \sum_{x_{2}} \phi_{23}\left(x_{2}, x_{3}\right) \sum_{x_{1}} \phi_{12}\left(x_{1}, x_{2}\right) \phi_{14}\left(x_{1}, x_{4}\right) \\
& =\sum_{x_{4}} \sum_{x_{3}} \phi_{34}\left(x_{3}, x_{4}\right) \sum_{x_{2}} \phi_{23}\left(x_{2}, x_{3}\right) M_{24}\left(x_{2}, x_{4}\right) \\
& =\sum_{x_{4}} \sum_{x_{3}} \phi_{34}\left(x_{3}, x_{4}\right) M_{34}\left(x_{3}, x_{4}\right)=\sum_{x_{4}} M_{4}\left(x_{4}\right)
\end{aligned}
$$

- We again have an M with k^{2} values instead of k.
- We can do inference tasks with this graph, but it costs $O\left(d k^{3}\right)$ instead of $O\left(d k^{2}\right)$.

Variable Order and Treewidth

- Cost of message passing in general graphs is given by $O\left(d k^{\omega+1}\right)$.
- Here, ω is the number of dimensions of the largest message.
- For trees, $\omega=1$ so we get our usual cost of $O\left(d k^{2}\right)$.
- The minimum value of ω across orderings for a given graph is called treewidth.
- In terms of graph: "minimum size of largest clique, minus 1 , over all triangulations".
- Also called "graph dimension" or " ω-tree".
- Intuitively, you can think of low treewidth as being "close to a tree".
- Trees have a treewidth of 1 , and a single loop has a treewidth of 2 .

Treewidth Examples

- Examples of k-trees:

- 2-tree and 3-tree are trees if you use dotted circles to group nodes.

Treewidth Examples

- Trees have $\omega=1$, so with the right order inference costs $O\left(d k^{2}\right)$.

- A big loop has $\omega=2$, so cost with the right ordering is $O\left(d k^{3}\right)$.

- The below grid-like structure has $\omega=3$, so cost is $O\left(d k^{4}\right)$.

Variable Order and Treewidth

- Junction trees generalize belief propagation to general graphs (requires ordering).
- This is the algorithm that achieves the $O\left(d k^{\omega+1}\right)$ runtime.
- Computing ω and the optimal ordering is NP-hard.
- But various heuristic ordering methods exist.
- An m_{1} by m_{2} lattice has $\omega=\min \left\{m_{1}, m_{2}\right\}$.
- So you can do exact inference on "wide chains" with Junction tree.
- But for 28 by 28 MNIST digits it would cost $O\left(784 \cdot 2^{29}\right)$.
- Some links if you want to read about treewidth:
- https://www.win.tue.nl/~nikhil/courses/2015/2W008/treewidth-erickson.pdf
- https://math.mit.edu/~apost/courses/18.204-2016/18.204_Gerrod_Voigt_final_paper.pdf
- For some graphs $\omega=(d-1)$ so there is no gain over brute-force enumeration.
- Many graphs have high treewidth so we need approximate inference.

Outline

(1) D-Separation
(2) DAG Model Learning and Inference
(3) Undirected Graphical Models (UGMs)

4 Bonus: Inference Details on Graphical Models

- DAG Inference
- Structure Learning
- More UGMs
- Treewidth
- ICM
- Block Inference
"Normal'
bonus slides

Iterated Conditional Mode (ICM)

- The iterated conditional mode (ICM) algorithm for approximate decoding:
- On each iteration k, choose a variable j_{t}.
- Maximie the joint probability in terms of $x_{j_{t}}$ (with other variables fixed),

$$
x_{j}^{t+1} \in \arg \max c p\left(x_{1}^{t}, \ldots, x_{j-1}^{t}, x_{j}=c, x_{j+1}^{t}, \ldots, x_{d}^{t}\right) .
$$

- Equivalently, iterations correspond to finding mode of conditional $p\left(x_{j} \mid x_{-j}^{t}\right)$,

$$
x_{j}^{t+1} \in \arg \max c p\left(x_{j}=c \mid x_{-j}^{t}\right)
$$

where x_{-j} means " x_{i} for all i except x_{j} ": $x_{1}, x_{2}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{d}$.

ICM in Action

- Start with some initial value: $x^{0}=\left[\begin{array}{llll}2 & 2 & 3 & 1\end{array}\right]$.
- Select random j like $j=3$.
- Set j to maximize $p\left(x_{3} \mid x_{-3}^{0}\right): x^{1}=\left[\begin{array}{llll}2 & 2 & 1 & 1\end{array}\right]$.
- Select random j like $j=1$.
- Set j to maximize $p\left(x_{1} \mid x_{-1}^{1}\right): x^{2}=\left[\begin{array}{llll}3 & 2 & 1 & 1\end{array}\right]$.
- Select random j like $j=2$.
- Set j to maximize $p\left(x_{2} \mid x_{-2}^{2}\right): x^{3}=\left[\begin{array}{llll}3 & 2 & 1 & 1\end{array}\right]$.
- Repeat until you can no longer improve by single-variable changes.
- Intead of random, could cycle through the variables in order.
- Or you could greedily choose the variable that increases the probability the most.

Optimality and Globalization of ICM

- Does ICM find the global optimum?
- Decoding is usually non-convex, so doesn't find global optimum.
- ICM is an approximate decoding method.
- There exist many globalization methods that can improve its performance:
- Restarting with random initializations.
- Global optimization methods:
- Simulated annealing, genetic algorithms, ant colony optimization, GRASP, etc.

Using the Unnormalized Objective

- How can you maximize $p(x)$ in terms of x_{j} if evaluating it is NP-hard?
- Let's define the unnormalized probability \tilde{p} as

$$
\tilde{p}(x)=\prod_{c \in \mathcal{C}} \phi_{c}\left(x_{c}\right) .
$$

- So the normalized probability is given by

$$
p(x)=\frac{\tilde{p}(x)}{Z}
$$

- In UGMs evaluating Z is hard but evaluating $\tilde{p}(x)$ is easy.
- And for decoding we only need unnormalized probabilities,

$$
\arg \max x p(x) \equiv \arg \max x \frac{\tilde{p}(x)}{Z} \equiv \arg \max x \tilde{p}(x)
$$

so we can decode based on \tilde{p} without knowing Z.

ICM Iteration Cost

- How much does ICM cost?
- Consider a pairwise UGM,

$$
\tilde{p}(x)=\left(\prod_{j=1}^{d} \phi_{j}\left(x_{j}\right)\right)\left(\prod_{(i, j) \in E} \phi_{i j}\left(x_{i}, x_{j}\right)\right)
$$

- Each ICM update would:
(1) Set $M_{j}\left(x_{j}=s\right)$ to product of terms in $\tilde{p}(x)$ involving x_{j}, with x_{j} set to s.
(2) Set x_{j} to the largest value of $M_{j}\left(x_{j}\right)$.
- The variable x_{j} has k values and appears in at most d factors here.
- You can compute the k values of these d factors in $O(d k)$ to find the largest.
- If you only have m nodes in "Markov blanket", this reduces to $O(m k)$.
- We will define "Markov blanket" in a couple slides.

ICM in Action

Consider using a UGM for binary image denoising:

We have

- Unary potentials ϕ_{j} for each position.
- Pairwise potentials $\phi_{i j}$ for neighbours on grid.
- Parameters are trained as CRF (later).

Goal is to produce a noise-free binary image (show video).

Digression: Closure of UGMs under Conditioning

- UGMs are closed under conditioning:
- If $p(x)$ is a UGM, then $p\left(x_{A} \mid x_{B}\right)$ can be written as a UGM (for partition A and B).
- Conditioning on x_{2} and x_{3} in a chain,

gives a UGM defined on x_{1} and x_{4} that is disconnected:

- Graphically, we "erase the black nodes and their edges".
- Notice that inference in the conditional UGM may be mucher easier.

Digression: Closure of UGMs under Conditioning

- Mathematically, a 4-node pairwise UGM with a chain structure assumes

$$
p\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \propto \phi_{1}\left(x_{1}\right) \phi_{2}\left(x_{2}\right) \phi_{3}\left(x_{3}\right) \phi_{4}\left(x_{4}\right) \phi_{12}\left(x_{1}, x_{2}\right) \phi_{23}\left(x_{2}, x_{3}\right) \phi_{34}\left(x_{3}, x_{4}\right)
$$

- Conditioning on x_{2} and x_{3} gives UGM over x_{1} and x_{4}.

$$
p\left(x_{1}, x_{4} \mid x_{2}, x_{3}\right)=\frac{1}{Z^{\prime}} \phi_{1}^{\prime}\left(x_{1}\right) \phi_{4}^{\prime}\left(x_{4}\right)
$$

where new potentials "absorb" the shared potentials with observed nodes:

$$
\phi_{1}^{\prime}\left(x_{1}\right)=\phi_{1}\left(x_{1}\right) \phi_{12}\left(x_{1}, x_{2}\right), \quad \phi_{4}^{\prime}\left(x_{4}\right)=\phi_{4}\left(x_{4}\right) \phi_{34}\left(x_{3}, x_{4}\right) .
$$

Conditioning in UGMs

- Conditioning on x_{2} and x_{3} in 4-node chain-UGM gives

$$
\begin{aligned}
p\left(x_{1}, x_{4} \mid x_{2}, x_{3}\right) & =\frac{p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)}{p\left(x_{2}, x_{3}\right)} \\
& =\frac{\frac{1}{Z} \phi_{1}\left(x_{1}\right) \phi_{2}\left(x_{2}\right) \phi_{3}\left(x_{3}\right) \phi_{4}\left(x_{4}\right) \phi_{1}\left(x_{1}, x_{2}\right) \phi_{2}\left(x_{2}, x_{3}\right) \phi_{3}\left(x_{3}, x_{4}\right)}{\sum_{x_{1}^{\prime}, x_{4}^{\prime}} \frac{1}{Z} \phi_{1}\left(x_{1}^{\prime}\right) \phi_{2}\left(x_{2}\right) \phi_{3}\left(x_{3}\right) \phi_{4}\left(x_{4}^{\prime}\right) \phi_{1}\left(x_{1}^{\prime}, x_{2}\right) \phi_{2}\left(x_{2}, x_{3}\right) \phi_{3}\left(x_{3}, x_{4}^{\prime}\right)} \\
& =\frac{\frac{1}{Z} \phi_{1}\left(x_{1}\right) \phi_{2}\left(x_{2}\right) \phi_{3}\left(x_{3}\right) \phi_{4}\left(x_{4}\right) \phi_{1}\left(x_{1}, x_{2}\right) \phi_{2}\left(x_{2}, x_{3}\right) \phi_{3}\left(x_{3}, x_{4}\right)}{\frac{1}{Z} \phi_{2}\left(x_{2}\right) \phi_{3}\left(x_{3}\right) \phi_{2}\left(x_{2}, x_{3}\right) \sum_{x_{1}^{\prime}, x_{4}^{\prime}} \phi_{1}\left(x_{1}^{\prime}\right) \phi_{4}\left(x_{4}^{\prime}\right) \phi_{1}\left(x_{1}^{\prime}, x_{2}\right) \phi_{3}\left(x_{3}, x_{4}^{\prime}\right)} \\
& =\frac{\phi_{1}\left(x_{1}\right) \phi_{4}\left(x_{4}\right) \phi_{1}\left(x_{1}, x_{2}\right) \phi_{3}\left(x_{3}, x_{4}\right)}{\sum_{x_{1}^{\prime}, x_{4}^{\prime}} \phi_{1}\left(x_{1}^{\prime}\right) \phi_{4}\left(x_{4}^{\prime}\right) \phi_{1}\left(x_{1}^{\prime}, x_{2}\right) \phi_{3}\left(x_{3}, x_{4}^{\prime}\right)} \\
& =\frac{\phi_{1}^{\prime}\left(x_{1}\right) \phi_{4}^{\prime}\left(x_{4}\right)}{\sum_{x_{1}^{\prime}, x_{4}^{\prime}} \phi_{1}^{\prime}\left(x_{1}^{\prime}\right) \phi_{4}^{\prime}\left(x_{4}^{\prime}\right)}
\end{aligned}
$$

Simpler Inference in Conditional UGMs

- Consider the following graph which could describe bus stops:

- If we condition on the "hubs", the graph forms a forest (and inference is easy).
- Simpler inference after conditioning is used by many approximate inference methods.

Digression: Local Markov Property and Markov Blanket

- Approximate inference methods often use conditional $p\left(x_{j} \mid x_{-j}\right)$,
- where x_{-j}^{k} means " x_{i}^{k} for all i except x_{j}^{k} " : $x_{1}^{k}, x_{2}^{k}, \ldots, x_{j-1}^{k}, x_{j+1}^{k}, \ldots, x_{d}^{k}$.
- In UGMs, the conditional simplifies due to conditional independence,

$$
p\left(x_{j} \mid x_{-j}\right)=p\left(x_{j} \mid x_{\text {nei }(j)}\right),
$$

this local Markov property means conditional only depends on neighbours.

- We say that the neighbours of x_{j} are its "Markov blanket".
- Markov blanket is the set nodes that make you independent of all other nodes.

Digression: Local Markov Property and Markov Blanket

- In UGMs the Markov blanket is the neighbours.

- Markov blanket in DAGs: parents, children, co-parents (parents of same children):

Outline

(1) D-Separation
(2) DAG Model Learning and Inference
(3) Undirected Graphical Models (UGMs)

4 Bonus: Inference Details on Graphical Models

- DAG Inference
- Structure Learning
- More UGMs
- Treewidth
- ICM
- Block Inference
"Normal"
bonus slides

Block-Structured Approximate Inference

- Basic approximate inference methods like ICM and Gibb sampling:
- Update one x_{j} at a time.
- Efficient because conditional UGM is 1 node.
- Better approximate inference methods use block updates:
- Update a block of x_{j} values at once.
- Efficient if conditional UGM allows exact inference.
- If we choose the blocks cleverly, this works substantially better.

Block-Structured Approximate Inference

- Consider a lattice-structure and the following two blocks ("red-black ordering"):

- Given black nodes, conditional UGM on red nodes is a disconnected graph. - "I can optimally update the red nodes given the black nodes" (and vice versa).
- You update $d / 2$ nodes at once for cost of this is $O(d k)$, and easy to parallelize.
- Minimum number of blocks to disconnect the graph is graph colouring.

Block-Structured Approximate Inference

- We could also consider general forest-structured blocks:

- We can still optimally update the black nodes given the gray nodes in $O\left(d k^{2}\right)$.
- This works much better than "one at a time".

Block Gibbs Sampling in Action

- Gibbs vs. tree-structured block-Gibbs samples:

Samples from Gibbs sampler

Samples from Block Gibbs sampler

- With block sampling, the samples are far less correlated.
- We can also do tree-structured block ICM.
- Harder to get stuck if you get to update entire trees.
- Or we could define a new tree-structured block on each iteration:

- The above block updates around two thirds of the nodes optimally.
(Here we're updating the black nodes.)

Block ICM Based on Graph Cuts

- Consider a binary pairwise UGM with "attractive" potentials,

$$
\log \phi_{i j}(1,1)+\log \phi_{i j}(2,2) \geq \log \phi_{i j}(1,2)+\log \phi_{i j}(2,1) .
$$

- In words: "neighbours prefer to have similar states".
- In this setting exact decoding can be formulated as a max-flow/min-cut problem. - Can be solved in polynomial time.
- This is widely-used computer vision:
- Want neighbouring pixels/super-pixels/regions to be more likely to get same label.

Graph Cut Example: "GrabCut"

Figure 1: Three examples of GrabCut. The user drags a rectangle loosely around an object. The object is then extracted automatically.
(1) User draws a box around the object they want to segment.
(2) Fit Gaussian mixture model to pixels inside the box, and to pixels outside the box.
(3) Construct a pairwise UGM using:

- $\phi_{i}\left(x_{i}\right)$ set to GMM probability of pixel i being in class x_{i}.
- $\phi_{i j}\left(x_{i}, x_{j}\right)$ set to Ising potential times RBF based on spatial/colour distance. - Use $w_{i j}>0$ so the model is "attractive".
(1) Perform exact decoding in the binary attractive model using graph cuts.

Graph Cut Example: "GrabCut"

- GrabCut with extra user interaction:

Alpha-Beta Swap and Alpha-Expansions: ICM with Graph Cuts

- If we have more than 2 states, we can't use graph cuts.
- Alpha-beta swaps are an approximate decoding method for "pairwise attractive",

$$
\log \phi_{i j}(\alpha, \alpha)+\log \phi_{i j}(\beta, \beta) \geq \log \phi_{i j}(\alpha, \beta)+\log \phi_{i j}(\beta, \alpha) .
$$

- Each step choose an α and β, optimally "swaps" labels among these nodes.
- Alpha-expansions are another variation based on a slightly stronger assumption,

$$
\log \phi_{i j}(\alpha, \alpha)+\log \phi_{i j}\left(\beta_{1}, \beta_{2}\right) \geq \log \phi_{i j}\left(\alpha, \beta_{1}\right)+\log \phi_{i j}\left(\beta_{2}, \alpha\right)
$$

- Steps choose label α, and consider replacing the label of any node not labeled α.

Alpha-Beta Swap and Alpha-Expansions: ICM with Graph Cuts

- These don't find global optima in general, but make huge moves:

Figure 1: From left to right: Initial labeling, labeling after $\alpha \beta$-swap, labeling after α-expansion, labeling after α-expansion β-shrink. The optimal labeling of the α pixels is outlined by a white triangle, and is achieved from the initial labeling by one ex-Shap move

- A somewhat-related MCMC method is the Swendson-Wang algorithm.

Example: Photomontage

- Photomontage: combining different photos into one photo:

http://vision.middlebury.edu/MRF/pdf/MRF-PAMI.pdf
- Here, x_{i} corresponds to identity of original image at position i.

Example: Photomontage

- Photomontage: combining different photos into one photo:

Outline

(1) D-Separation
(2) DAG Model Learning and Inference
(3) Undirected Graphical Models (UGMs)
4. Bonus: Inference Details on Graphical Models
(5) "Normal" bonus slides

Conditional Independence in Star Graphs

- Consider the following star graph:

- " 5 aliens get together and make a baby alien".
- Unconditionally, the 5 aliens are independent.

Conditional Independence in Star Graphs

- Consider the following star graph:

- " 5 aliens get together and make a baby alien".
- Conditioned on the baby, the 5 aliens are dependent.

Conditional Independence in Star Graphs

- Consider the following star graph:

- "An organism produces 5 clones".
- Unconditionally, the 5 clones are dependent.

Conditional Independence in Star Graphs

- Consider the following star graph:

- "An organism produces 5 clones".
- Conditioned on the original, the 5 clones are independent.

Does Semi-Supervised Learning Make Sense?

- Should unlabeled examples always help supervised learning?
- No!
- Consider choosing unlabeled features \bar{x}^{i} uniformly at random.
- Unlabeled examples collected in this way will not help.
- By construction, distribution of \bar{x}^{i} says nothing about \bar{y}^{i}.
- Example where SSL is not possible:
- Try to detect food allergy by trying random combinations of food:
- The actual random process isn't important, as long as it isn't affected by labels.
- You can sample an infinite number of \bar{x}^{i} values, but they says nothing about labels.
- Example where SSL is possible:
- Trying to classify images as "cat" vs. "dog.:
- Unlabeled data would need to be images of cats or dogs (not random images).
- Unlabeled data contains information about what images of cats and dogs look like.
- For example, there could be clusters or manifolds in the unlabeled images.

Does Semi-Supervised Learning Make Sense?

- Let's assume our semi-supervised learning model is represented by this DAG:

- Assume we observe $\{X, y, \bar{X}\}$ and are interested in test labels \tilde{y} :
- There is a dependency between y and \tilde{y} because of path through w.
- Parameter w is tied between training and test distributions.
- There is a dependency between X and \tilde{y} because of path through w (given y).
- But note that there is also a second path through D and \tilde{X}.
- There is a dependency between \bar{X} and \tilde{y} because of path through D and \tilde{X}.
- Unlabeled data helps because it tells us about data-generating distribution D.

Does Semi-Supervised Learning Make Sense?

- Now consider generating \bar{X} independent of D :

- Assume we observe $\{X, y, \bar{X}\}$ and are interested in test labels \tilde{y} :
- Knowing X and y are useful for the same reasons as before.
- But knowing \bar{X} is not useful:
- Without knowing \bar{y}, \bar{X} is d-separated from \tilde{y} (no dependence).

Tabular Parameterization Example

https://en.wikipedia.org/wiki/Bayesian_network
Some quantities can be directly read from the tables:

$$
\begin{gathered}
p(R=1)=0.2 \\
p(G=1 \mid S=0, R=1)=0.8
\end{gathered}
$$

Can calculate any probabilities using marginalization/product-rule/Bayes-rule (bonus).

Tabular Parameterization Example

https://en.wikipedia.org/wiki/Bayesian_network
Can calculate any probabilities using marginalization/product-rule/Bayes-rule, for example:

$$
\begin{aligned}
p(G=1 \mid R=1) & =p(G=1, S=0 \mid R=1)+p(G=1, S=1 \mid R=1) \quad\left(p(a \mid c)=\sum_{b} p(a, b \mid c)\right) \\
& =p(G=1 \mid S=0, R=1) p(S=0 \mid R=1)+p(G=1 \mid S=1, R=1) p(S=1 \mid R=1) \\
& =0.8(0.99)+0.99(0.01)=0.81 .
\end{aligned}
$$

Dynamic Bayesian Networks

- Dynamic Bayesian networks combine ideas from DAGs and Markov chains:
- At each time, we have a set of variables x^{t}.
- The initial x^{0} comes from an "initial" DAG.
- Given x^{t-1}, we generate x^{t} from a "transition" DAG.

(a)

(b)

Figure 1: (a) A prior network and transition network defining a DPN for the attributes X_{1}, X_{2}, X_{3}. (b) The corresponding "unrolled" network.

- Can be used to model multiple variables over time.
- Unconditional sampling is easy but inference may be hard.

