CPSC 440: Machine Learning

MAP Estimation Winter 2022

Last Time: Bernoulli Distribution MLE

- The Bernoulli distribution for binary variables:
- We talked about difference inference tasks in Bernoulli models:
 - Compute likelihood of data, $P(x^1, x^2, ..., x^n | \theta)$
 - Find mode (decoding), $\operatorname{argmax}_{x} P(x \mid \theta)$
 - Generate samples \tilde{x} from P(x | θ)
- We discussed learning with maximum likelihood estimation (MLE) – Find a $\hat{\theta}$ in argmax_{θ} P($x^1, x^2, ..., x^n \mid \theta$)
 - Equivalent to finding $\hat{\theta}$ in argmax_{θ} log(P($x^1, x^2, ..., x^n \mid \theta$)), "log-likelihood"
- For Bernoulli, equating derivative with respect to θ to 0 gives:
 - $-\hat{\theta} = n_1/n$ (proportion of examples that are "1")

Derivation of MLE for Bernoulli

- We showed log-likelihood derivative is zero for θ = n₁/(n₁+n₀)
 Or θ = n₁/n, since n₁+n₀=n
- We still need to convince ourselves this is a maximum:
 - You can verify that the second derivative of log-likelihood is negative
 - So the function is "curved downwards" and this is a maximum
- What about if n₁=0 or n₀=0?
 - In either case, our derivation would divide by zero
 - If $n_1 = 0$, MLE is $\theta = 0$; if $n_0 = 0$, MLE is $\theta = 1$
 - Can show that likelihood is increasing as it approaches 0/1 in these cases
 - So, the formula $\theta = n_1/n$ still works

Learning Task: Computing MLE

• Computing MLE for Bernoulli in code given data 'X':

Version 1:

$$\begin{aligned}
n/ = sum(X) \\
n0 = n - n0 \\
\Theta = n1/(n1 + n0)
\end{aligned}$$

Version 2:
$$6 = sum(X)/n$$

- Cost: O(n)
 - You need to sum up the *n* values (there's a for loop hidden inside sum(X))
- You can then use this θ value for inference:
 - Compute likelihood of test data
 - Compute expected number of samples until first 1
 - Compute probability of seeing at least three 1 values in 10 samples

Next Topic: MAP Estimation

Problems with MLE

- In most settings, MLE is optimal as n goes to ∞ .
 - It converges to the true parameter(s)
 - This is called "asymptotic consistency" (covered in honours/grad stats classes)

 $(\times)^{3}$

- However, it can be very sensitive for small n:
 - Consider our example where $x^1=1$, $x^2=1$, $x^3=0$, and MLE was 0.67
 - If $x^4 = 1$, then MLE goes up to 0.75
 - If $x^4 = 0$, then MLE goes down to 0.5
 - If you get "unlucky" with your samples, the MLE might be really bad
- For Bernoullis, this sensitivity goes away quickly as we increase *n*
 - But for more complicated models, MLE tends to lead to overfitting

Problems with MLE

- Consider a different dataset consisting of x¹=0, x²=0, x³=0
 - In this case the MLE is θ = 0
 - It assigns zero probability to events that do not occur in training data
- Causes problems if we have a '1' in test data:
 - Then likelihood of entire test set is 0, since:
 - A case of overfitting to the training data
 - If you test ten people and none have COVID, does that mean it's eradicated?
- It is common to add Laplace smoothing to the estimator:

$$\hat{\Theta} = \frac{n_{1} + (n_{1} + 1) + (n_{0} + 1)}{(n_{1} + 1) + (n_{0} + 1)} = \frac{n_{1} + 1}{n + 2}$$

- MLE for a dataset with an extra "imaginary" 1 and 0 in the data.
 - This is a special case of "MAP estimation"

MLE and MAP Estimation

• In MLE we maximize the probability of the data given parameters:

- But this is kind of weird:
 - "Find the θ that makes **X** have the highest probability given θ "
 - Get overfitting, because data could be likely for an unlikely θ
 - For example, a complex model that overfits by memorizing the data
- What we really want if we are trying to find the "best" θ:
 "Find the θ that has the highest probability given the data X."

$$\hat{\Theta} \in argmaxip(\Theta|X)$$

- This is called MAP estimation ("maximum a posteriori")

Digression: Super-Quick "Probability Rule" Review = Pr(B(A)) Pr(A)

- Product rule: $Pr(A \cap B) = Pr(A \mid B) Pr(B)$.
 - Re-arrange to get conditional probability formula: $Pr(A | B) = Pr(A \cap B)/Pr(B)$
 - Order doesn't matter in joint probabilities: $Pr(A \cap B) = Pr(B \cap A)$
 - Use product rule twice to get Bayes rule: Pr(A | B) = Pr(B | A) Pr(A) / Pr(B)
 - Conditional in terms of "reverse" conditional, and the "marginals" Pr(B) and Pr(A)
- Marginalization rule ("summing or integrating over a variable"):
 - Variable X with discrete domain: $Pr(A) = \sum_{x} Pr(A \cap X = x)$
 - Variable X with continuous domain: $Pr(A) = \int p(A \cap X = x) dx$
- These two rules are good friends and usually appear together:

$$- p(a) = \sum_{b} p(a, b) = \sum_{b} p(a|b)p(b).$$

- $p(a|b) = \frac{p(b|a)p(a)}{p(b)} = \frac{p(b|a)p(a)}{\sum_{a} p(b|a)p(a)}$ (some people call this "Bayes rule").
- Rules still work if you add extra "conditioning" on the right:
 - p(a,b | c) = p(a | b, c)p(b | c).
 - p(a |c) = $\sum_{b} p(a, b|c)$.

EMORIZE EVERYTHING ON

Maximum a Posteriori (MAP) Estimation

• Maximum a posteriori (MAP) estimate maximizes posterior probability:

- Bayesians would argue that this is reasonably what we want: the most likely θ given our data

- MLE and MAP are connected by Bayes rule: $\begin{array}{c} (postorior) \\ p(\Theta \mid X) = p(X, \Theta) = p(X \mid \Theta)p(\Theta) \\ \phi(X) = p(X, \Theta) = p(X \mid \Theta)p(\Theta) \\ \phi(X) = p(X \mid \Theta)p(\Theta) \\$
 - So posterior is proportional the likelihood $p(X|\theta)$ times the prior $p(\theta)$.

ullet

• See "probability" notes on course webpage if equalities above aren't obvious (you need catch up fast).

The prior

- The prior $p(\theta)$ can encode our preference for different parameters
 - If we are flipping coins, we might think $P(\theta)$ is higher for values close to $\frac{1}{2}$
 - We could make it really high for the exact value $\frac{1}{2}$
 - In COVID-19 example, we might make $P(\theta)$ higher for values close to 0.05
 - Because, for example, we estimated a value of 0.05 from a similar population
 - In CPSC 340, you learned that priors correspond to regularizers
 - You often choose $P(\theta)$ to be lower for values that are likely to overfit
- Laplace smoothing corresponds to a particular $p(\theta)$
 - We'll show this shortly

MAP Estimation for Bernoulli with Discrete Prior

- Consider our example where $x_1=1$, $x_2=1$, $x_3=0$ (and MLE was 0.67)
- Consider using a prior of: Posterior values are proportional to:
 - $\Pr(\theta = 0.00) = 0.05$
 - $\Pr(\theta = 0.25) = 0.2$
 - $\Pr(\theta = 0.50) = 0.5$
 - $\Pr(\theta = 0.75) = 0.2$
 - $-\Pr(\theta = 1.00) = 0.05$

- $-\Pr(\theta = 0.00 \mid \mathbf{X}) \propto (0*0*1)*.05 = 0$
- $-\Pr(\theta = 0.25 \mid \mathbf{X}) \propto (.25^*.25^*.75)^*.2 \approx 0.01$
- $-\Pr(\theta = 0.50 \mid \mathbf{X}) \propto (.5^*.5^*.5)^*.5 \approx 0.06$
- $-\Pr(\theta = 0.75 \mid \mathbf{X}) \propto (.75^*.75^*.25)^*.2 \approx 0.03$
- $-\Pr(\theta = 1.00 \mid \mathbf{X}) \propto (1*1*0)*.05 = 0$
- So our MAP estimate is θ = 0.5
 - Based on our prior "guesses for θ ", we think this is a fair coin
 - Notice that we don't need P(X) in our calculations (since it's the same for all θ)

Digression: "Proportional to" (\propto) Notation

- In math, the notation $f(\theta) \propto g(\theta)$ means that $f(\theta) = \kappa g(\theta)$ for some number κ (for all θ)
 - But κ may not be known and/or may not be unique
 - For example, $f(\theta) \propto \theta^2$ for both $f(\theta) = 10\theta^2$ and $f(\theta) = -50\theta^2$
- For discrete probabilities, the constant κ is positive and unique
 This is because probabilities are non-negative and sum to 1
- Consider a discrete variable θ with $p(\theta) = \kappa g(\theta) \propto g(\theta)$:
 - Since $\sum_{\theta} P(\theta') = 1$, we have $\sum_{\theta} \kappa g(\theta') = 1$
 - Solving for κ gives: $\kappa = \frac{1}{\sum_{\theta'} g(\theta')}$
 - Using this value for κ we have $p(\theta) = \kappa g(\theta) = \frac{g(\theta)}{\sum_{\theta, t} g(\theta')}$
 - You can use this trick to get posterior probabilities on last slide: $\rho(\theta=0.5|\chi) =$

Values the posterior was proportion)

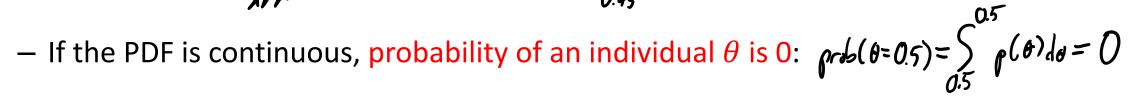
Digression²: "Probability" vs. "Probability Density"

- Recall that the value θ can be any number between 0 and 1
 - Instead of putting non-zero probability on a finite number of possible θ values, we could treat θ as a continuous random variable (to allow $\theta = 0.3452$)
- For continuous variables, we use a probability density function (PDF):

Function p that is non-negative and integrates to 1 over domain:

$$p(0) = 0$$
 for all 0 , and $\int_{-\infty}^{\infty} p(0) d\theta = 1$

• We get probabilities from the PDF by integrating over ranges: $P(0.45 \le \Theta \le 0.55) = \int_{0.45}^{0.55} p(\theta) d\theta$



Digression²: "Probability" vs. "Probability Density"

• Recall the relationship between posterior, likelihood, and prior:

 $\begin{array}{l} (posterior) & (likelihood) (prior) \\ \rho(\Theta \mid X) \propto \rho(X \mid \Theta) p(\Theta) \end{array} \end{array}$

- What are these *p* functions in discrete and continuous case?
 If θ is discrete: prior and posterior *p* functions are probabilities
 - If θ is continuous: prior and posterior p functions are PDFs
 - So $p(\theta)$ is not the "probability of θ ", but the "probability density of θ "
- With our binary X values, likelihood p(X | θ) is a probability
 But when we later talk about continuous X, likelihood will be a PDF
- Important: Most ML people are really sloppy about this!
 - Say "probability of θ " for p(θ), even for continuous θ
 - I try to use P for probabilities and p for PDFs, but it's hard...

Digression: "Proportional to" (\propto) Notation

• Consider a continuous variable θ with PDF $p(\theta) = \kappa g(\theta) \propto g(\theta)$:

– Since
$$\int_{\theta'} p(\theta') d\theta' = 1$$
, we have $\int_{\theta'} \kappa g(\theta') d\theta' = 1$

• Solving for κ gives: $\kappa = \frac{1}{\int_{\theta'} g(\theta') d\theta'}$

- So we have
$$p(\theta) = \frac{g(\theta)}{\int_{\theta'} g(\theta') d\theta'}$$

or $p(a) = S_b p(q, b) db$ (continuous)

• For continuous θ in MAP estimation, we have $p(\theta \mid X) \propto p(X \mid \theta)p(\theta)$,

- So we have
$$p(\theta \mid X) = \frac{p(X \mid \theta)p(\theta)}{\int_{\theta}, p(X \mid \theta)p(\theta)d\theta} = p(X)$$
 by "marginalization rule": $p(n) = \xi p(n)b$
(discrete)

- You should memorize these "digression" slides
 - Knowing how to use " \propto " simplifies a lot of things

Beta Distribution

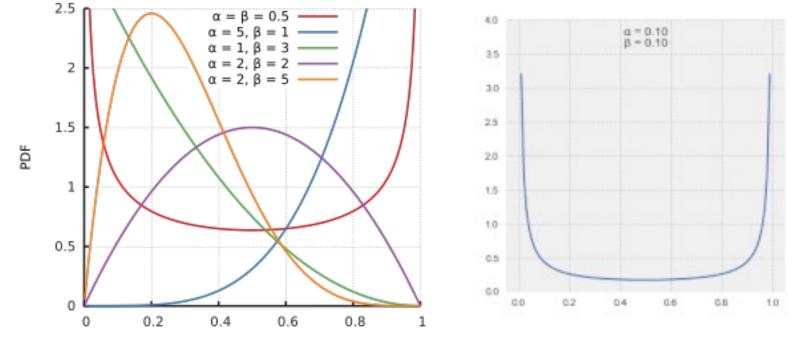
• For Bernoulli likelihoods, most common prior is beta distribution:

$$p(\Theta|\alpha,\beta) \propto \Theta^{\alpha-1}(1-\Theta)^{\beta-1}$$
 for $O \leq \Theta \leq |\alpha| \approx |\beta|$

- Looks like a Bernoulli likelihood, with $(\alpha 1)$ ones and $(\beta 1)$ zeroes.
- Key difference with the Bernoulli is on the left side:
 - It defines a PDF over real numbers θ in the range 0 through 1.
 - Beta distribution is not assigning probabilities to binary values, but to θ
 - "Probability over probabilities"
- From the "digression", we can resolve what is hidden in the \propto sign: $\rho(\theta \mid \alpha, \beta) = \frac{\Theta^{\alpha-1}(1-\theta)^{\beta-1}}{S \Theta^{\alpha-1}(1-\theta)^{\beta-1}} = \frac{\Theta^{\alpha-1}(1-\theta)^{\beta-1}}{B(\alpha, \beta)} = \frac{\Theta^{\alpha-1}(1-\theta)^{\beta-1}}{B(\alpha, \beta)}$

Beta Distribution

• The beta distribution for different choices of α and β :



- Why is using the beta distribution as prior so popular?
 - Fake reason: it is quite flexible, so can encode a variety of priors.
 - Can represent bias towards 0.5, towards 1 or 0, towards 0.2, towards only 1, or uniform if $\alpha = \beta = 1$.
 - But it is still limited. For example, you can't say that "the exact value 0.5 is particularly likely".

Posterior for Bernoulli Likelihood and Beta Prior

- Real reason people use the beta: posterior and MAP have simple forms.
 - The posterior with a Bernoulli likelihood and beta prior:

$$\rho(\Theta|X_{,\alpha},B) \propto \rho(X|\Theta)\rho(\Theta|\alpha,B) \propto \Theta^{n}(1-\Theta)^{n}\Theta^{\alpha-1}(1-\Theta)^{B-1}$$

$$= \Theta^{(n,+\alpha)-1}(1-\Theta)^{(n_0+\beta)-1}$$

$$X \text{ is independent}$$

$$= \Theta^{\alpha-1}(1-\Theta)^{B-1}$$

- This is another beta distribution with "updated" parameters $ilde{lpha}$ and $ilde{eta}$
 - Where $\tilde{\alpha} = n_1 + \alpha$ and $\tilde{\beta} = n_0 + \beta$.
- How do we know that this is a beta distribution?
 - Because constant in \propto is unique
 - "If you are proportional to a beta distribution, you are a beta distribution."
 - Make sure you understand why posterior is a beta distribution (important in this course)

MAP Estimation for Bernoulli-Beta Model

• The posterior with a Bernoulli likelihood and beta prior is a beta:

$$\rho(\Theta|X_{j}\alpha_{j}B) = \Theta^{\alpha-1}(1-\Theta)^{\beta-1}$$

$$- \text{ Where } \tilde{\alpha} = n_{1} + \alpha \text{ and } \tilde{\beta} = n_{0} + \beta.$$

$$B(\tilde{x}, \tilde{B}) \leftarrow b \cdot t_{\alpha} \text{ function (which does not depend on O)}$$

$$If \tilde{\alpha} > 1 \text{ and } \tilde{\beta} > 1, \text{ taking log and setting derivative to 0 gives MAP of:}$$

$$\hat{\Theta} = \frac{n_{1} + \alpha - 1}{(n_{1} + \alpha - 1) + (n_{0} + \beta - 1)}$$

- If α = 1 and β = 1, we get the MLE
- If α = 2 and β = 2, we get Laplace smoothing (which often overfits less)
- -~ If $\alpha=\beta>2$, we get a stronger bias towards $\hat{\theta}=0.5$ than Laplace smoothing
- If $\alpha = \beta < 1$, we get a bias towards away from $\hat{\theta} = 0.5$ (towards 0 or 1)
- You can also bias towards either 0 or 1; if α is large compared to β it biases towards $\hat{\theta}=1$
- Notice that MAP converges to MLE n $\rightarrow \infty$, so the data eventually "takes over" estimate
 - But we use a prior so our model does sensible things when we do not have enough data

 $\Theta = (sum(\chi) + \alpha - 1) / (n + \alpha + \beta - 2)$

Review: Hyper-Parameter and [Cross]-Validation

- We call the "parameters of the prior", α and β , the hyper-parameters.
 - We usually say that hyper-parameters are "parameters affecting the complexity of the model"
 - We usually also include "parameters of the learning algorithm" as hyper-parameters
- How can we choose hyper-parameters values?
 - Using the training likelihood does not work: it would make α and β arbitrarily small (ignoring prior)
- Usual CPSC 340 approach: use a validation set (or cross-validation)
 - Split your data **X** into a "training" set and a "validation" set
 - For different hyper-parameters of α and β :
 - Use the "training" examples to compute the MAP estimate
 - Use MAP estimate to compute the likelihood of the "validation" examples
 - Choose the hyper-parameters with the highest validation likelihood
 - But our final goal is to **not** optimize performance on the validation set
 - This is a surrogate for the test error (error on completely-new data), which you cannot measure.
- Take CPSC 340 to learn about many of the things that can go wrong
 - For example, if you are not careful you can overfit to the validation set
 - Happens all the time, even in UBC student's PhD theses and in top conference papers!
- Or take CPSC 532D to understand it more mathematically :)

* Bluei "Review:..." slides: - These are topics that covered Netail in CPSC this course.

Next Topic: Product of Bernoullis

Motivation: Modeling Traffic Congestion

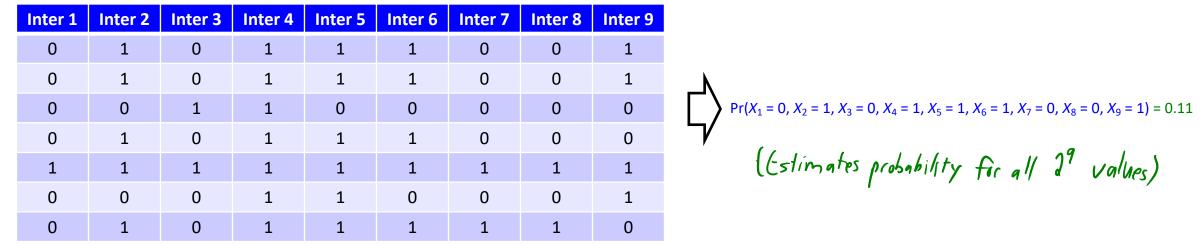
- We want to model car "traffic congestion" in a big city.
- So we measure which intersections are busy on different days:

Inter 1	Inter 2	Inter 3	Inter 4	Inter 5	Inter 6	Inter 7	Inter 8	Inter 9
0	1	0	1	1	1	0	0	1
0	1	0	1	1	1	0	0	1
0	0	1	1	0	0	0	0	0
0	1	0	1	1	1	0	0	0
1	1	1	1	1	1	1	1	1
0	0	0	1	1	0	0	0	1
0	1	0	1	1	1	1	1	0

- We want to build a model of this data, to identify patterns/problems.
 - "Inter 4 is always busy", "Inter 1 is rarely busy".
 - "Inters 7+8 are always the same", "Inter 2 is busy when Inter 7 is busy".
 - "There is a 25% chance you will hit a busy intersection if you take Inter 1 and 8".

Problem: Multivariate Binary Density Estimation

- We can view this as multivariate binary density estimation:
 - Input: *n* IID samples of binary vectors x^1 , x^2 , x^3 ,..., x^n from population.
 - Output: model that gives probability for any assignment of values $x \in \{0,1\}^d$.



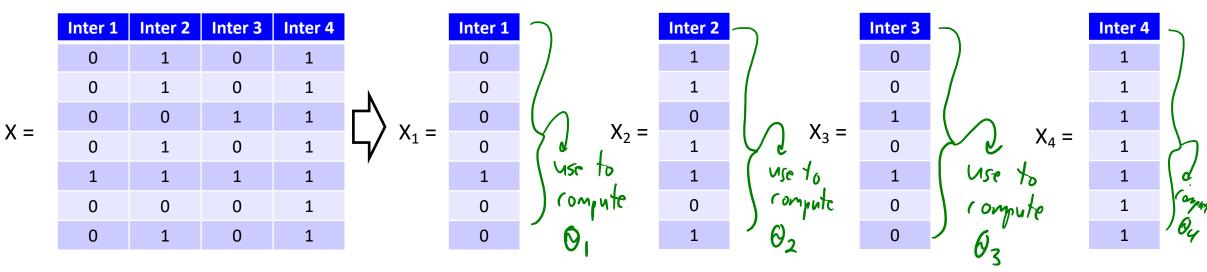
- Covid example: each feature could be "are covid cases >10% in area j?"
- Notation (please memorize):

X =

- We use *n* for the number of examples, *d* for the number of features
- Notice that x^3 is a vector with d values, x_1^3 to x_d^3
- X_3 is the third dimension of a random vector X; x_3 is a value X_3 might take

Product of Bernoullis Model

- There are many different models for binary density estimation
 Each one makes different assumptions...we'll see lots of options!
- We'll start with the simple "product of Bernoullis" model
 - In this model we assume that the variables are "mutually independent"
 - If we have four variables, we assume $P(x_1, x_2, x_3, x_4) = P(x_1) P(x_2) P(x_3) P(x_4)$
 - As a picture, we treat multivariate problem as 'd' univariate problems:



Product of Bernoullis Inference and Learning

- Key advantage of "product of Bernoullis" model: easy inference and learning ullet
 - For most inference tasks: do inference on each variable, then combine the results
 - Compute joint probability
 - $Pr(X_1 = 1, X_2 = 1, ..., X_d = 0) = Pr(X_1 = 1) P(X_2 = 1) \cdots P(X_d = 0) = \theta_1 \quad \theta_2 \cdots (1 \theta_d).$
 - Compute marginal probabilities
 - $Pr(X_2=1) = \theta_2$

 - $Pr(X_2=1, X_3=1) = Pr(X_2=1) Pr(X_3=1) = \theta_2 \theta_3.$ Compute conditional probabilities. $P(x_2 | x_3) = P(x_2).$ $Pr(X_2=0, X_3=1 | X_4=0) = Pr(X_2=0, X_3=1) = (1-\theta_2)\theta_3.$ $Pr(X_2=0, X_3=1 | X_4=0) = Pr(X_2=0, X_3=1) = (1-\theta_2)\theta_3.$
 - Mode of $p(x_1, x_2, ..., x_d)$:
 - Set x_1 to argmax value of $P(x_1)$, set x_2 to argmax of $P(x_2)$,..., set x_d to argmax value of $P(x_d)$
 - Sampling:
 - Sample x_1 from P(x_1), sample x_2 from P(x_2),..., sample x_d from P(x_d)

• MLE (MAP is similar):
$$\hat{\Theta}_{1} = \frac{n_{11}}{n} \leftarrow number of times \qquad \hat{\Theta}_{2} = \frac{n_{21}}{n} \qquad \hat{\Theta}_{3} = \frac{n_{31}}{n}$$

Product of Bernoullis Inference and Learning

• MLE in a product of Bernoullis:

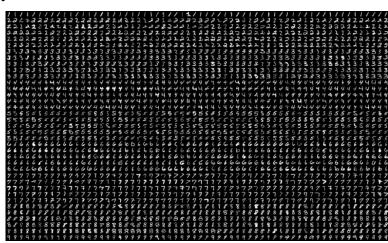
$$\begin{array}{l} 0 = 2eros(d) \\ for i in lin \\ for j in lid \\ if X(i,j) = = 1 \\ \Theta[j] + = 1 \\ 0 \cdot / = n \end{array}$$
 or
$$\begin{array}{l} 0 = Sum(X, dims=1)./n \\ \hline \Omega = Sum(X, dim=1)./n \\ \hline \Omega = Sum(X, dim=$$

- Cost is O(nd): do an O(1) operation n*d times, then O(n) division
 - If **X** is stored as a "sparse" matrix, can be implemented to only cost O(z)
 - z is the number of non-zero values ($z \le nd$)
- Sampling code:

zeros(d) j in lid x[j] = SampleBinary(@[j]) / crost is O(d) to generate a Sample.

Running Example: MNIST Digits

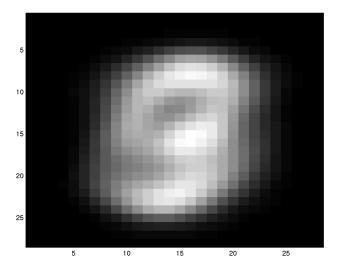
- To illustrate density estimation, we will often use the MNIST digits:
 - 60,000 images, each a 28x28 pixel image of a number
 - Representing as binary density estimation:
 - Each image is one training example x^i
 - Each feature is one of the 784 pixels
 - Threshold each pixel to make it binary
- CPSC 340 wanted to "recognize that this is a 4"



- In density estimation we want a probability distribution over images
 - Given one of the 2⁷⁸⁴ possible images, what is the probability it is a digit?
 - This is unsupervised; we're ignoring the class labels.
 - Sampling from the density should generate new images of digits.

Product of Bernoullis on MNIST Digits

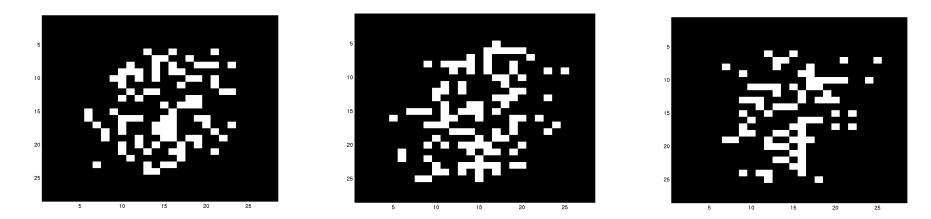
- Consider fitting the product of Bernoullis model to MNIST digits:
 - For each of the 784 pixels *j*, we have a parameter θ_i
 - A "position-specific Bernoulli" distribution
 - To compute MLE for θ_j , compute fraction of times pixel j was set to 1
 - Visualizing those MLE values as an image:



• Pixels near the center are more likely to be 1 than pixels near the boundary

Product of Bernoullis on MNIST Digits

- Is product of Bernoullis a good model for the MNIST digits?
 - Samples generated from the model (independent sample from position-specific Bernoulli for each pixel):



- This is a terrible model: these samples do not look like the data at all
- Why is this a terrible model?
 - In the dataset, the pixels are not independent
 - For example, pixels that are "next" to each other in the image are highly correlated
- Even it is a bad model, product of Bernoullis is often "good enough to be useful"
 - Usually when combined with other ideas, that we'll see shortly
 - In practice, I think it is actually the most-used method for binary density estimation even though it is one of the worst
- Later in the course we'll cover several ways to relax the independence assumption

Summary

- MAP Estimation:
 - Find parameters maximizing posterior probability of parameters given data
 - Requires prior distribution on parameters: bias towards parameters that overfit less
- Probability review:
 - Product rule, marginalization rule, Bayes rule
 - Continuous "probabilities" and how "∝" has a restricted meaning for probabilities
- Beta distribution:
 - Prior for Bernoulli that yields a closed-form posterior (another beta distribution)
- Product of Bernoullis:
 - Method for multivariate binary density estimation.
 - Assumes all variables are independent.
 - Inference and learning are easy, but cannot accurate model many densities.

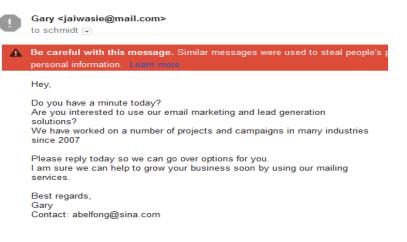
Next Topic: Generative Classifiers

Might not get to this in class, and if not will skip for now! I'll delete from "final slides" if so

Motivation: E-mail Spam Filtering

- Want a build a system that detects spam e-mails.
 - Context: spam used to be a big problem.

□ ☆ >	Jannie Keenan	ualberta You are owed \$24,718.11
□ ☆ ≫	Abby	ualberta USB Drives with your Logo
	Rosemarie Page	Re: New request created with ID: ##62
	Shawna Bulger	RE: New request created with ID: ##63
□ ☆ D	Gary	ualberta Cooperation



• We can write this as a supervised learning problem:

- Want to learn to map from "input" (e-mail) to "output" (spam or not).

Review: Data Collection and Feature Extraction

review

• Collect a large number of e-mails, gets users to label them.

\$	Hi	CPSC	340	Vicodin	Offer	•••	Spam?
1	1	0	0	1	0		1
0	0	0	0	1	1		1
0	1	1	1	0	0		0
			•••				

- We can use $(y^i = 1)$ if e-mail 'i' is spam, $(y^i = 0)$ if e-mail is not spam.
- Extract features of each e-mail (like "bag of words").
 - $(x_{j}^{i} = 1)$ if word/phrase 'j' is in e-mail 'i', $(x_{j}^{i} = 0)$ if it is not.
 - See CPSC 330 (or 340) for different ways to extract features from text data.

Review: Supervised Learning Notation

• Our notation for supervised learning:

- X is matrix of all features, y is vector of all labels.
 - We use yⁱ for the label of example 'i' (element 'i' of 'y').
 - We use xⁱ_i for feature 'j' of example 'i'.
 - We use xⁱ as the list of features of example 'i' (row 'i' of 'X').
 - So in the above $x^3 = [0 \ 1 \ 1 \ 1 \ 0 \ 0 \ ...].$
 - In practice, store xⁱ in some "sparse" format (like a list of non-zeroes, smaller memory).

Generative Classifiers

- In early 2000s, best spam filtering methods used generative classifiers.
 Generative classifiers treat supervised learning as density estimation.
- How can we do supervised learning with density estimation?
 - Learning: use a density estimator to estimate $p(x_1, x_2, ..., x_d, y)$.
 - Generative classifiers model "how the features and label were generated".
 - Inference: compute conditionals $p(y | x_1, x_2, ..., x_d)$ to make predictions.
 - For example, is $p(y = 1 | x_1, x_2, ..., x_d) > p(y = 0 | x_1, x_2, ..., x_d)$?
- Can we use a product of Bernoullis as the density estimator?
 - You could, but it would do terrible!
 - If 'y' is independent of the features, predictions would ignore features.
 - A simple model that does assume 'y' is independent of features is naïve Bayes.

Existence of MAP Estimate under Beta Prior

bonusl

• The MAP estimate for Bernoulli likelihood and beta prior:

$$\hat{\mathcal{D}} = \frac{n_{1} + \alpha - 1}{(n_{1} + \alpha - 1) + (n_{0} + \beta - 1)}$$

– This assumes that $n_1 + \alpha > 1$ and $n_0 + \beta > 1$.

• Other cases:

$$-n_{1} + \alpha > 1 \text{ and } n_{0} + \beta \leq 1 : \hat{\theta} = 1.$$

$$-n_{1} + \alpha \leq 1 \text{ and } n_{0} + \beta > 1 : \hat{\theta} = 0.$$

$$-n_{1} + \alpha < 1 \text{ and } n_{0} + \beta < 1 : \hat{\theta} \text{ can be 0 or 1.}$$

 $-n_1 + \alpha = 1$ and $n_0 = 1$: $\hat{\theta}$ can be anything between 0 and 1.