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Last Time: Bernoulli Distribution MLE

The Bernoulli distribution for binary variables:

We talked about difference inference tasks in Bernoulli models:

— Compute likelihood of data, P(x!, x3,..., x" | O)

— Find mode (decoding), argmax, P(x | 6)

— Generate samples X from P(x | 0)

We discussed learning with maximum likelihood estimation (MLE)
— Finda @ in argmaxy P(x!, x%,...,x" | 6)

— Equivalent to finding 6 in argmaxy log(P(x%, x4,...,.x" | 8)), “log-likelihood”
For Bernoulli, equating derivative with respect to 0 to O gives:

— 6 =ny/n (proportion of examples that are “1”)



Derivation of MLE for Bernoulli

* We showed log-likelihood derivative is zero for 8 = n,/(n;+n)
— Or 8 = ny/n, since n;+ng=n

e We still need to convince ourselves this is a maximum:

— You can verify that the second derivative of log-likelihood is negative
* So the function is “curved downwards” and this is a maximum

\\?n
* What about if n;=0 or n,=07?
— In either case, our derivation would divide by zero
—1fn;=0,MLEis8 =0;ifny=0, MLEis 0 =1
* Can show that likelihood is increasing as it approaches 0/1 in these cases
* So, the formula 8 = n,/n still works



Learning Task: Computing MLE

e Computing MLE for Bernoulli in code given data ‘X’:
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e Cost: O(n)

— You need to sum up the n values (there’s a for loop hidden inside sum(X))

* You can then use this 8 value for inference:
— Compute likelihood of test data

— Compute expected number of samples until first 1
— Compute probability of seeing at least three 1 values in 10 samples



Next Topic: MAP Estimation



Problems with MLE

* |n most settings, MLE is optimal as n goes to co.

— |t converges to the true parameter(s)
 This is called “asymptotic consistency” (covered in honours/grad stats classes)

C3) 3
 However, it can be very sensitive for small n: S (’()

— Consider our example where x'=1, x2=1,@c0, and MLE was 0.67
— If x*=1, then MLE goes up to 0.75

— If x*=0, then MLE goes down to 0.5
* If you get “unlucky” with your samples, the MLE might be really bad

* For Bernoullis, this sensitivity goes away quickly as we increase n
— But for more complicated models, MLE tends to lead to overfitting



Problems with MLE

* Consider a different dataset consisting of x1=0, x2=0, x3=0
— In this case the MLEis @8 =0

* It assigns zero probability to events that do not occur in training data

e Causes problems if we have a ‘1’ in test data:

— Then likelihood of entire test set is O, since:
* A case of overfitting to the training data
* If you test ten people and none have COVID, does that mean it’s eradicated?

* |tis common to add Laplace smoothing to the estimator:
Ao 0t Nt

(n,*')"’(noﬂ) n =2
— MLE for a dataset with an extra “imaginary” 1 and O in the data.
* This is a special case of “MAP estimation”




MLE and MAP Estimation

* In MLE we maximize the probability of the data given parameters:

é € ar«;gw gf( X | 0)5

e But this is kind of weird:
— “Find the 0 that makes X have the highest probability given 6”

— Get overfitting, because data could be likely for an unlikely 6
* For example, a complex model that overfits by memorizing the data

 What we really want if we are trying to find the “best” 0:
— “Find the 0 that has the highest probability given the data X.”

0 milp(9] X)S

Y eversed
— This is called MAP estimation (“maximum a posteriori”)



Digression: Super-chk “Probability Rule” ReV|ew
= (BLA) Prip\T

Product rule: Pr(A N B) = Pr(A | B) Pr(B).
— Re-arrange to get conditional probability formula: Pr(A | B) = Pr(A n B)/ Pr(B)
— Order doesn’t matter in joint probabilities: Pr(A n B) = Pr(B N A)

— Use product rule twice to get Bayes rule: Pr(A | B) = Pr(B | A) Pr(A) / Pr(B)
* Conditional in terms of “reverse” conditional, and the “marginals” Pr(B) and Pr(A)

Marginalization rule (“summing or integrating over a variable”):
— Variable X with discrete domain: Pr(A) =), Pr(A N X = x)
— Variable X with continuous domain: Pr(A) = [ p(ANX = x)dx

These two rules are good friends and usually appear together:

— p(a) = Xpp(a b) = Xpp(alb)p(b). E—
— p(alb) = p(b;c(lggo(a) Z:;b(lljll)al;;()a) (some people call this “Bayes rule”). /V\ E/Vl OW :Z:Z L/
Rules still work if you add extra “conditioning” on the right:
— pl(a,b |c)=p(a | b, c)p(b | c). ﬁV E RYTHI/Vé O/\/
- ( I )=Z ( ,bl ) D

Pla 9= S pla 2l  ITHIS SLINE




Maximum a Posteriori (MAP) Estimation

e Maximum a posterlon (MAP) estimate maximizes posterior probability:

Q ¢ af(,mX?P & I X)}

Posteriar"
— Bayesians would argue that this is reasonably what we want: the most I|ker @ given our data
* MLE and MAP are connected by Bayes rule: P"’I‘"fm' fo”
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— So posterior is proportional the likelihood p(X|8) times the prior p(0).
» See “probability” notes on course webpage if equalities above aren’t obvious (you need catch up fast).



The prior

* The prior p(@) can encode our preference for different parameters

— If we are flipping coins, we might think P(@) is higher for values close to %
* We could make it really high for the exact value %

— In COVID-19 example, we might make P(@) higher for values close to 0.05

* Because, for example, we estimated a value of 0.05 from a similar population

— In CPSC 340, you learned that priors correspond to regularizers

* You often choose P(f) to be lower for values that are likely to overfit

e Laplace smoothing corresponds to a particular p(6)
— We'll show this shortly



MAP Estimation for Bernoulli with Discrete Prior

* Consider our example where x,=1, x,=1, x;=0 (and MLE was 0.67)
* Consider using a prior of:  Posterior values are proportional to:

— Pr(6 = 0.00) = 0.05 — Pr(@ = 0.00 | X) < (0*0*1)*.05=0

— Pr(6@ = 0.25)=0.2 — Pr(6@ = 0.25 | X) < (.25*.25*.75)*.2 = 0.01
— Pr(6 = 0.50) = 0.5 — Pr(6@ = 0.50 | X) < (.5*.5*.5)*.5 = 0.06

— Pr(6 = 0.75)=0.2 — Pr(6@ = 0.75 | X) < (.75*.75*.25)*.2 = 0.03
— Pr(@ = 1.00) =0.05 — Pr(@ = 1.00 | X) < (1*1*0)*.05=0

* So our MAP estimateis 8 =0.5
— Based on our prior “guesses for 8”, we think this is a fair coin

* Notice that we don’t need P(X) in our calculations (since it’s the same for all )



Digression: “Proportional to” (<) Notation

* In math, the notation f(6) o« g(8)
means that f(6) = kg(6) for some number k (for all 6)

— But k may not be known and/or may not be unique
* For example, f(6) < 82 for both f(8)= 1082 and f(6) = -5007

* For discrete probabilities, the constant k is positive and unique
— This is because probabilities are non-negative and sum to 1

\/o\lllf’) ﬁ‘
 Consider a discrete variable 8 with p(6)= kg(8) < g(0): fojie,za, was propirfine)
— Since )5, P(8') =1, we have )y, kg(8') =1 X fo.
. o
Solving for k gives: k = ST /J/“
. . 3 _g9@)
— Using this value for k we have p(8) = kg(f) = 5. 90" 004

C . : —_ : - —' - —
— You can use this trick to get posterior probabilities on last slide: e(ﬁ' 0351X) = (+Qor+ 00600340



Digression?: “Probability” vs. “Probability Density”

* Recall that the value 6 can be any number between 0 and 1

— Instead of putting non-zero probability on a finite number of possible 6 values,
we could treat 6 as a continuous random variable (to allow 8 = 0.3452)

* For continuous variables, we use a probability density function (PDF):
— Function p that is non-negative and integrates to 1 over domain:

(070 £l 6, ad  §” (00ds =

~0

* We get probabilities from the PDF by integrating over ranges:
‘P(\ 13
W 0M5 € 9<055) < q{_a o9 dg
45

— If the PDF is continuous, probability of an individual 8 is 0: ‘;né(0=05)=5 0>C0)Jd'—' 0
a5




Digression?: “Probability” vs. “Probability Density”

Recall the relationship between posterior, likelihood, and prior:
( oster 0‘") (|Yt”~o°é7 ((rnb!‘)

p(@“() < p )( I@) f(B)

What are these p functions in discrete and continuous case?

— If 8 is discrete: prior and posterior p functions are probabilities

— If 8 is continuous: prior and posterior p functions are PDFs
* So p(@) is not the “probability of 87, but the “probability density of 8”

With our binary X values, likelihood p(X | 8) is a probability e
— But when we later talk about continuous X, likelihood will be a PDF
Important: Most ML people are really sloppy about this!

— Say “probability of 8” for p(8), even for continuous 6
— | try to use P for probabilities and p for PDFs, but it’s hard...




Digression: “Proportional to” (<) Notation

e Consider a continuous variable 8 with PDF p(8) = kg(0) o« g(0):
— Since [,,p(8')d0" = 1, we have [, kg(0')do' =1 | 1""?‘ HEHY

1

e Solving for k gives: k = T 9@ a6 4 ‘ e e
g(0) o
— So we have p(@) = Lln
PO =1, aenaer %

* For continuous 68 in MAP estimation, we have p(8 | X) < p(X | 8)p(8),

~ ___ pX10)P®)
So we have p(6 | X) fe, p(X | 0/)p(9/)d0/}—7 < P()() b/ "ma (Qin 4hzq‘|pn fu't'\ g P('\) o % ’;(1)'07
(d:screte)
* You should memorize these “digression” slides dr P(“}:SA ﬂ%z)ﬂ)

— Knowing how to use “oc” simplifies a lot of things ((w\f' )
MV‘DMS



Beta Distribution

For Bernoulli likelihoods, most common prior is beta distribution:
f(@ltx)/g) 4 @N-'(I -(9)'9" for 0<@< )7 oc 71, B>

Looks like a Bernoulli likelihood, with (¢ — 1) ones and (f5-1) zeroes.
Key difference with the Bernoulli is on the left side:

— |t defines a PDF over real numbers @ in the range 0 through 1.

e Beta distribution is not assigning probabilities to binary values, but to 6
— “Probability over probabilities”

From the “digression”, we can resolve what is hidden in the « sign:

o - g1 X~ (1= F!
(0¢p) = LU0 _ & U]
P X)ﬁ 5@“ U’é)’ d6 B(N B) — "t Runclin




Beta Distribution

The beta distribution for different choices of @ and [3:

250\ a=p=05—
a=5@=1 —
. =1 fm3 —
5 \ a=2f=2 —
\ a=2,=5
15 }

PDF

0 0.2 0.4 0.6 0.8 1

Why is using the beta distribution as prior so popular?

— Fake reason: it is quite flexible, so can encode a variety of priors.
e Can represent bias towards 0.5, towards 1 or 0, towards 0.2, towards only 1, or uniformifa = f = 1.
e Butitis still limited. For example, you can’t say that “the exact value 0.5 is particularly likely”.



Posterior for Bernoulli Likelihood and Beta Prior

* Real reason people use the beta: posterior and MAP have simple forms.
— The posterior with a Bernoulli likelihood and beta prior:

V(a %,8) < P (X | Q)f(e}/q £)x " (1-6)" o> (1-8)f
- @(’H‘o()l ,__ &)(,,0:’,9)_.,

:@g/("‘l (I_Q)ﬁ~l

— This is another beta distribution with “updated” parameters & and E
e Where@ =n, + aand f = ng + p.
— How do we know that this is a beta distribution?

* Because constant in & is unique
— “If you are proportional to a beta distribution, you are a beta distribution.”

* Make sure you understand why posterior is a beta distribution (important in this course)

W qsswe .‘Ld



MAP Estimation for Bernoulli-Beta Model

* The posterior with a Bernoulli likelihood and beta prior is a beta:
%

o< | B~
Pt =g " (I-9)" |
_ & ( 02’ g) Z/Ld\q )[“Mcf/;m Wl’liCA c/ae_J hd%
— Where@ =ny +aand f =ny + [. ] J
e Ifa>1and ,8~ > 1, taking log and setting derivative to O gives MAP of: E/R"J on @

8_ n, +oi =~

—(4.%('!)*(:'0*8-!) @I ( Sum()()h(—[)/(n*o( +4-7)

— Ifa=1and f =1, we get the MLE
— Ifa=2and f =2, we get Laplace smoothing (vyhich often overfits less) k_y(asl,, O(n)
— Ifa = > 2, we get astronger bias towards 8 = 0.5 than Laplace smoothing

— Ifa = <1, we get a bias towards away from 6 = 0.5 (towards 0 or 1)

— You can also bias towards either 0 or 1; if a is large compared to [ it biases towards 6=1

— Notice that MAP converges to MLLE n — oo, so the data eventually “takes over” estimate
* But we use a prior so our model does sensible things when we do not have enough data



(eview
/——\./

Review: Hyper-Parameter and [Cross]-Validation

We call the “parameters of the prior”, a and S, the hyper-parameters.

— We usually say that hyper-parameters are “parameters affecting the complexity of the model”

— We usually also include “parameters of the learning algorithm” as hyper-parameters

How can we choose hyper-parameters values?

— Using the training likelihood does not work: it would make a and 8 arbitrarily small (ignoring prior)

Usual CPSC 340 approach: use a validation set (or cross-validation)
— Split your data X into a “training” set and a “validation” set
— For different hyper-parameters of @ and :
* Use the “training” examples to compute the MAP estimate
* Use MAP estimate to compute the likelihood of the “validation” examples
— Choose the hyper-parameters with the highest validation likelihood

* But our final goal is to not optimize performance on the validation set

* This is a surrogate for the test error (error on completely-new data),
which you cannot measure.

Take CPSC 340 to learn about many of the things that can go wrong

— For example, if you are not careful you can overfit to the validation set
* Happens all the time, even in UBC student’s PhD theses and in top conference papers!

Or take CPSC 532D to understand it more mathematically :)
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Next Topic: Product of Bernoullis



Motivation: Modeling Traffic Congestion

 We want to model car “traffic congestion” in a big city.
* So we measure which intersections are busy on different days:

i ez s L e e ez s Lo

1 0 1 1 1 0 1
0 1 0 1 1 1 0 0 1
0 0 1 1 0 0 0 0 0
0 1 0 1 1 1 0 0 0
1 1 1 1 1 1 1 1 1
0 0 0 1 1 0 0 0 1
0 1 0 1 1 1 1 1 0

* We want to build a model of this data, to identify patterns/problems.
“Inter 4 is always busy”, “Inter 1 is rarely busy”.
“Inters 748 are always the same”, “Inter 2 is busy when Inter 7 is busy”.
— “There is a 25% chance you will hit a busy intersection if you take Inter 1 and 8”.



Problem: Multivariate Binary Density Estimation

* We can view this as multivariate binary density estimation:

— Input: n IID samples of binary vectors x1, x?, x3,...,

x" from population.

— Output: model that gives probability for any assignment of values x € {0,1}4.

mmmmmmmm
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PriX;=0,X,=1,X3=0,X,=1,Xs =1, Xs =1, X, =0, Xg = 0, Xg = 1) =

(ésf/'maﬁ’f /,m/),,;,-/[fy fir olf ?7 l/a/m)

* Covid example: each feature could be “are covid cases >10% in area j?”

* Notation (please memorize):

— We use n for the number of examples, d for the number of features

— Notice that x3 is a vector with d values, x; to x;;

— X3 is the third dimension of a random vector X; x5 is a value X5 might take

0.11



Product of Bernoullis Model

 There are many different models for binary density estimation

— Each one makes different assumptions...we’ll see lots of options!

 We'll start with the simple “product of Bernoullis” model
— In this model we assume that the variables are “mutually independent”

* If we have four variables, we assume P(x,, X,, X3, X4) = P(X;) P(x5) P(x3) P(x,)

— As a picture, we treat multivariate problem as ‘d” univariate problems:

Inter 1 | Inter2 | Inter 3 | Interd_ Inter 2. Inter 3_ Inter 4_
0 0

1 0 1 1 0 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
X= 0 1 0 1 I$ X1= X2= = Xy = 1
1 1 1 1 1 use fo 1 vie ¥, 1 Use ¥, 1 '
0 0 0 1 0 ( °M'\4+f‘ 0 ‘ 0"'ru*c 0  onpu Fo 1 |
0 1 0 1 0 Q' 1 0, 0 &3 1 b



Product of Bernoullis Inference and Learning

Key advantage of “product of Bernoullis” model: easy inference and learning
— For most inference tasks: do inference on each variable, then combine the results
— Compute joint probability
« Pr(X,=1,X,=1,..,X,=0)=Pr(X;=1) P(X,=1)--P(Xy=0)=6; 65---(1 —8,).
— Compute marginal probabilities

* Pr(X,=1)=6, )&Q o d.
e Pr(X,=1, X5 = 1) = Pr(X,=1) Pr(X;=1) = 6,0;. rdh, i
— Compute conditional probabilities. nr )@/ (n Y, &D (,,) //g /
* Pxz | x3) = P(xy). “/—_\/\57 F ; (7 ) =L )
* Pr(X;=0,X5=1[ X, =0) =Pr(X;=0, X3=1) = (1 — 6,)03. 3 '/

— Mode of p(xq, X5,...,Xq):
* Set x, to argmax value of P(x,), set x, to argmax of P(x,),..., set x4 to argmax value of P(x,)
— Sampling:

e Sample x; from P(x;), sample x, from P(x,),..., sample x4 from P(xy)

MLE (MAP is similar): é = N < ruwbe, of Fime 8 L Y
’ "] vaclalle 1" is /' n n



Product of Bernoullis Inference and Learning

 MLE in a product of Bernoullis:

0= 20ros(e|)
L or |©= san( X dims=1)./n
‘Faf ) IN ’.A @SWM up (alumng oP 'X\
if XLij)==| z/l
i - (O\m’ 77\0 m«méer'
9£):) +< l 6f times Qﬂl[" )ﬁir’
@ '/: N = divide ‘n‘/ n

* Costis O(nd): do an O(1) operation n*d times, then O(n) division
— If X is stored as a “sparse” matrix, can be implemented to only cost O(z)

e zis the number of non-zero values (z < nd)

: zeros(d)
e Sampling code: % 5w I %ﬂ<os+ is 00) to Qeaecalke @
PING )X (5= SM‘)'(‘BMW/( of, )7 ) Sam/o/c".
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* To illustrate density estimation, we will often use the MNIST digits
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is one of the 784 pixels

e Each feature

* Threshold each pixel to make it binary

CPSC 340 wanted to “recognize that this is a 4”
* |n density estimation we want a probability distribut
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Product of Bernoullis on MNIST Digits

* Consider fitting the product of Bernoullis model to MNIST digits:
— For each of the 784 pixels j, we have a parameter 6;
* A “position-specific Bernoulli” distribution
— To compute MLE for 6;, compute fraction of times pixel j was set to 1
* Visualizing those MLE values as an image:

* Pixels near the center are more likely to be 1 than pixels near the boundary



Product of Bernoullis on MNIST Digits

Is product of Bernoullis a good model for the MNIST digits?
— Samples generated from the model (independent sample from position-specific Bernoulli for each pixel):

— This is a terrible model: these samples do not look like the data at all
— Why is this a terrible model?
* In the dataset, the pixels are not independent
* For example, pixels that are “next” to each other in the image are highly correlated
— Even it is a bad model, product of Bernoullis is often “good enough to be useful”
* Usually when combined with other ideas, that we’ll see shortly
* In practice, | think it is actually the most-used method for binary density estimation even though it is one of the worst

— Later in the course we’ll cover several ways to relax the independence assumption



Summary

MAP Estimation:

— Find parameters maximizing posterior probability of parameters given data

— Requires prior distribution on parameters: bias towards parameters that overfit less
Probability review:

— Product rule, marginalization rule, Bayes rule

— Continuous “probabilities” and how “o” has a restricted meaning for probabilities
Beta distribution:

— Prior for Bernoulli that yields a closed-form posterior (another beta distribution)

Product of Bernoullis:

— Method for multivariate binary density estimation.

— Assumes all variables are independent.

— Inference and learning are easy, but cannot accurate model many densities.



Next Topic: Generative Classifiers

Might not get to this in class,
and if not will skip for now!
I’ll delete from “final slides” if so



Motivation: E-mail Spam Filtering

 Want a build a system that detects spam e-mails.

— Context: spam used to be a big problem.

‘ Gary <jaiwasie@mail.com>

» Jannie Keenan valberta You are owed $24,718.11 to schmidt [=

:  Be careful with this message. Similar messages were used to steal people’s g

» Abby ualberta USB Drives with your Logo personal information.

Hey.

. . Do you have a minute today?
Rosemarie Page Re: New request created with 1D: ##62 Are you interested to use our email marketing and lead generation
solutions?
We have worked on a number of projects and campaigns in many industries

since 2007
Shawna Bulger RE: New request created with ID: ##63 Please reply today 50 we can go over options for you.
| am sure we can help to grow your business soon by using our mailing
services.
» Gary ualberta COOperation Best regards,

Gary
Contact: abelfong@sina.com

* We can write this as a supervised learning problem:
— Want to learn to map from “input” (e-mail) to “output” (spam or not).



Ceview
/——\_/

Review: Data Collection and Feature Extraction

* Collect alarge number of e-mails, gets users to label them.

| $ | Hi | CPSC | 340 | Vicodin | Offer | .. |
1 1 0 0 1 0 — 1
0 0 O 0 1 1 ) !
0 1 1 1 0 0 — 0
—>

* We can use (y' = 1) if e-mail ‘i’ is spam, (y' = 0) if e-mail is not spam.
e Extract features of each e-mail (like “bag of words”).

— (x'. = 1) if word/phrase ‘j’ is in e-mail ‘’, (x'. = 0) if it is not.
j j
e See CPSC 330 (or 340) for different ways to extract features from text data.



(eview
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Review: Supervised Learning Notation

* Our notation for supervised learning:

S || cpsc | 340 | vicodin | Offer | ..
1 1 0 0 1 0 _T_,SXZ |
0 0 0 0 1 G 1

1 1 0 0 .2 /= @e——-—?\/i
."J\XB o

e X is matrix of all features, y is vector of all labels.
— We use vy for the label of example ‘i’ (element ‘i’ of ‘y’).

— We use X!, for feature ‘j* of example ‘i

— We use X' as the list of features of example ‘i’ (row ‘i’ of ‘X’).
* Sointheabovex*=[011100..].
* |n practice, store x' in some “sparse” format (like a list of non-zeroes, smaller memory).



Generative Classifiers

* In early 2000s, best spam filtering methods used generative classifiers.
— Generative classifiers treat supervised learning as density estimation.

* How can we do supervised learning with density estimation?
— Learning: use a density estimator to estimate p(xy, X5,...,X4,Y).
* Generative classifiers model “how the features and label were generated”.

— Inference: compute conditionals p(y | X,X,,...,X4) to make predictions.
* Forexample, is p(y =1 | X,Xy,...,Xq) > P(Y = O] Xq,X5,...,%4)?
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* Can we use a product of Bernoullis as the density estimator? P ol ploly)

— You could, but it would do terrible! A
— If 'y’ is independent of the features, predictions would ignore features.

— A simple model that does assume ‘y’ is independent of features is naive Bayes.



bomAS_(
Existence of MAP Estimate under Beta Prior~

* The MAP estimate for Bernoulli likelihood and beta prior:
8 - Nt~

(abot= 1)+ #8-1)

— This assumes thatn; +a > 1andny+ f > 1.

* Other cases:
—ny+a> landny+f<1:0=1.
—ny+a< landny+£>1:0 =0.
—n,+a< landny+f < 1:0 canbeOor 1.

—ny+a= landny = 1: 6 can be anything between 0 and 1.



