
CPSC 440: Machine Learning

MAP Estimation
Winter 2022

Last Time: Bernoulli Distribution MLE
• The Bernoulli distribution for binary variables:
• We talked about difference inference tasks in Bernoulli models:
– Compute likelihood of data, P(x1, x2,…, xn | 𝜃)
– Find mode (decoding), argmaxx P(x | 𝜃)
– Generate samples "𝑥 from P(x | 𝜃)

• We discussed learning with maximum likelihood estimation (MLE)
– Find a $𝜃 in argmax𝜃 P(x1, x2,…,xn | 𝜃)
– Equivalent to finding $𝜃 in argmax𝜃 log(P(x1, x2,…,xn | 𝜃)), “log-likelihood”

• For Bernoulli, equating derivative with respect to 𝜃 to 0 gives:
– $𝜃 = n1/n (proportion of examples that are “1”)

Derivation of MLE for Bernoulli
• We showed log-likelihood derivative is zero for 𝜃 = n1/(n1+n0)
– Or 𝜃 = n1/n, since n1+n0=n

• We still need to convince ourselves this is a maximum:
– You can verify that the second derivative of log-likelihood is negative

• So the function is “curved downwards” and this is a maximum

• What about if n1=0 or n0=0?
– In either case, our derivation would divide by zero
– If n1 = 0, MLE is 𝜃 = 0; if n0 = 0, MLE is 𝜃 = 1

• Can show that likelihood is increasing as it approaches 0/1 in these cases
• So, the formula 𝜃 = n1/n still works

Learning Task: Computing MLE
• Computing MLE for Bernoulli in code given data ‘X’:

• Cost: O(n)
– You need to sum up the n values (there’s a for loop hidden inside sum(X))

• You can then use this 𝜃 value for inference:
– Compute likelihood of test data
– Compute expected number of samples until first 1
– Compute probability of seeing at least three 1 values in 10 samples

Next Topic: MAP Estimation

Problems with MLE
• In most settings, MLE is optimal as n goes to ∞.
– It converges to the true parameter(s)

• This is called “asymptotic consistency” (covered in honours/grad stats classes)

• However, it can be very sensitive for small n:
– Consider our example where x1=1, x2=1, x3=0, and MLE was 0.67
– If x4 = 1, then MLE goes up to 0.75
– If x4 = 0, then MLE goes down to 0.5

• If you get “unlucky” with your samples, the MLE might be really bad

• For Bernoullis, this sensitivity goes away quickly as we increase n
– But for more complicated models, MLE tends to lead to overfitting

Problems with MLE
• Consider a different dataset consisting of x1=0, x2=0, x3=0
– In this case the MLE is 𝜃 = 0

• It assigns zero probability to events that do not occur in training data

• Causes problems if we have a ‘1’ in test data:
– Then likelihood of entire test set is 0, since:

• A case of overfitting to the training data
• If you test ten people and none have COVID, does that mean it’s eradicated?

• It is common to add Laplace smoothing to the estimator:

– MLE for a dataset with an extra “imaginary” 1 and 0 in the data.
• This is a special case of “MAP estimation”

MLE and MAP Estimation
• In MLE we maximize the probability of the data given parameters:

• But this is kind of weird:
– “Find the 𝜃 that makes X have the highest probability given 𝜃”
– Get overfitting, because data could be likely for an unlikely 𝜃

• For example, a complex model that overfits by memorizing the data

• What we really want if we are trying to find the “best” 𝜃:
– “Find the 𝜃 that has the highest probability given the data X.”

– This is called MAP estimation (“maximum a posteriori”)

Digression: Super-Quick “Probability Rule” Review
• Product rule: Pr(A ∩ B) = Pr(A | B) Pr(B).

– Re-arrange to get conditional probability formula: Pr(A | B) = Pr(A ∩ B)/ Pr(B)
– Order doesn’t matter in joint probabilities: Pr(A ∩ B) = Pr(B ∩ A)
– Use product rule twice to get Bayes rule: Pr(A | B) = Pr(B | A) Pr(A) / Pr(B)

• Conditional in terms of “reverse” conditional, and the “marginals” Pr(B) and Pr(A)

• Marginalization rule (“summing or integrating over a variable”):
– Variable X with discrete domain: Pr(A) = ∑! Pr 𝐴 ∩ 𝑋 = 𝑥
– Variable X with continuous domain: Pr(A) = ∫ 𝑝 𝐴 ∩ 𝑋 = 𝑥 d𝑥

• These two rules are good friends and usually appear together:
– p a = ∑" 𝑝 𝑎, 𝑏 = ∑" 𝑝 𝑎 𝑏 𝑝 𝑏 .
– p a b) = # " $)#($)

#(")
= # " $)#($)
∑! # " $)#($)

(some people call this “Bayes rule”).

• Rules still work if you add extra “conditioning” on the right:
– p(a,b |c) = p(a | b, c)p(b | c).
– p(a |c) = ∑" 𝑝 𝑎, 𝑏 𝑐).

Maximum a Posteriori (MAP) Estimation
• Maximum a posteriori (MAP) estimate maximizes posterior probability:

– Bayesians would argue that this is reasonably what we want: the most likely 𝜃 given our data

• MLE and MAP are connected by Bayes rule:

– So posterior is proportional the likelihood p(X|𝜃) times the prior p(𝜃).
• See “probability” notes on course webpage if equalities above aren’t obvious (you need catch up fast).

The prior
• The prior p(𝜃) can encode our preference for different parameters
– If we are flipping coins, we might think P(𝜃) is higher for values close to ½

• We could make it really high for the exact value ½

– In COVID-19 example, we might make P(𝜃) higher for values close to 0.05
• Because, for example, we estimated a value of 0.05 from a similar population

– In CPSC 340, you learned that priors correspond to regularizers
• You often choose P(𝜃) to be lower for values that are likely to overfit

• Laplace smoothing corresponds to a particular p(𝜃)
– We’ll show this shortly

MAP Estimation for Bernoulli with Discrete Prior

• Consider our example where x1=1, x2=1, x3=0 (and MLE was 0.67)
• Consider using a prior of:
– Pr(𝜃 = 0.00) = 0.05
– Pr(𝜃 = 0.25) = 0.2
– Pr(𝜃 = 0.50) = 0.5
– Pr(𝜃 = 0.75) = 0.2
– Pr(𝜃 = 1.00) = 0.05

• So our MAP estimate is 𝜃 = 0.5
– Based on our prior “guesses for 𝜃”, we think this is a fair coin

• Notice that we don’t need P(X) in our calculations (since it’s the same for all 𝜃)

Posterior values are proportional to:
– Pr(𝜃 = 0.00 | X) ∝ (0*0*1)*.05 = 0
– Pr(𝜃 = 0.25 | X) ∝ (.25*.25*.75)*.2 ≈ 0.01
– Pr(𝜃 = 0.50 | X) ∝ (.5*.5*.5)*.5 ≈ 0.06
– Pr(𝜃 = 0.75 | X) ∝ (.75*.75*.25)*.2 ≈ 0.03
– Pr(𝜃 = 1.00 | X) ∝ (1*1*0)*.05 = 0

Digression: “Proportional to” (∝) Notation
• In math, the notation f(𝜃) ∝ g(𝜃)

means that f(𝜃) = 𝜅g(𝜃) for some number 𝜅 (for all 𝜃)
– But 𝜅 may not be known and/or may not be unique

• For example, f(𝜃) ∝ 𝜃! for both f(𝜃)= 10𝜃! and f(𝜃) = -50𝜃!

• For discrete probabilities, the constant 𝜅 is positive and unique
– This is because probabilities are non-negative and sum to 1

• Consider a discrete variable 𝜃 with p(𝜃)= 𝜅𝑔 𝜃 ∝ 𝑔 𝜃 :
– Since ∑!"𝑃(𝜃") = 1, we have ∑!" 𝜅𝑔(𝜃") = 1

• Solving for 𝜅 gives: 𝜅 = "
∑"# $ %#

– Using this value for 𝜅 we have p(𝜃) = 𝜅𝑔 𝜃 = #(!)
∑() #(!))

– You can use this trick to get posterior probabilities on last slide:

Digression2: “Probability” vs. “Probability Density”
• Recall that the value 𝜃 can be any number between 0 and 1
– Instead of putting non-zero probability on a finite number of possible 𝜃 values,

we could treat 𝜃 as a continuous random variable (to allow 𝜃 = 0.3452)

• For continuous variables, we use a probability density function (PDF):
– Function p that is non-negative and integrates to 1 over domain:

• We get probabilities from the PDF by integrating over ranges:

– If the PDF is continuous, probability of an individual 𝜃 is 0:

Digression2: “Probability” vs. “Probability Density”
• Recall the relationship between posterior, likelihood, and prior:

• What are these p functions in discrete and continuous case?
– If 𝜃 is discrete: prior and posterior p functions are probabilities
– If 𝜃 is continuous: prior and posterior p functions are PDFs

• So p(𝜃) is not the “probability of 𝜃”, but the “probability density of 𝜃”

• With our binary X values, likelihood p(X | 𝜃) is a probability
– But when we later talk about continuous X, likelihood will be a PDF

• Important: Most ML people are really sloppy about this!
– Say “probability of 𝜃” for p(𝜃), even for continuous 𝜃
– I try to use P for probabilities and p for PDFs, but it’s hard…

Digression: “Proportional to” (∝) Notation
• Consider a continuous variable 𝜃 with PDF p(𝜃) = 𝜅g(𝜃) ∝ g(𝜃):
– Since ∫56𝑝 𝜃

6 𝑑𝜃′ = 1, we have ∫56𝜅𝑔 𝜃6 𝑑𝜃′ = 1
• Solving for 𝜅 gives: 𝜅 = !

∫!" #(%
")'%(

– So we have p(𝜃) = 7(5)
∫&' 7(5

')956

• For continuous 𝜃 in MAP estimation, we have p(𝜃 | X) ∝ p(X | 𝜃)p(𝜃),
– So we have p(𝜃 | X) = : ; 5):(5)

∫&' : ; 56):(56)956

• You should memorize these “digression” slides
– Knowing how to use “∝” simplifies a lot of things

Beta Distribution
• For Bernoulli likelihoods, most common prior is beta distribution:

• Looks like a Bernoulli likelihood, with (𝛼 – 1) ones and (𝛽-1) zeroes.
• Key difference with the Bernoulli is on the left side:
– It defines a PDF over real numbers 𝜃 in the range 0 through 1.

• Beta distribution is not assigning probabilities to binary values, but to 𝜃
– “Probability over probabilities”

• From the “digression”, we can resolve what is hidden in the ∝ sign:

Beta Distribution
• The beta distribution for different choices of 𝛼 and 𝛽:

• Why is using the beta distribution as prior so popular?
– Fake reason: it is quite flexible, so can encode a variety of priors.

• Can represent bias towards 0.5, towards 1 or 0, towards 0.2, towards only 1, or uniform if 𝛼 = 𝛽 = 1.
• But it is still limited. For example, you can’t say that “the exact value 0.5 is particularly likely”.

https://en.wikipedia.org/wiki/Beta_distribution

Posterior for Bernoulli Likelihood and Beta Prior
• Real reason people use the beta: posterior and MAP have simple forms.
– The posterior with a Bernoulli likelihood and beta prior:

– This is another beta distribution with “updated” parameters 2𝛼 and 4𝛽
• Where $𝛼 = 𝑛! + 𝛼 and (𝛽 = 𝑛) + 𝛽.

– How do we know that this is a beta distribution?
• Because constant in ∝ is unique

– “If you are proportional to a beta distribution, you are a beta distribution.”
• Make sure you understand why posterior is a beta distribution (important in this course)

MAP Estimation for Bernoulli-Beta Model
• The posterior with a Bernoulli likelihood and beta prior is a beta:

– Where <𝛼 = 𝑛* + 𝛼 and @𝛽 = 𝑛+ + 𝛽.
• If "𝛼 > 1 and &𝛽 > 1, taking log and setting derivative to 0 gives MAP of:

– If 𝛼 = 1 and 𝛽 = 1, we get the MLE
– If 𝛼 = 2 and 𝛽 = 2, we get Laplace smoothing (which often overfits less)
– If 𝛼 = 𝛽 > 2 , we get a stronger bias towards D𝜃 = 0.5 than Laplace smoothing
– If 𝛼 = 𝛽 < 1, we get a bias towards away from D𝜃 = 0.5 (towards 0 or 1)
– You can also bias towards either 0 or 1; if 𝛼 is large compared to 𝛽 it biases towards D𝜃=1
– Notice that MAP converges to MLE n → ∞, so the data eventually “takes over” estimate

• But we use a prior so our model does sensible things when we do not have enough data

Review: Hyper-Parameter and [Cross]-Validation
• We call the “parameters of the prior”, 𝛼 and 𝛽, the hyper-parameters.

– We usually say that hyper-parameters are “parameters affecting the complexity of the model”
– We usually also include “parameters of the learning algorithm” as hyper-parameters

• How can we choose hyper-parameters values?
– Using the training likelihood does not work: it would make 𝛼 and 𝛽 arbitrarily small (ignoring prior)

• Usual CPSC 340 approach: use a validation set (or cross-validation)
– Split your data X into a “training” set and a “validation” set
– For different hyper-parameters of 𝛼 and 𝛽:

• Use the “training” examples to compute the MAP estimate
• Use MAP estimate to compute the likelihood of the “validation” examples

– Choose the hyper-parameters with the highest validation likelihood
• But our final goal is to not optimize performance on the validation set
• This is a surrogate for the test error (error on completely-new data),

which you cannot measure.

• Take CPSC 340 to learn about many of the things that can go wrong
– For example, if you are not careful you can overfit to the validation set

• Happens all the time, even in UBC student’s PhD theses and in top conference papers!
• Or take CPSC 532D to understand it more mathematically :)

Next Topic: Product of Bernoullis

Motivation: Modeling Traffic Congestion
• We want to model car “traffic congestion” in a big city.
• So we measure which intersections are busy on different days:

• We want to build a model of this data, to identify patterns/problems.
– “Inter 4 is always busy”, “Inter 1 is rarely busy”.
– “Inters 7+8 are always the same”, “Inter 2 is busy when Inter 7 is busy”.
– “There is a 25% chance you will hit a busy intersection if you take Inter 1 and 8”.

Inter 1 Inter 2 Inter 3 Inter 4 Inter 5 Inter 6 Inter 7 Inter 8 Inter 9

0 1 0 1 1 1 0 0 1

0 1 0 1 1 1 0 0 1

0 0 1 1 0 0 0 0 0

0 1 0 1 1 1 0 0 0

1 1 1 1 1 1 1 1 1

0 0 0 1 1 0 0 0 1

0 1 0 1 1 1 1 1 0

Problem: Multivariate Binary Density Estimation
• We can view this as multivariate binary density estimation:
– Input: n IID samples of binary vectors x1, x2, x3,…, xn from population.
– Output: model that gives probability for any assignment of values 𝑥 ∈ 0,1 9.

• Covid example: each feature could be “are covid cases >10% in area j?”
• Notation (please memorize):
– We use n for the number of examples, d for the number of features
– Notice that x3 is a vector with d values, 𝑥LM to 𝑥9M
– X3 is the third dimension of a random vector X; x3 is a value X3 might take

Pr(X1 = 0, X2 = 1, X3 = 0, X4 = 1, X5 = 1, X6 = 1, X7 = 0, X8 = 0, X9 = 1) = 0.11 X =

Inter 1 Inter 2 Inter 3 Inter 4 Inter 5 Inter 6 Inter 7 Inter 8 Inter 9
0 1 0 1 1 1 0 0 1

0 1 0 1 1 1 0 0 1

0 0 1 1 0 0 0 0 0

0 1 0 1 1 1 0 0 0
1 1 1 1 1 1 1 1 1

0 0 0 1 1 0 0 0 1

0 1 0 1 1 1 1 1 0

Product of Bernoullis Model
• There are many different models for binary density estimation
– Each one makes different assumptions…we’ll see lots of options!

• We’ll start with the simple “product of Bernoullis” model
– In this model we assume that the variables are “mutually independent”

• If we have four variables, we assume P(x1, x2, x3, x4) = P(x1) P(x2) P(x3) P(x4)

– As a picture, we treat multivariate problem as ‘d’ univariate problems:
Inter 1 Inter 2 Inter 3 Inter 4

0 1 0 1

0 1 0 1
0 0 1 1

0 1 0 1

1 1 1 1

0 0 0 1
0 1 0 1

Inter 1

0

0
0

0

1

0
0

Inter 2
1

1

0

1
1

0

1

Inter 3
0

0

1

0
1

0

0

Inter 4
1

1

1

1
1

1

1

X = X1 = X2 = X3 = X4 =

Product of Bernoullis Inference and Learning
• Key advantage of “product of Bernoullis” model: easy inference and learning

– For most inference tasks: do inference on each variable, then combine the results
– Compute joint probability

• Pr(X1 = 1, X2 = 1, …, Xd = 0) = Pr(X1 = 1) P(X2 = 1)⋯P(Xd = 0) = 𝜃" 𝜃!⋯(1 − 𝜃().
– Compute marginal probabilities

• Pr(X2=1) = 𝜃!
• Pr(X2 =1, X3 = 1) = Pr(X2=1) Pr(X3=1) = 𝜃!𝜃).

– Compute conditional probabilities.
• P(x2 | x3) = P(x2).
• Pr(X2 =0, X3 =1 | X4 = 0) = Pr(X2=0, X3 =1) = (1 − 𝜃!)𝜃).

– Mode of p(x1, x2,…,xd):
• Set x1 to argmax value of P(x1), set x2 to argmax of P(x2),…, set xd to argmax value of P(xd)

– Sampling:
• Sample x1 from P(x1), sample x2 from P(x2),…, sample xd from P(xd)

• MLE (MAP is similar):

Product of Bernoullis Inference and Learning
• MLE in a product of Bernoullis:

• Cost is O(nd): do an O(1) operation n*d times, then O(n) division
– If X is stored as a “sparse” matrix, can be implemented to only cost O(z)

• z is the number of non-zero values (z ≤ nd)

• Sampling code:

Running Example: MNIST Digits
• To illustrate density estimation, we will often use the MNIST digits:
– 60,000 images, each a 28x28 pixel image of a number
– Representing as binary density estimation:

• Each image is one training example xi

• Each feature is one of the 784 pixels
• Threshold each pixel to make it binary

• CPSC 340 wanted to “recognize that this is a 4”
• In density estimation we want a probability distribution over images
– Given one of the 2784 possible images, what is the probability it is a digit?

• This is unsupervised; we’re ignoring the class labels.

– Sampling from the density should generate new images of digits.
https://www.kaggle.com/tarunkr/digit-recognition-tutorial-cnn-99-67-accuracy

Product of Bernoullis on MNIST Digits
• Consider fitting the product of Bernoullis model to MNIST digits:
– For each of the 784 pixels j, we have a parameter 𝜃-

• A “position-specific Bernoulli” distribution
– To compute MLE for 𝜃-, compute fraction of times pixel j was set to 1

• Visualizing those MLE values as an image:

• Pixels near the center are more likely to be 1 than pixels near the boundary

Product of Bernoullis on MNIST Digits
• Is product of Bernoullis a good model for the MNIST digits?

– Samples generated from the model (independent sample from position-specific Bernoulli for each pixel):

– This is a terrible model: these samples do not look like the data at all
– Why is this a terrible model?

• In the dataset, the pixels are not independent
• For example, pixels that are “next” to each other in the image are highly correlated

– Even it is a bad model, product of Bernoullis is often “good enough to be useful”
• Usually when combined with other ideas, that we’ll see shortly
• In practice, I think it is actually the most-used method for binary density estimation even though it is one of the worst

– Later in the course we’ll cover several ways to relax the independence assumption

Summary
• MAP Estimation:
– Find parameters maximizing posterior probability of parameters given data
– Requires prior distribution on parameters: bias towards parameters that overfit less

• Probability review:
– Product rule, marginalization rule, Bayes rule
– Continuous “probabilities” and how “∝” has a restricted meaning for probabilities

• Beta distribution:
– Prior for Bernoulli that yields a closed-form posterior (another beta distribution)

• Product of Bernoullis:
– Method for multivariate binary density estimation.
– Assumes all variables are independent.
– Inference and learning are easy, but cannot accurate model many densities.

Next Topic: Generative Classifiers

Might not get to this in class,
and if not will skip for now!

I’ll delete from “final slides” if so

Motivation: E-mail Spam Filtering
• Want a build a system that detects spam e-mails.
– Context: spam used to be a big problem.

• We can write this as a supervised learning problem:
– Want to learn to map from “input” (e-mail) to “output” (spam or not).

Review: Data Collection and Feature Extraction
• Collect a large number of e-mails, gets users to label them.

• We can use (yi = 1) if e-mail ‘i’ is spam, (yi = 0) if e-mail is not spam.
• Extract features of each e-mail (like “bag of words”).
– (xi

j = 1) if word/phrase ‘j’ is in e-mail ‘i’, (xi
j = 0) if it is not.

• See CPSC 330 (or 340) for different ways to extract features from text data.

$ Hi CPSC 340 Vicodin Offer …

1 1 0 0 1 0 …

0 0 0 0 1 1 …

0 1 1 1 0 0 …

… … … … … … …

Spam?

1

1

0

…

Review: Supervised Learning Notation
• Our notation for supervised learning:

• X is matrix of all features, y is vector of all labels.
– We use yi for the label of example ‘i’ (element ‘i’ of ‘y’).
– We use xi

j for feature ‘j’ of example ‘i‘.
– We use xi as the list of features of example ‘i’ (row ‘i’ of ‘X’).

• So in the above x3 = [0 1 1 1 0 0 …].
• In practice, store xi in some “sparse” format (like a list of non-zeroes, smaller memory).

$ Hi CPSC 340 Vicodin Offer …

1 1 0 0 1 0 …

0 0 0 0 1 1 …

0 1 1 1 0 0 …

… … … … … … …

Spam?

1

1

0

…

Generative Classifiers
• In early 2000s, best spam filtering methods used generative classifiers.
– Generative classifiers treat supervised learning as density estimation.

• How can we do supervised learning with density estimation?
– Learning: use a density estimator to estimate p(x1, x2,…,xd,y).

• Generative classifiers model “how the features and label were generated”.
– Inference: compute conditionals p(y | x1,x2,…,xd) to make predictions.

• For example, is p(y = 1 | x1,x2,…,xd) > p(y = 0| x1,x2,…,xd)?

• Can we use a product of Bernoullis as the density estimator?
– You could, but it would do terrible!
– If ‘y’ is independent of the features, predictions would ignore features.
– A simple model that does assume ‘y’ is independent of features is naïve Bayes.

Existence of MAP Estimate under Beta Prior
• The MAP estimate for Bernoulli likelihood and beta prior:

– This assumes that 𝑛. + 𝛼 > 1 and 𝑛/ + 𝛽 > 1.

• Other cases:
– 𝑛. + 𝛼 > 1 and 𝑛/ + 𝛽 ≤ 1: $𝜃 = 1.
– 𝑛. + 𝛼 ≤ 1 and 𝑛/ + 𝛽 > 1: $𝜃 = 0.
– 𝑛. + 𝛼 < 1 and 𝑛/ + 𝛽 < 1: $𝜃 can be 0 or 1.
– 𝑛. + 𝛼 = 1 and 𝑛/ = 1: $𝜃 can be anything between 0 and 1.

