CPSC 440/540: Advanced Machine Learning More MCMC; DAGs

Danica Sutherland (building on materials from Mark Schmidt)

University of British Columbia
Winter 2023

Last Time: Start of MCMC

- Want approximate samples from $\tilde{p} \propto p$, to estimate $\mathbb{E}_{X \sim p} f(X)$
- Construct a Markov chain with stationary distribution p
- Run for a long time, will get approximate samples from p
- Burn-in period, and samples are highly correlated (sometimes thin them)
- Metropolis algorithm:
- Start at x^{0}
- Propose $\hat{x}^{t}=x^{t-1}+\mathcal{N}(0, \Sigma)$
- Accept $\left(x^{t}=\hat{x}^{t}\right)$ with probability $\max \left(1, \tilde{p}\left(\hat{x}^{t}\right) / \tilde{p}\left(x^{t-1}\right)\right)$
- Otherwise reject, $x^{t}=x^{t-1}$
- Satisfies the detailed balance condition for reversibility:

$$
\pi(s) q_{s \rightarrow s^{\prime}}=\pi\left(s^{\prime}\right) q_{s^{\prime} \rightarrow s} \quad \text { for } \pi=p
$$

- Implies π is a stationary distribution of the chain - is unique if chain is ergodic

Metropolis-Hastings

- Metropolis algorithm is a special case of Metropolis-Hastings.
- General version uses a general proposal distribution $q\left(\hat{x}^{t+1} \mid x^{t}\right)=q_{x^{t} \rightarrow \hat{x}^{t+1}}$.
- In Metropolis, q is a Gaussian with mean x^{t}.
- Metropolis-Hastings accepts a proposed \hat{x}^{t} if

$$
u \leq \frac{\tilde{p}\left(\hat{x}^{t}\right)}{\tilde{p}\left(x^{t-1}\right)} \cdot \frac{q\left(\hat{x}^{t} \rightarrow x^{t-1}\right)}{q\left(x^{t-1} \rightarrow \hat{x}^{t}\right)} .
$$

- These extra terms ensures reversibility (detailed balance) for asymmetric q.
- If you're more likely to propose $x^{t-1} \rightarrow \hat{x}^{t}$ than the other way, less likely to accept.
- Eventually converges under very weak conditions, e.g. all $q\left(x^{t} \rightarrow \hat{x}^{t+1}\right)>0$.
- But practical convergence can change a lot with different q.

Metropolis-Hastings Example: Rolling Dice with Coins

- Say we want to sample from a fair 6 -sided die.
- $\operatorname{Pr}(X=c)=\frac{1}{6}$ for each $c \in\{1, \ldots, 6\}$.
- But we don't have a die or a computer, just coins.
- Consider the following random walk on the numbers 1-6:
- If $x=1$, always propose 2 .
- If $x=2,50 \%$ of the time propose 1 and 50% of the time propose 3 .
- If $x=3,50 \%$ of the time propose 2 and 50% of the time propose 4 .
- If $x=4,50 \%$ of the time propose 3 and 50% of the time propose 5 .
- If $x=5,50 \%$ of the time propose 4 and 50% of the time propose 6 .
- If $x=6$, always propose 5 .
- Flip a coin: go up if it's heads, go down it it's tails.
- Like a PageRank "random surfer" applied to this graph:

Metropolis-Hastings Example: Rolling Dice with Coins

- "Roll a die with a coin" by using random walk as transitions q in $\mathrm{M}-\mathrm{H}$:
- $q_{1 \rightarrow 2}=1, q_{2 \rightarrow 1}=\frac{1}{2}, q_{2 \rightarrow 3}=\frac{1}{2}, \ldots, q_{6 \rightarrow 5}=1$
- If x is in the "middle" (2-5), we'll always accept the random walk.
- If $x=3$ and we propose $\hat{x}=2$, then:

$$
u<\frac{p(2)}{p(3)} \cdot \frac{q_{2 \rightarrow 3}}{q_{3 \rightarrow 2}}=\frac{1 / 6}{1 / 6} \cdot \frac{1 / 2}{1 / 2}=1 .
$$

- If $x=2$ and we propose $\hat{x}=1$, then we test $u<2$ which is also always true.
- If x is at the end (1 or 6), you accept with probability $1 / 2$:

$$
u<\frac{p(2)}{p(1)} \cdot \frac{q_{2 \rightarrow 1}}{q_{1 \rightarrow 2}}=\frac{1 / 6}{1 / 6} \cdot \frac{1 / 2}{1}=\frac{1}{2} .
$$

Metropolis-Hastings Example: Rolling Dice with Coins

- So Metropolis-Hastings modifies random walk probabilities:
- If you're at the end (1 or 6), stay there half the time.
- This accounts for the fact that 1 and 6 have only one neighbour.
- Which means they aren't visited as often by the random walk.
- Could also be viewed as a random surfer in a different graph:

- You can think of Metropolis-Hastings as the modification that "makes the random walk have the right probabilities."
- For any (reasonable) proposal distribution q.

Special Case: Gibbs Sampling

- An important special case of Metropolis-Hastings is Gibbs sampling.
- Method to sample from a multi-dimensional distribution.
- Probably the most common multi-dimensional sampler.
- Gibbs sampling starts with some x and then repeats:
(1) Choose a variable j uniformly at random.
(2) Update x_{j} by resampling it from its conditional distribution given everything else:

$$
x_{j}^{t} \sim p\left(x_{j} \mid x_{-j}^{t-1}\right),
$$

where x_{-j} means "all variables except x_{j} ".
Keep other variables the same.

- A common variation is to cycle through the variables in order.

Gibbs Sampling in Action

- Start with some initial value: $x^{0}=\left[\begin{array}{llll}2 & 2 & 3 & 1\end{array}\right]$.
- Select random index: $j=3$.
- Sample variable $j: x^{1}=\left[\begin{array}{llll}2 & 2 & 1 & 1\end{array}\right]$.
- Select random index: $j=1$.
- Sample variable $j: x^{2}=\left[\begin{array}{llll}3 & 2 & 1 & 1\end{array}\right]$.
- Select random index: $j=2$.
- Sample variable $j: x^{3}=\left[\begin{array}{llll}3 & 2 & 1 & 1\end{array}\right]$.
- Use the samples to form a Monte Carlo estimator.

Gibbs Sampling in Action: Multivariate Gaussian

- Gibbs sampling works for general distributions.
- E.g., sampling from multivariate Gaussian by univariate Gaussian sampling.

https://theclevermachine.wordpress.com/2012/11/05/mcmc-the-gibbs-sampler
- Video: https://www.youtube.com/watch?v=AEwY6QXWoUg

Sampling from Conditionals

- For discrete X_{j}, the conditionals needed for Gibbs sampling have a simple form:

$$
p\left(x_{j}=c \mid x_{-j}\right)=\frac{p\left(X_{j}=c, x_{-j}\right)}{p\left(x_{-j}\right)}=\frac{p\left(X_{j}=c, x_{-j}\right)}{\sum_{c^{\prime}} p\left(x_{j}=c^{\prime}, x_{-j}\right)}=\frac{\tilde{p}\left(X_{j}=c, x_{-j}\right)}{\sum_{c^{\prime}} \tilde{p}\left(X_{j}=c^{\prime}, x_{-j}\right)},
$$

where we can use unnormalized \tilde{p} since Z is the same in numerator/denominator.

- Last expression is easy to evaluate: just sum over values of x_{j}.
- For continuous X_{j}, replace the sum by an integral.
- May be able to figure out quantile function for inverse transform sampling.
- May need to use rejection sampling, especially in non-conjugate cases.

Gibbs Sampling as a Markov Chain

- The "Gibbs sampling Markov chain" if p is over 4 binary variables:
- The states are the possible configurations of the four variables:
- [000000], $\left[\begin{array}{lll}0 & 0 & 1\end{array}\right],\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$, etc (there are $2^{4}=16$ of them).
- The initial probability q is set to 1 for the initial state, and 0 for the others:
- If you start at $\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]$, then $q\left(x^{1}=\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]\right)=1$ and $q\left(x^{1}=\left[\begin{array}{llll}0 & 0 & 0\end{array}\right]\right)=0$.
- The transition probabilities q are based on variable we choose and target p :
- If we are at $\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]$ and choose coordinate randomly we have:

$$
\begin{aligned}
& q\left(\left[\begin{array}{llll}
1 & 1 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{llll}
0 & 0 & 1 & 1
\end{array}\right]\right)=0 \quad(\text { Gibbs only updates one variable) } \\
& q\left(\left[\begin{array}{llll}
1 & 1 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{llll}
1 & 0 & 0 & 1
\end{array}\right]\right)=\underbrace{\frac{1}{d}}_{j \text { is uniform }} \underbrace{\operatorname{Pr}\left(X_{2}=0 \mid X_{1}=1, X_{3}=0, X_{4}=1\right)}_{\text {from target distribution } p} .
\end{aligned}
$$

- Not homogeneous if cycling, but homogeneous if add "last variable" to state.

Gibbs is Metropolis-Hastings

- For random coordinates, proposal is $q_{x \rightarrow \hat{x}}=\frac{1}{d} \sum_{j=1}^{d} \mathbb{1}\left(\hat{x}_{-j}=x_{-j}\right) p\left(\hat{x}_{j} \mid x_{-j}\right)$
- When $\hat{x}_{-j}=x_{-j}$, acceptance probability is min of 1 and

$$
\begin{aligned}
\frac{p(\hat{x})}{p(x)} \cdot \frac{q_{\hat{x} \rightarrow x}}{q_{x \rightarrow \hat{x}}} & =\frac{p\left(\hat{x}_{j} \mid \hat{x}_{-j}\right) p\left(\hat{x}_{-j}\right)}{p\left(x_{j} \mid x_{-j}\right) p\left(x_{-j}\right)} \cdot \frac{\frac{1}{d} p\left(x_{j} \mid \hat{x}_{-j}\right)}{\frac{1}{d} p\left(\hat{x}_{j} \mid x_{-j}\right)} \\
& =\frac{p\left(\hat{x}_{j} \mid x_{-j}\right) p\left(x_{-j}\right)}{p\left(x_{j} \mid x_{-j}\right) p\left(x_{-j}\right)} \cdot \frac{p\left(x_{j} \mid x_{-j}\right)}{p\left(\hat{x}_{j} \mid x_{-j}\right)} \quad\left(x_{-j}=\hat{x}_{-j}\right) \\
& =1
\end{aligned}
$$

- Detailed balance is satisfied; also need ergodicity for unique stationary dist

Metropolis-Hastings

- Common choices for proposal distribution q in Metropolis-Hastings:
- Metropolis et al. originally used random walks: $x^{t}=x^{t-1}+\epsilon$ for $\epsilon \sim \mathcal{N}(0, \Sigma)$.
- Hastings originally used independent proposal: $q\left(x^{t} \mid x^{t-1}\right)=q\left(x^{t}\right)$.
- Usually not a good choice in high dimensions.
- Gibbs sampling updates single variable based on conditional.
- Block Gibbs sampling:
- If you can sample multiple variables at once Gibbs sampling tends to work better.
- Collapsed Gibbs sampling (Rao-Blackwellization):
- MCMC provably works better at sampling marginals of a joint distribution.
- "Try to integrate over variables you do not care about."
- Unlike rejection sampling, high acceptance rate is not always good:
- High acceptance rate may mean we're not moving very much.
- Low acceptance rate definitely means we're not moving very much.
- Designing good proposals q is an "art".

Advanced Monte Carlo Methods

- "Adaptive MCMC": tries to update q as we go. Needs to be done carefully.
- "Particle MCMC": use particle filter to make proposal.
- Auxiliary-variable sampling: introduce variables to sample bigger blocks:
- E.g., introduce z variables in mixture models.
- Also used in Bayesian logistic regression (beginning with Albert and Chib).
- Trans-dimensional MCMC:
- Needed when dimensionality of problem can change on different iterations.
- Most important application is probably Bayesian feature selection.
- Hamiltonian Monte Carlo:
- Faster-converging method based on Hamiltonian dynamics (using $\nabla \log p$).
- Population MCMC:
- Run multiple MCMC methods, each having different "move" size.
- Large moves do exploration and small moves refine good estimates.

Outline

(1) MCMC
(2) Directed Acyclic Graphical Models
(3) D-Separation

4 Plate Notation

Higher-Order Markov Models

- Markov models use a density of the form

$$
p(x)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}\right) p\left(x_{4} \mid x_{3}\right) \cdots p\left(x_{d} \mid x_{d-1}\right)
$$

- They support efficient computation but Markov assumption is strong.
- A more flexible model would be a second-order Markov model,

$$
p(x)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}, x_{1}\right) p\left(x_{4} \mid x_{3}, x_{2}\right) \cdots p\left(x_{d} \mid x_{d-1}, x_{d-2}\right)
$$

or even higher-order models.

- General case is called directed acyclic graphical (DAG) models:
- They allow dependence on any subset of previous features.

DAG Models

- As in Markov chains, DAG models use the chain rule to write

$$
p\left(x_{1}, x_{2}, \ldots, x_{d}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) \cdots p\left(x_{d} \mid x_{1}, x_{2}, \ldots, x_{d-1}\right)
$$

- We can alternately write this as:

$$
p\left(x_{1}, x_{2}, \ldots, x_{d}\right)=\prod_{j=1}^{d} p\left(x_{j} \mid x_{1: j-1}\right)
$$

- In Markov chains, we assumed x_{j} only depends on previous x_{j-1} given past.
- In DAGs, x_{j} can depend on any subset of the past $x_{1}, x_{2}, \ldots, x_{j-1}$.

DAG Models

- We often write joint probability in DAG models as

$$
p\left(x_{1}, x_{2}, \ldots, x_{d}\right)=\prod_{j=1}^{d} p\left(x_{j} \mid x_{\mathrm{pa}(j)}\right)
$$

where $\mathrm{pa}(j)$ are the "parents" of feature j.

- For Markov chains the only "parent" of j is $(j-1)$.
- If we have k parents we only need 2^{k+1} parameters (for binary states).
- This corresponds to a set of conditional independence assumptions,

$$
p\left(x_{j} \mid x_{1: j-1}\right)=p\left(x_{j} \mid x_{\mathrm{pa}(j)}\right),
$$

that we're independent of previous non-parents given the parents.

MNIST Digits with Markov Chains

- Recall trying to model digits using an inhomogeneous Markov chain:

Only models dependence on pixel above, not on 2 pixels above nor across columns.

MNIST Digits with DAG Model (Sparse Parents)

- Samples from a DAG model with 8 parents per feature:

Parents of (i, j) are 8 other pixels in the neighbourhood ("up by 2 , left by 2 "):
$\{(i-2, j-2),(i-1, j-2),(i, j-2),(i-2, j-1),(i-1, j-1),(i, j-1),(i-2, j),(i-1, j)\}$.

DAG Models

- "Graphical" name comes from visualizing parents/features as a graph:
- We have a node for each feature j.
- We place an edge into j from each of its parents.
- This graph is not just a visualization tool:
- Can be used to test arbitrary conditional independences ("d-separation").
- Graph structure tells us whether message passing is efficient ("treewidth").

Graph Structure Examples

With product of independent distributions we have

$$
p(x)=\prod_{j=1}^{d} p\left(x_{j}\right)
$$

so $\mathrm{pa}(j)=\varnothing$ and the graph is:

Graph Structure Examples

With Markov chain we have

$$
p(x)=p\left(x_{1}\right) \prod_{j=2}^{d} p\left(x_{j} \mid x_{j-1}\right)
$$

so $\mathrm{pa}(j)=\{j-1\}$ and the graph is:

Graph Structure Examples

With second-order Markov chain we have

$$
p(x)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) \prod_{j=3}^{d} p\left(x_{j} \mid x_{j-1}, x_{j-2}\right)
$$

so $\mathrm{pa}(j)=\{j-2, j-1\}$ and the graph is:

Graph Structure Examples

With a fully general distribution we have

$$
p(x)=\prod_{j=1}^{d} p\left(x_{j} \mid x_{1: j-1}\right)
$$

so $\mathrm{pa}(j)=\{1,2, \ldots, j-1\}$ and the graph is:

Graph Structure Examples

In naive Bayes (or GDA with diagonal Σ) we add an extra variable y and use

$$
p(y, x)=p(y) \prod_{j=1}^{d} p\left(x_{j} \mid y\right)
$$

which has $\operatorname{pa}(y)=\emptyset, \operatorname{pa}\left(x_{j}\right)=y$:

Graph Structure Examples

We can consider genetic phylogeny (family trees):

The "parents" in the graph are an individual's biological parents.

- Independence assumption: only depend on grandparent's genes through parents.

First DAG Model

- DAGs were first used to analyze inheritance in guinea pigs (1920):

Diagram illustrating the casual relations between litter mates $\left(O, O^{\prime}\right)$ and between each of them and their parents. $\mathrm{H}, \mathrm{H}^{\prime}, \mathrm{H}^{\prime \prime}, \mathrm{H},{ }^{\prime \prime \prime}$ represent the genetic constitutions of the four individuals, $\mathrm{G}, \mathrm{G}^{\prime}, \mathrm{G}^{\prime \prime}$, and $\mathrm{G}^{\prime \prime \prime}$ that of four germ cells. E represents such environmental factors as are common to litter mates. D represents other factors, largely ontogenetic irregularity. The small letters stand for the various path coefficients.

Example: Vehicle Insurance

- Want to predict bottom three "cost" variables, given observed and unobserved values:

https://www.cs.princeton.edu/courses/archive/fall10/cos402/assignments/bayes

Example: Radar and Aircraft Control

- Modeling multiple planes and radar signals:

Example: Water Resource Management

- Dependencies in environmental monitor and susatainability issues:

Outline

(1) MCMC
(2) Directed Acyclic Graphical Models
(3) D-Separation

4 Plate Notation

Density Estimators vs. Relationship Visualizers

- In machine learning, DAGs are often used in two different ways:
(1) As a multivariate density estimation method.
- We'll cover inference and learning in DAGs next time.
(2) As a way to describe the relationships we are modeling.
- All independence assumptions we have used in 340/440 have DAG representation*.
- Includes product of Bernoullis and naive Bayes, but also IID and prior vs. hyper-prior.
- *Except multivariate Gaussians (which can use "undirected" independence).
- For example, later we will talk about hidden Markov models (HMMs):

- The graph and variable names already give you an idea of what this model does:
- Hidden variables Z_{j} follow a Markov chain; feature X_{j} depends on Z_{j}.

Extra Conditional Independences in Markov Chains

- Markov assumption in Markov chains: $X_{j} \Perp X_{1}, X_{2}, \ldots, X_{j-2} \mid X_{j-1}$ for all j
- This implies other independences, like $X_{j} \Perp X_{1}, X_{2}, \ldots, X_{j-3} \mid X_{j-2}$.
- We didn't assume this directly; it follows from assumptions we made.
- We can use this property to easily compute $p\left(x_{j} \mid x_{j-2}, x_{j-3}, \ldots, x_{1}\right)$:

$$
\begin{aligned}
p\left(x_{j} \mid x_{j-2}, x_{j-3}, \ldots x_{1}\right) & =p\left(x_{j} \mid x_{j-2}\right) \\
& =\sum_{x_{j-1}} p\left(x_{j}, x_{j-1} \mid x_{j-2}\right) \\
& =\sum_{x_{j-1}} p\left(x_{j} \mid x_{j-1}, x_{j-2}\right) p\left(x_{j-1} \mid x_{j-2}\right) \\
& =\sum_{x_{j-1}} \underbrace{p\left(x_{j} \mid x_{j-1}\right)}_{\text {transition prob }} \underbrace{p\left(x_{j-1} \mid x_{j-2}\right)}_{\text {transition prob }}
\end{aligned}
$$

- Mathematically showing extra independence assumptions is tedious (see bonus).
- But all conditional independences implied by a DAG can seen in the graph.

D-Separation: From Graphs to Conditional Independence

- In DAGs: variables A and B are conditionally independent given C if:
- "D-separation blocks all undirected paths in the graph from any variable in A to any variable in B."
- In the special case of product of independent models our graph is:

- Here there are no paths to block, which implies the variables are independent.
- Checking paths in a graph tends to be faster than tedious calculations.

D-Separation as Genetic Inheritance

- The rules of d-separation are intuitive in a simple model of gene inheritance:
- Each node/person has single number, which we'll call a "gene".
- If you have no parents, your gene is a random number.
- If you have parents, your gene is a sum of your parents plus noise.
- For example, think of something like this:

- Graph corresponds to the factorization $p\left(x_{1}, x_{2}, x_{3}\right)=p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{3} \mid x_{1}, x_{2}\right)$.
- In this model, does $p\left(x_{1}, x_{2}\right)=p\left(x_{1}\right) p\left(x_{2}\right)$? (Are X_{1} and X_{2} independent?)

D-Separation as Genetic Inheritance

- Genes of people are independent if knowing one says nothing about the other.
- Your gene is dependent on your parents:
- If I know your parent's gene, I know something about yours.
- Your gene is independent of your (unrelated) friends:
- If you know your friend's gene, it doesn't tell me anything about you.
- Genes of people can be conditionally independent given a third person:
- Knowing your grandparent's gene tells you something about your gene.
- But grandparent's gene isn't useful if you know parent's gene.

D-Separation Case 0 (No Paths and Direct Links)

Are genes in person x independent of the genes in person y ?

- No path: X and Y are not related (independent).

We have $X \Perp Y$: there are no paths to be blocked.

- Direct link: X is the parent of Y.

We have $X \not \Perp Y$: knowing X tells you about Y (direct paths aren't blockable).

- And similarly knowing Y tells you about X.

D-Separation Case 0 (No Paths and Direct Links)

Neither case changes if we have a third independent person Z :

- No path: If X and Y are independent,

Z

We have $X \Perp Y$: adding Z doesn't make a path.

- Direct link: X is the parent of Y,

We have $X \nVdash Y \mid z$: adding Z doesn't block path.

- We'll use black or shaded nodes to denote values we condition on (in this case Z).
- We sometimes also call the nodes that we condition on the "observations".

D-Separation Case 1: Chain

- Case 1: X is the grandparent of Y.
- If Z is the parent we have:

We have $X \not \Perp Y$: knowing X would give information about Y because of Z - But if Z is observed:

In this case $X \Perp Y \mid Z$: knowing Z "breaks" dependence between X and Y.

D-Separation Case 1: Chain

- The same logic holds for great-grandparents:

- We have $X \not \Perp Y$ (left), but $X \Perp Y \mid Z_{1}$ (right).
- We also have $X \Perp Y \mid Z_{2}$ and that $X \Perp Y \mid Z_{1}, Z_{2}$.
- This case lets you test any independence in Markov chains.
- "Variables are independent conditioned on any variable in betweeen".

D-Separation Case 1: Chain

- Consider weird case where parents Z_{1} and Z_{2} share parent X :
- If Z_{1} and Z_{2} are observed:

We have $X \Perp Y \mid Z_{1}, Z_{2}$: knowing both parents breaks dependency.

- But if only Z_{1} is observed:

We have $X \nVdash Y \mid Z_{1}$: dependence still "flows" through Z_{2}.

D-Separation Case 2: Common Parent

- Case 2: X and Y are siblings.
- If Z is a common unobserved parent:

We have $X \mathbb{\Perp} Y$: knowing X would give information about Y.

- But if Z is observed:

In this case $X \Perp Y \mid Z$: knowing z "breaks" dependence between X and Y.

- This is the type of independence used in naive Bayes.

D-Separation Case 2: Common Parent

- Case 2: X and Y are siblings.
- If Z_{1} and Z_{2} are common observed parents:

We have $X \Perp Y \mid Z_{1}, Z_{2}$: knowing Z_{1} and Z_{2} breaks dependence between X and Y.

- But if we only observe Z_{2} :

Then we have $X \not \Perp Y \mid Z_{2}$: dependence still "flows" through Z_{1}.

D-Separation Case 3: Common Child

- Case 3: X and Y share a child Z :
- If we observe Z then we have:

We have $X \nVdash Y \mid Z$: if we know Z, then knowing X gives us information about Y. (Sometimes called "explaining away.")

- But if Z is not observed:

We have $X \Perp Y$: if you don't observe Z then X and Y are independent.

- Different from Case 1 and Case 2: not observing the child blocks the path.

D-Separation Case 3: Common Child

- Case 3: X and Y share a child Z_{1} :
- If there exists an unobserved grandchild Z_{2} :

We have $X \Perp Y$: the path is still blocked by not knowing Z_{1} or Z_{2}.

- But if Z_{2} is observed:

We have $X \nVdash Y \mid Z_{2}$: grandchild creates dependence even with unobserved child.

- Case 3 needs to consider descendants of child.

D-Separation Summary (MEMORIZE)

- Checking whether DAG implies A is independent of B given C :
- Consider each undirected path from any node in any A to any node in B.
- Ignoring directions and observations.
- Use directions/observations, check if any of below hold somewhere along each path:
(1) P includes a "chain" with an observed middle node (e.g., Markov chain):

(2) P includes a "fork" with an observed parent node (e.g., naive Bayes):

(3) P includes a "v-structure" or "collider" (e.g., genetic inheritance):

where the "child" and all its descendants are unobserved.
- If all paths are blocked by one of above, DAG implies the conditional independence.

D-Separation Summary (MEMORIZE)

- We say that A and B are d-separated (conditionally independent) given C if all undirected paths from A to B are "blocked" because one of the following holds somewhere on the path:
(1) P includes a "chain" with an observed middle node (e.g., Markov chain):

(2) P includes a "fork" with an observed parent node (e.g., naive Bayes):

(3) P includes a "v-structure" or "collider" (e.g., genetic inheritance):

where the "child" and all its descendants are unobserved.

Alarm Example

- Case 1 :
- Earthquake 뇨 Call.
- Earthquake \Perp Call | Alarm.
- Case 2:
- Alarm \nVdash Stuff Missing.
- Alarm \Perp Stuff Missing | Burglary.

Alarm Example

- Case 3:
- Earthquake \Perp Burglary.
- Earthquake 쁠urglary | Alarm.
- "Explaining away": knowing one parent can make the other less/more likely.
- Multiple Cases:
- Call \nVdash Stuff Missing.
- Earthquake \Perp Stuff Missing.
- Earthquake \nVdash Stuff Missing | Call.

Discussion of D-Separation

- D-separation lets you say if conditional independence is implied by assumptions:

$$
(A \text { and } B \text { are d-separated given } C) \Rightarrow A \Perp B \mid C .
$$

- However, there might be extra conditional independences in the distribution:
- These would depend on specific choices of the DAG parameters.
- For example, if we set Markov chain parameters so that $p\left(x_{j} \mid x_{j-1}\right)=p\left(x_{j}\right)$.
- Or some orderings of the chain rule may reveal different independences.
- Lack of d-separation doesn't imply dependence.
- Just that it's not guaranteed to be independent by the graph structure.
- Instead of restricting to $\{1,2, \ldots, j-1\}$, can have general parent choices.
- So x_{2} could be a parent of x_{1}.
- As long the graph is acyclic, there exists a valid ordering (chain rule makes sense). (all DAGs have a "topological order" of variables where parents are before children)

Non-Uniqueness of Graph and Equivalent Graphs

- Note that some graphs imply same conditional independences:
- Equivalent graphs: same v-structures and other (undirected) edges are the same.
- Examples of 3 equivalent graphs (left) and 3 non-equivalent graphs (right):

Beware of the "Causal" DAG

- It can be helpful to use the language of causality when reasoning about DAGs.
- You'll find that they give the correct causal interpretation based on our intuition.
- However, keep in mind that the arrows are not necessarily causal.
- " A causes B " can have the same graph as " B causes A "
- There is work on causal DAGs which add semantics to deal with "interventions".
- But these require assuming that the arrow directions are causal.
- Fitting a DAG to observational data doesn't imply anything about causality.

Outline

(1) MCMC
(2) Directed Acyclic Graphical Models
(3) D-Separation
(4) Plate Notation

Tilde Notation as a DAG

- When we write

$$
y^{i} \sim \mathcal{N}\left(w^{\top} x^{i}, 1\right)
$$

this can be interpretd as a DAG model:

- "The variables on the right of \sim are the parents of the variables on the left".
- We can see our standard $X \Perp w$ assumption in the graph.
- Common child case: w only depends on X if we know y.

IID Assumption as a DAG

- During week 1 , our first independence assumption was the IID assumption:

- Training/test examples come independently from data-generating process D.
- But D is unobserved, so knowing about some x^{i} tells us about the others.
- This why the IID assumptions lets us learn.

Plate Notation

- Graphical representation of the IID assumption:

- It's common to represent repeated parts of graphs using plate notation:

Tilde Notation as a DAG

- If the x^{i} are IID then we can represent linear regression as

- From d-separation on this graph we have $p(\mathbf{y} \mid \mathbf{X}, w)=\prod_{i=1}^{n} p\left(y^{i} \mid x^{i}, w\right)$.
- Our standard assumption that data is independent given parameters.
- We often omit the data-generating distribution D.
- But if you want to learn it, then you should remember that it's there.
- Note that plate reflects parameter tying: that we use same w for all i.

IID Bernoulli-Beta Model

- The Bernoulli-beta model as a DAG (with parameters and hyper-parameters):

- Notice data is independent of hyper-parameters given parameters.
- This is another of our standard independence assumptions.

Non-IID Bernoulli-Beta Model

- The non-IID variant we considered with grouped data:

- DAG reflects that we do not tie parameters across all training examples.
- Notice that if you fix α and β then you can't learn across groups:
- The θ_{j} are d-separated given α and β.

Non-IID Bernoulli-Beta Model

- Variant of the previous model with a hyper-hyper-parameter:

- Which is needed to avoid degeneracy.
- Better version uses nested plates.

Naive Bayes with DAGs/Plates

- For naive Bayes we have

$$
y^{i} \sim \operatorname{Cat}(\theta), \quad X^{i} \mid\left(Y^{i}=c\right) \sim \operatorname{Cat}\left(\theta_{c}\right)
$$

- Or in plate notation as

Bayesian Linear Regression as a DAG

- In Bayesian linear regression we assume

$$
y^{i} \sim \mathcal{N}\left(w^{\top} x^{i}, 1\right), \quad w_{j} \sim \mathcal{N}(0,1 / \lambda)
$$

which we can interpret as a DAG model:

- Or introducing a second plate over parmaeters:

Summary

- Metropolis-Hastings: MCMC method allowing arbitrary "proposals".
- Accept/reject samples based on proposal and target probabilities.
- Gibbs sampling: Samples each variable conditioned on all others.
- Special case of Metropolis-Hastings MCMC method.
- DAG models factorize joint distribution into product of conditionals.
- Usually we assume conditionals depend on small number of "parents".
- Most models we've seen can be represented as DAGs.
- Plate notation helps us do this efficiently.
- D-separation allows us to test conditional independences based on graph.
- Conditional independence follows if all undirected paths are "blocked".
- Observed values in chain or parent block paths.
- Unobserved children (with no observed grandchildren) also blocks paths.
- Next time: learning with DAGs.

Extra Conditional Independences in Markov Chains

- Proof that x_{j} is independent of $\left\{x_{1}, x_{2}, \ldots, x_{j-3}\right\}$ given x_{j-2} in Markov chain:

$$
\begin{aligned}
p\left(x_{j} \mid x_{j-2}, x_{j-3}, \ldots, x_{1}\right) & =\frac{p\left(x_{j}, x_{j-2}, x_{j-3}, \ldots, x_{1}\right)}{p\left(x_{j-2}, x_{j-3}, \ldots, x_{1}\right)} \quad \text { (def'n cond. prob.) } \\
& =\frac{\sum_{x_{j-1}} p\left(x_{j}, x_{j-1}, x_{j-2}, \ldots, x_{1}\right)}{p\left(x_{j-2} \mid x_{j-3}, x_{j-4}, \ldots, x_{1}\right) p\left(x_{j-3} \mid x_{j-4}, x_{j-5}, \ldots, x_{1}\right) \cdots p\left(x_{1}\right)} \quad \text { (marg. and chain rule) } \\
& =\frac{\sum_{x_{j-1}} p\left(x_{j} \mid x_{j-1}, x_{j-2}\right) p\left(x_{j-1} \mid x_{j-2}\right) \ldots p\left(x_{2} \mid x_{1}\right) p\left(x_{1}\right)}{p\left(x_{j-2} \mid x_{j-3}\right) p\left(x_{j-3} \mid x_{j-4}\right) \cdots p\left(x_{1}\right)} \text { (chain rule and Markov) } \\
& =\frac{p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) \cdots p\left(x_{j-2} \mid x_{j-3}\right) \sum_{x_{j-1}} p\left(x_{j} \mid x_{j-1}, x_{j-2}\right) p\left(x_{j-1} \mid x_{j-2}\right)}{p\left(x_{j-2} \mid x_{j-3}\right) p\left(x_{j-3} \mid x_{j-4}\right) \cdots p_{j\left(x_{1}\right)}} \\
& =\sum_{x_{j-1}} p\left(x_{j} \mid x_{j-1}, x_{j-2}\right) p\left(x_{j-1} \mid x_{j-2}\right) \quad \text { (cancel out in numerator/denominator) terms outsid } \\
& =\sum_{x_{j-1}} p\left(x_{j}, x_{j-1} \mid x_{j-2}\right) \quad \text { (product rule) } \\
& =p\left(x_{j} \mid x_{j-2}\right) \text { (marg rule). }
\end{aligned}
$$

- Similar steps could be used to show $X_{j} \Perp X_{j+2} \mid X_{j+1}$, and a variety of other conditional independences like $X_{1} \Perp X_{10} \mid X_{5}$.

Conditional Independence in Star Graphs

- Consider the following star graph:

- " 5 aliens get together and make a baby alien".
- Unconditionally, the 5 aliens are independent.

Conditional Independence in Star Graphs

- Consider the following star graph:

- " 5 aliens get together and make a baby alien".
- Conditioned on the baby, the 5 aliens are dependent.

Conditional Independence in Star Graphs

- Consider the following star graph:

- "An organism produces 5 clones".
- Unconditionally, the 5 clones are dependent.

Conditional Independence in Star Graphs

- Consider the following star graph:

- "An organism produces 5 clones".
- Conditioned on the original, the 5 clones are independent.

