CPSC 440/540: Advanced Machine Learning
 Message Passing; MCMC
 Danica Sutherland (building on materials from Mark Schmidt)
 University of British Columbia

Winter 2023

Last Time: Markov Chains

- State space, initial probabilities, transition matrix
- Homogeneous or inhomogeneous
- MLE: just fit appropriate categorical distribution (by counting) for each part
- Inference: ancestral sampling, marginals with CK equations

Application: Voice Photoshop

- Adobe VoCo uses decoding in a Markov chain as part of synthesizing voices:

Fig. 7. Dynamic triphone preselection. For each query triphone (top) we find a candidate set of good potential matches (columns below). Good paths through this set minimize differences from the query, number and severity of breaks, and contextual mismatches between neighboring triphones.

- https://www.youtube.com/watch?v=I314XLZ59iw

Decoding: Maximizing Joint Probability

- Decoding the mode in density models: finding x with highest joint probability:

$$
\underset{x_{1}, x_{2}, \ldots, x_{d}}{\arg \max } p\left(x_{1}, x_{2}, \ldots, x_{d}\right)
$$

- For CS grad student $(d=60)$ the mode is industry for all years.
- The mode often doesn't look like a typical sample.
- The mode can change if you increase d.
- Decoding is easy for independent models:
- Here, $p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{3}\right) p\left(x_{4}\right)$.
- You can optimize $p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ by optimizing each $p\left(x_{j}\right)$ independently.
- Can we also maximize the marginals to decode a Markov chain?

Example of Decoding vs. Maximizing Marginals

- Consider the "plane of doom" 2-variable Markov chain:

$$
X=\left[\begin{array}{cc}
\text { land } & \text { alive } \\
\text { land } & \text { alive } \\
\text { crash } & \text { dead } \\
\text { explode } & \text { dead } \\
\text { crash } & \text { dead } \\
\text { land } & \text { alive } \\
\vdots & \vdots
\end{array}\right]
$$

- 40% of the time the plane lands and you live.
- 30% of the time the plane crashes and you die.
- 30% of the time the explodes and you die.

Example of Decoding vs. Maximizing Marginals

- Initial probabilities are given by

$$
\operatorname{Pr}\left(x_{1}=\text { land }\right)=0.4, \quad \operatorname{Pr}\left(x_{1}=\text { crash }\right)=0.3, \quad \operatorname{Pr}\left(x_{1}=\text { explode }\right)=0.3,
$$

and transition probabilites are:

$$
\begin{array}{ll}
\operatorname{Pr}\left(X_{2}=\text { alive } \mid X_{1}=\text { land }\right)=1, & \operatorname{Pr}\left(X_{2}=\text { alive } \mid X_{1}=\text { crash }\right)=0 \\
& \operatorname{Pr}\left(X_{2}=\text { alive } \mid X_{1}=\text { explode }\right)=0
\end{array}
$$

- From the CK equations, we know

$$
\operatorname{Pr}\left(X_{2}=\text { alive }\right)=0.4, \quad \operatorname{Pr}\left(X_{2}=\text { dead }\right)=0.6
$$

- Maximizing the marginals $p\left(x_{j}\right)$ independently gives (land, dead).
- This has probability 0 , since $\operatorname{Pr}($ dead \mid land $)=0$.
- Decoding considers the joint assignment to x_{1} and x_{2} maximizing probability.
- In this case it's (land, alive), which has probability 0.4.

Decoding with Dynamic Programming

- Note that decoding can't be done forward in time as in CK equations.
- Even if $\operatorname{Pr}\left(x_{1}=1\right)=0.99$, the most likely sequence could have $x_{1}=2$.
- So we need to optimize over all k^{d} assignments to all variables.
- Fortunately, we can solve this problem using dynamic programming.
- Ingredients of dynamic programming:
(1) Optimal sub-structure.
- We can divide the problem into sub-problems that can be solved individually.
(2) Overlapping sub-problems.
- The same sub-problems are reused several times.

Decoding with Dynamic Programming

- For decoding in Markov chains, we'll use the following sub-problem:
- Compute the highest probability sequence of length j ending in state c.
- We'll use $M_{j}(c)$ as the probability of this sequence.

$$
M_{j}(c)=\max _{x_{1}, x_{2}, \ldots, x_{j-1}} p\left(x_{1}, x_{2}, \ldots, x_{j-1}, c\right) .
$$

- Optimal sub-structure:
- We can find the decoding by taking $\arg \max _{x_{d}} M_{d}\left(x_{d}\right)$, then backtracking.
- Base case: $M_{1}(c)=\operatorname{Pr}\left(X_{1}=c\right)$, which we're given.
- We can compute other $M_{j}(s)$ recursively (derivation of this coming up),

$$
M_{j}(s)=\max _{x_{j-1}}^{\operatorname{Pr}\left(x_{j}=c \mid X_{j-1}=x_{j-1}\right)} \underbrace{\underbrace{M_{j-1}\left(x_{j-1}\right)}_{\text {recurse }}}_{\text {given }} .
$$

- Overlapping sub-problems:
- The same k values of $M_{j-1}(s)$ are used to compute the k values of $M_{j}(s)$.

Digression: Recursive Joint Maximization

- To derive the M_{j} formula, it will be helpful to re-write joint maximizations as

$$
\max _{x_{1}, x_{2}} f\left(x_{1}, x_{2}\right)=\max _{x_{1}} g\left(x_{1}\right) \quad \text { where } \quad g\left(x_{1}\right)=\max _{x_{2}} f\left(x_{1}, x_{2}\right)
$$

- This f_{1} "maximizes out" x_{2}, similar to marginalization rule in probability.
- Can also write this as

$$
\max _{x_{1}, x_{2}} f\left(x_{1}, x_{2}\right)=\max _{x_{1}} \underbrace{\max _{x_{2}} f\left(x_{1}, x_{2}\right)}_{g\left(x_{1}\right)}
$$

- You can do this trick repeatedly and/or with any number of variables.

Decoding with Dynamic Programming

- Derivation of recursive calculation for $M_{j}\left(x_{j}\right)$ for decoding Markov chains:

$$
\begin{aligned}
M_{j}\left(x_{j}\right) & =\max _{x_{1}, x_{2}, \ldots, x_{j-1}} p\left(x_{1}, x_{2}, \ldots, x_{j}\right) \\
& =\max _{x_{1}, x_{2}, \ldots x_{j-1}} p\left(x_{j} \mid x_{1}, x_{2}, \ldots x_{j-1}\right) p\left(x_{1}, x_{2}, \ldots, x_{j-1}\right) \\
& =\max _{x_{1}, x_{2}, \ldots x_{j-1}} p\left(x_{j} \mid x_{j-1}\right) p\left(x_{1}, x_{2}, \ldots, x_{j-1}\right) \\
& =\max _{x_{j-1}}\left\{\max _{x_{1}, x_{2}, \ldots x_{j-2}} p\left(x_{j} \mid x_{j-1}\right) p\left(x_{1}, x_{2}, x_{j-1}\right)\right\} \\
& =\max _{x_{j-1}}\left\{p\left(x_{j} \mid x_{j-1}\right) \max _{x_{1}, x_{2}, \ldots x_{j-2}} p\left(x_{1}, x_{2}, x_{j-1}\right)\right\} \\
& =\max _{x_{j-1}} \underbrace{p\left(x_{j} \mid x_{j-1}\right)}_{\text {given }} \underbrace{M_{j-1}\left(x_{j-1}\right)}_{\text {recurse }}
\end{aligned}
$$

$$
\begin{array}{r}
\left(\max _{a, b} f(a, b)=\max _{a}\left\{\max _{b} f(a, b)\right\}\right) \\
\left(\max _{i} \alpha a_{i}=\alpha \max _{i} a_{i} \text { for } \alpha \geq 0\right) \\
\left(\text { definition of } M_{j-1}\left(x_{j-1}\right)\right)
\end{array}
$$

- We also store the argmax over x_{j-1} for each (j, s).
- Once we have $M_{j}\left(x_{j}=s\right)$ for all j and s values, backtrack using these values to solve problem.

Example: Decoding the Plane of Doom

- We have $M_{1}\left(x_{1}\right)=p\left(x_{1}\right)$ so in "plane of doom" we have

$$
M_{1}(\text { land })=0.4, \quad M_{1}(\text { crash })=0.3, \quad M_{1}(\operatorname{explode})=0.3
$$

- We have $M_{2}\left(x_{2}\right)=\max _{x_{1}} p\left(x_{2} \mid x_{1}\right) M_{1}\left(x_{1}\right)$ so we get

$$
M_{2}(\text { alive })=0.4, \quad M_{2}(\text { dead })=0.3
$$

- $M_{2}(2) \neq p\left(x_{2}=2\right)$ because we needed to choose either crash or explode.
- And notice that $\sum_{c=1}^{k} M_{2}\left(x_{j}=c\right) \neq 1$ (this is not a distribution over x_{2}).
- We maximize $M_{2}\left(x_{2}\right)$ to find that the optimal decoding ends with alive.
- We now need to backtrack to find the state that led to alive, giving land.

Viterbi Decoding

- The Viterbi decoding dynamic programming algorithm:
(1) Set $M_{1}\left(x_{1}\right)=p\left(x_{1}\right)$ for all x_{1}.
(2) Compute $M_{2}\left(x_{2}\right)$ for all x_{2}, store argmax of x_{1} leading to each x_{2}.
(3) Compute $M_{3}\left(x_{3}\right)$ for all x_{3}, store argmax of x_{2} leading to each x_{3}.
(9)...
(5) Maximize $M_{d}\left(x_{d}\right)$ to find value of x_{d} in a decoding.
(0) Bactrack to find the value of x_{d-1} that led to this x_{d}.
((Backtrack to find the value of x_{d-2} that led to this x_{d-1}.
(3)...
(9) Backtrack to find the value of x_{1} that led to this x_{2}.
- For a fixed j, computing all $M_{j}\left(x_{j}\right)$ given all $M_{j-1}\left(x_{j-1}\right)$ costs $O\left(k^{2}\right)$.
- Total cost is only $O\left(d k^{2}\right)$ to search over all k^{d} paths.
- Has numerous applications, like decoding digital TV.

Viterbi Decoding

- What Viterbi decoding data structures might look like $(d=4, k=3)$:

$$
M=\left[\begin{array}{lll}
0.25 & 0.25 & 0.50 \\
0.35 & 0.15 & 0.05 \\
0.10 & 0.05 & 0.05 \\
0.02 & 0.03 & 0.05
\end{array}\right], \quad B=\left[\begin{array}{lll}
\emptyset & \emptyset & \emptyset \\
1 & 1 & 3 \\
2 & 1 & 1 \\
2 & 2 & 1
\end{array}\right] .
$$

- The $d \times k$ matrix M stores the values $M_{j}(s)$, while B stores the argmax values.
- From the last row of M and the backtracking matrix B, the decoding is $x_{1}=1, x_{2}=2, x_{3}=1, x_{4}=3$.

Conditional Probabilities in Markov Chains: Easy Case

- How do we compute conditionals like $\operatorname{Pr}\left(x_{j}=c \mid x_{j^{\prime}}=c^{\prime}\right)$ in Markov chains?
- Consider conditioning on an earlier time, like computing $p\left(x_{10} \mid x_{3}\right)$:
- We are given the value of x_{3}.
- We obtain $p\left(x_{4} \mid x_{3}\right)$ by looking it up among transition probabilities.
- We can compute $p\left(x_{5} \mid x_{3}\right)$ by adding conditioning to the CK equations,

$$
\begin{array}{rlr}
p\left(x_{5} \mid x_{3}\right) & =\sum_{x_{4}} p\left(x_{5}, x_{4} \mid x_{3}\right) & \text { (marginalizing) } \\
& =\sum_{x_{4}} p\left(x_{5} \mid x_{4}, x_{3}\right) p\left(x_{4} \mid x_{3}\right) & \text { (product rule) } \\
& =\sum_{x_{4}} \underbrace{p\left(x_{5} \mid x_{4}\right)}_{\text {given }} \underbrace{p\left(x_{4} \mid x_{3}\right)}_{\text {recurse }} & \text { (Markov property). }
\end{array}
$$

- Repeat this to find $p\left(x_{6} \mid x_{3}\right)$, then $p\left(x_{7} \mid x_{3}\right)$, up to $p\left(x_{10} \mid x_{3}\right)$.

Conditional Probabilities in Markov Chains with "Forward" Messages

- How do we condition on a future time, like computing $p\left(x_{3} \mid x_{6}\right)$?
- Need to sum over "past" values x_{1} and x_{2}, and over "future" values x_{4} and x_{5}.

$$
\begin{aligned}
p\left(x_{3} \mid x_{6}\right) & \propto p\left(x_{3}, x_{6}\right)=\sum_{x_{5}} \sum_{x_{4}} \sum_{x_{2}} \sum_{x_{1}} p\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \\
& =\sum_{x_{5}} \sum_{x_{4}} \sum_{x_{2}} \sum_{x_{1}} p\left(x_{6} \mid x_{5}\right) p\left(x_{5} \mid x_{4}\right) p\left(x_{4} \mid x_{3}\right) p\left(x_{3} \mid x_{2}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{1}\right) \\
& =\sum_{x_{5}} p\left(x_{6} \mid x_{5}\right) \sum_{x_{4}} p\left(x_{5} \mid x_{4}\right) p\left(x_{4} \mid x_{3}\right) \sum_{x_{2}} p\left(x_{3} \mid x_{2}\right) \sum_{x_{1}} p\left(x_{2} \mid x_{1}\right) p\left(x_{1}\right) \\
& =\sum_{x_{5}} p\left(x_{6} \mid x_{5}\right) \sum_{x_{4}} p\left(x_{5} \mid x_{4}\right) p\left(x_{4} \mid x_{3}\right) \sum_{x_{2}} p\left(x_{3} \mid x_{2}\right) M_{2}\left(x_{2}\right) \\
& =\sum_{x_{5}} p\left(x_{6} \mid x_{5}\right) \sum_{x_{4}} p\left(x_{5} \mid x_{4}\right) p\left(x_{4} \mid x_{3}\right) M_{3}\left(x_{3}\right) \\
& =\sum_{x_{5}} p\left(x_{6} \mid x_{5}\right) M_{5}\left(x_{5}\right)=M_{6}\left(x_{6}\right)
\end{aligned}
$$

- The forward message $M_{j}\left(x_{j}\right)$ gives "everything you need to know up to time j, for this x_{j} value."
- Value of M_{6} depends on x_{3} (for $j>3$); to get $p\left(x_{3} \mid x_{6}\right.$), normalize by sum for all x_{3}.

Conditional Probabilities in Markov Chains with "Backward" Messages

- We could exchange order of sums to do computation "backwards" in time:

$$
\begin{aligned}
p\left(x_{3} \mid x_{6}\right) & =\sum_{x_{1}} \sum_{x_{2}} \sum_{x_{4}} \sum_{x_{5}} p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}\right) p\left(x_{4} \mid x_{3}\right) p\left(x_{5} \mid x_{4}\right) p\left(x_{6} \mid x_{5}\right) \\
& =\sum_{x_{1}} p\left(x_{1}\right) \sum_{x_{2}} p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}\right) \sum_{x_{4}} p\left(x_{4} \mid x_{3}\right) \sum_{x_{5}} p\left(x_{5} \mid x_{4}\right) p\left(x_{6} \mid x_{5}\right) \\
& =\sum_{x_{1}} p\left(x_{1}\right) \sum_{x_{2}} p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}\right) \sum_{x_{4}} p\left(x_{4} \mid x_{3}\right) V_{4}\left(x_{4}\right) \\
& =\sum_{x_{1}} p\left(x_{1}\right) \sum_{x_{2}} p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}\right) V_{3}\left(x_{3}\right) \\
& =\sum_{x_{1}} p\left(x_{1}\right) V_{1}\left(x_{1}\right)
\end{aligned}
$$

- The V_{j} summarize "everything you need to know after time j for this x_{j} value".
- Sometimes called "cost to go" function, as in "what is the cost for going to x_{j}."
- Sometimes called a value function, as in "what is the future value of being in x_{j}."

Motivation for Forward-Backward Algorithm

- Why do care about being able to solve this "forward" or "backward" in time?
- Cost is $O\left(d k^{2}\right)$ in both directions to compute conditionals in Markov chains.
- Consider computing $p\left(x_{1} \mid A\right), p\left(x_{2} \mid A\right), \ldots, p\left(x_{d} \mid A\right)$ for some event A.
- Need all these conditionals to add features, compute conditionals with neural networks, or partial observations (as in hidden Markov models, HMMs).
- We could solve this in $O\left(d k^{2}\right)$ for each time, giving a total cost of $O\left(d^{2} k^{2}\right)$.
- Using forward messages $M_{j}\left(x_{j}\right)$ at each time, or backwards messages $V_{j}\left(x_{j}\right)$.
- Alternately, the forward-backward algorithm computes all conditionals in $O\left(d k^{2}\right)$.
- By doing one "forward" pass and one "backward" pass with appropriate messages.

Potential Function Representation of Markov Chains

- Forward-backward algorithm considers probabilities written in the form

$$
p\left(x_{1}, x_{2}, \ldots, x_{d}\right)=\frac{1}{Z}\left(\prod_{j=1}^{d} \phi_{j}\left(x_{j}\right)\right)\left(\prod_{j=2}^{d} \psi_{j}\left(x_{j}, x_{j-1}\right)\right)
$$

- The ϕ_{j} and ψ_{j} functions are called potential functions.
- They can map from a state (ϕ) or two states (ψ) to a non-negative number.
- Normalizing constant Z ensures we sum/integrate to 1 (over all $x_{1}, x_{2}, \ldots, x_{d}$).
- We can write Markov chains in this form by using (in this case $Z=1$):
- $\phi_{1}\left(x_{1}\right)=p\left(x_{1}\right)$ and $\phi_{j}\left(x_{j}\right)=1$ when $j \neq 1$.
- $\psi_{j}\left(x_{j-1}, x_{j}\right)=p\left(x_{j} \mid x_{j-1}\right)$.
- Why do we need the ϕ_{j} functions?
- To condition on $x_{j}=c$, set $\phi_{j}(c)=1$ and $\phi_{j}\left(c^{\prime}\right)=0$ for $c^{\prime} \neq c$.
- For "hidden Markov models" (HMMs), the ϕ_{j} will be the "emission probabilities".
- For neural networks, ϕ_{j} will be \exp (neural network output) (generalizes softmax).

Forward-Backward Algorithm

- Forward pass in forward-backward algorithm (generalizes CK equations):
- Set each $M_{1}\left(x_{1}\right)=\phi_{1}\left(x_{1}\right)$.
- For $j=2$ to $j=d$, set each $M_{j}\left(x_{j}\right)=\sum_{x_{j-1}} \phi_{j}\left(x_{j}\right) \psi_{j}\left(x_{j}, x_{j-1}\right) M_{j-1}\left(x_{j-1}\right)$.
- "Multiply by new terms at time j, summing up over x_{j-1} values."
- Backward pass in forward-backward algorithm:
- Set each $V_{d}\left(x_{d}\right)=\phi_{d}\left(x_{d}\right)$.
- For $(d-1)$ to $j=1$, set each $V_{j}\left(x_{j}\right)=\sum_{x_{j+1}} \phi_{j}\left(x_{j}\right) \psi_{j+1}\left(x_{j+1}, x_{j}\right) V_{j+1}\left(x_{j+1}\right)$.
- We then have that $p\left(x_{j}\right) \propto \frac{M_{j}\left(x_{j}\right) V_{j}\left(x_{j}\right)}{\phi_{j}\left(x_{j}\right)}$.
- Not obvious; see bonus for how it gives conditional in Markov chain.
- We divide by $\phi_{j}\left(x_{j}\right)$ since it is included in both the forward and backward messages.
- You can alternately shift ϕ_{j} to earlier/later message to remove division.
- We can also get the normalizing constant as $Z=\sum_{c=1}^{k} M_{d}(c)$.

Sequential Monte Carlo (Particle Filters)

- For continuous non-Gaussian Markov chains, we usually need approximate inference.
- A popular strategy in this setting is sequential Monte Carlo (SMC).
- Importance sampling where proposal q_{t} changes over time from simple to posterior.
- AKA sequential importance sampling, annealed importance sampling, particle filter.
- And can be viewed as a special case of genetic algorithms.
- "Particle Filter Explained without Equations":
https://www. youtube.com/watch?v=aUkBa1zMKv4

Forward-Backward for Decoding and Sampling

- Viterbi decoding can be generalized to use potentials ϕ and ψ :
- Compute forward messages, but with summation replaced by maximization:

$$
M_{j}\left(x_{j}\right) \propto \max _{x_{j-1}} \phi_{j}\left(x_{j}\right) \psi_{j}\left(x_{j}, x_{j-1}\right) M_{j-1}\left(x_{j-1}\right) .
$$

- Find the largest value of $M_{d}\left(x_{d}\right)$, then backtrack to find decoding.
- Forward-filter backward-sample is a potentials (ϕ and ψ) variant for sampling.
- Forward pass is the same.
- Backward pass generates samples (ancestral sampling backwards in time):
- Sample x_{d} from $M_{d}\left(x_{d}\right)=p\left(x_{d}\right)$.
- Sample x_{d-1} using $M_{d-1}\left(x_{d-1}\right)$ and sampled x_{d}.
- Sample x_{d-2} using $M_{d-2}\left(x_{d-2}\right)$ and sampled x_{d-1}.
- (continue until you have sampled x_{1})

Outline

(1) Message Passing
(2) MCMC

Markov Chains for Monte Carlo Estimation

- We've been discussing inference in Markov chains.
- Sampling, marginals, stationary distribution, decoding, conditionals.
- We can also use Markov chains for inference in other models.
- Most common way to do this is Markov chain Monte Carlo (MCMC).
- Widely used for approximate inference, e.g. in Bayesian logistic regression.
- High-level idea of MCMC:
- We want to use Monte Carlo estimates with a distribution p.
- But we don't know how to generate IID samples from p.
- Design a homogeneous Markov chain whose stationary distribution is p.
- This is usually surprisingly easy to do.
- Use ancestral sampling to sample from a long version of this Markov chain.
- Use the Markov chain samples within the Monte Carlo approximation.

Degenerate Example: "Pointless MCMC"

- Consider finding the expected value of a fair die:
- For a 6 -sided die, the expected value is 3.5 .
- Consider the following "pointless MCMC" algorithm:
- Start with some initial value, like " 4 ".
- At each step, roll the die and generate a random number u :
- If $u<0.5$, "accept" the roll and take the roll as the next sample.
- Otherwise, "reject" the roll and take the old value (e.g. " 4 ") as the next sample.
- Generates samples from a Markov chain with this transition probability:

$$
q\left(x_{t} \mid x_{t-1}\right)= \begin{cases}7 / 12 & x_{t}=x_{t-1} \\ 1 / 12 & x_{t} \neq x_{t-1}\end{cases}
$$

- Using q to avoid confusion with the probability p we want to sample.

Degenerate Example: "Pointless MCMC"

- Pointless MCMC in action:
- Start with " 4 ", so record " 4 ".
- Roll a " 6 " and generate 0.234 , so record " 6 ".
- Roll a " 3 " and generate 0.612 , so record " 6 ".
- Roll a " 2 " and generate 0.523 , so record " 6 ".
- Roll a " 3 " and generate 0.125 , so record " 3 ".
- Roll a " 2 " and generate 0.433 , so record " 2 ".
- So our samples are 4,6,6,6,3,2...
- If you run this long enough, you will spend $1 / 6$ of the time on each number.
- Stationary distribution of pointless MCMC is $\pi(c)=1 / 6$, so

$$
\pi(x)=p(x)
$$

which is the key feature underlying MCMC methods.

- This property lets us use the dependent samples within Monte Carlo.
- It is "pointless" since it assumes we can generate IID samples from p.
- If you can do that, don't use MCMC to get approximate samples!

Markov Chain Monte Carlo (MCMC)

- Markov chain Monte Carlo (MCMC):
- Design a Markov chain that has $\pi(x)=p(x)$.
- For large enough k, a sample x^{k} from the chain will be distributed according to $p(x)$.
- We changed notation a bit: x^{1} is the first sampled state, x^{2} the second, \ldots, x^{n} last.
- Use the Markov chain samples within a Monte Carlo estimator,

$$
\mathbb{E}[g(x)] \approx \frac{1}{n} \sum_{t=1}^{n} g\left(x^{i}\right) .
$$

- Law of large numbers can be generalized to show this converges as $n \rightarrow \infty$.
- "Ergodic theorem."
- But convergence is slower since we're generating dependent samples.
- A popular way to design the Markov chain is Metropolis-Hastings algorithm.
- Oldest algorithm out of the " 10 Best Algorithms of the 20th Century".

Special Case: Metropolis Algorithm

- The Metropolis algorithm for sampling from a continuous target $p(x)$:
- Assumes we can evaluate p up to a normalizing constant, $p(x)=\tilde{p}(x) / Z$.
- Start with some initial value x^{0}.
- On each iteration add zero-mean Gaussian noise to x^{t-1} to give proposal \hat{x}^{t}.
- And generate a u uniformly between 0 and 1 .
- "Accept" the proposal and set $x^{t}=\hat{x}^{t}$ if

$$
u \leq \frac{\tilde{p}\left(\hat{x}^{t}\right)}{\tilde{p}\left(x^{t-1}\right)}, \quad \frac{(\text { probability of proposed })}{(\text { probability of current })}
$$

- Otherwise "reject" the sample and use x^{t-1} again as the next sample x^{t}.
- Proposals that increase probability are always accepted.
- Proposals that decrease probability might be accepted or rejected.
- A random walk, but sometimes rejecting steps that decrease probability:
- A valid MCMC algorithm on continuous densities, but convergence may be slow.
- You can implement this even if you don't know normalizing constant.

Metropolis Algorithm in Action

while True:
xhat $=\mathrm{x}+1$
rs.multivariate_normal(cov=Sigma)
$\mathrm{u}=\mathrm{rs}$. random()
if $u<p$ (xhat) / $p(x)$:
$\mathrm{x}=\mathrm{xhat}$
yield x

Metropolis Algorithm Analysis

- Markov chain with transitions $q_{s \rightarrow s^{\prime}}=q\left(x^{t}=s^{\prime} \mid x^{t-1}=s\right)$ is reversible if

$$
\pi(s) q_{s \rightarrow s^{\prime}}=\pi\left(s^{\prime}\right) q_{s^{\prime} \rightarrow s},
$$

for some distribution π (this condition is called detailed balance).

- Reversibility implies π is a stationary distribution:

$$
\begin{aligned}
\pi^{+}(s)=\sum_{s^{\prime}} \pi\left(s^{\prime}\right) q_{s^{\prime} \rightarrow s} & =\sum_{s^{\prime}} \pi(s) q_{s \rightarrow s^{\prime}} \quad \text { (detailed balance for each term) } \\
& =\pi(s) \underbrace{\sum_{s^{\prime}} q_{s \rightarrow s^{\prime}}}_{1} \\
& =\pi(s) \quad \text { (stationary condition). }
\end{aligned}
$$

- Metropolis is reversible with $\pi=p$ (bonus slide), so p is stationary distribution.
- And positive transition probabilities mean π exists, and is unique/reached.

Markov Chain Monte Carlo

MCMC sampling from a Gaussian:

From top left to bottom right: histograms of 1000 independent
Markov chains with a normal distribution as target distribution.

MCMC Implementation Issues

- In practice, we often don't take all samples in our Monte Carlo estimate:
- Burn in: throw away the initial samples when we're far from stationary.
- Thinning: only keep every k samples, since they'll be highly correlated.
- Two common ways that MCMC is applied:
(1) Sample from a huge number of Markov chains for a long time, use final states.
- Great for parallelization.
- No need for thinning, since you throw all but last samples.
- Need to worry about burn in for each chain.
(2) Sample from one Markov chain for a really long time, use states across time.
- Less worry about burn in.
- May need to worry about thinning.
- It can very hard to diagnose if we have reached stationary distribution.
- It's PSPACE-hard - even harder than NP-hard.
- Various heuristics exist.

Summary

- Viterbi decoding allow efficient decoding with Markov chains.
- A special case of dynamic programming.
- Potential representation of Markov chains (more general formulation).
- Non-negative potential ϕ at each time and ψ for each transition.
- Forward-backward generalizes CK equations for potentials.
- Allows computing all marginals in $O\left(d k^{2}\right)$.
- Markov chain Monte Carlo (MCMC) approximates complicated expectations.
- Generate samples from a Markov chain that has p as stationary distribution.
- Use these samples within a Monte Carlo approximation.
- Next time: lots more MCMC and lots of DAGs.

Computing Markov Chain Conditional using Forward-Backward

$$
\begin{aligned}
p\left(x_{3} \mid x_{6}\right) & \propto \sum_{x_{4}} \sum_{x_{5}} \sum_{x_{2}} \sum_{x_{1}} p\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \quad \text { (set up both sums to work "outside in") } \\
& =\sum_{x_{4}} \sum_{x_{5}} \sum_{x_{2}} \sum_{x_{1}} p\left(x_{4} \mid x_{3}\right) p\left(x_{5} \mid x_{4}\right) p\left(x_{6} \mid x_{5}\right) p\left(x_{3} \mid x_{2}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{1}\right) \\
& =\sum_{x_{4}} p\left(x_{4} \mid x_{3}\right) \sum_{x_{5}} p\left(x_{5} \mid x_{4}\right) p\left(x_{6} \mid x_{5}\right) \sum_{x_{2}} p\left(x_{3} \mid x_{2}\right) \sum_{x_{1}} p\left(x_{2} \mid x_{1}\right) p\left(x_{1}\right) \\
& =\sum_{x_{4}} p\left(x_{4} \mid x_{3}\right) \sum_{x_{5}} p\left(x_{5} \mid x_{4}\right) p\left(x_{6} \mid x_{5}\right) \sum_{x_{2}} p\left(x_{3} \mid x_{2}\right) \sum_{x_{1}} p\left(x_{2} \mid x_{1}\right) M_{1}\left(x_{1}\right) \\
& =\sum_{x_{4}} p\left(x_{4} \mid x_{3}\right) \sum_{x_{5}} p\left(x_{5} \mid x_{4}\right) p\left(x_{6} \mid x_{5}\right) \sum_{x_{2}} p\left(x_{3} \mid x_{2}\right) M_{2}\left(x_{2}\right) \\
& =\sum_{x_{4}} p\left(x_{4} \mid x_{3}\right) \sum_{x_{5}} p\left(x_{5} \mid x_{4}\right) p\left(x_{6} \mid x_{5}\right) M_{3}\left(x_{3}\right) \\
& =M_{3}\left(x_{3}\right) \sum_{x_{4}} p\left(x_{4} \mid x_{3}\right) \sum_{x_{5}} p\left(x_{5} \mid x_{4}\right) p\left(x_{6} \mid x_{5}\right) \quad\left(\text { take } M_{3}\left(x_{3}\right)\right. \text { outside sums) } \\
& =M_{3}\left(x_{3}\right) \sum_{x_{4}} p\left(x_{4} \mid x_{3}\right) \sum_{x_{5}} p\left(x_{5} \mid x_{4}\right) p\left(x_{6} \mid x_{5}\right) V_{6}\left(x_{6}\right) \quad\left(V_{6}\left(x_{6}\right)=1\right) \\
& =M_{3}\left(x_{3}\right) \sum_{x_{4}} p\left(x_{4} \mid x_{3}\right) \sum_{x_{5}} p\left(x_{5} \mid x_{4}\right) V_{5}\left(x_{5}\right) \\
& =M_{3}\left(x_{3}\right) \sum_{x_{4}} p\left(x_{4} \mid x_{3}\right) V_{4}\left(x_{4}\right) \\
& =M_{3}\left(x_{3}\right) V_{3}\left(x_{3}\right)\left(\phi_{3}\left(x_{3}\right)=1 \text { so no division, normalize over } x_{3}\right. \text { values to get final answer) }
\end{aligned}
$$

Metropolis Algorithm Analysis

- Metropolis algorithm has $q_{s \rightarrow s^{\prime}}>0$ (sufficient to guarantee stationary distribution is unique and we reach it), and satisfies detailed balance with target distribution p,

$$
p(s) q_{s \rightarrow s^{\prime}}=p\left(s^{\prime}\right) q_{s^{\prime} \rightarrow s}
$$

- We can show this by defining the transition probabilities as

$$
c_{s-s^{\prime}}=\frac{\exp \left(-\frac{1}{2}\left(s-s^{\prime}\right) \Sigma^{-1}\left(s-s^{\prime}\right)\right)}{(2 \pi \operatorname{det} \Sigma)^{d / 2}} \quad q_{s \rightarrow s^{\prime}}=c_{s-s^{\prime}} \min \left\{1, \frac{\tilde{p}\left(s^{\prime}\right)}{\tilde{p}(s)}\right\},
$$

and observing that

$$
\begin{aligned}
p(s) q_{s \rightarrow s^{\prime}} & =c_{s-s^{\prime}} p(s) \min \left\{1, \frac{\tilde{p}\left(s^{\prime}\right)}{\tilde{p}(s)}\right\}=c_{s-s^{\prime}} p(s) \min \left\{1, \frac{\frac{1}{Z} \tilde{p}\left(s^{\prime}\right)}{\frac{1}{Z} \tilde{p}(s)}\right\} \\
& =c_{s-s^{\prime}} p(s) \min \left\{1, \frac{p\left(s^{\prime}\right)}{p(s)}\right\}=c_{s-s^{\prime}} \min \left\{p(s), p\left(s^{\prime}\right)\right\} \\
& =p\left(s^{\prime}\right) c_{s^{\prime}-s} \min \left\{1, \frac{p(s)}{p\left(s^{\prime}\right)}\right\}=p\left(s^{\prime}\right) q_{s^{\prime} \rightarrow s} .
\end{aligned}
$$

