CPSC 440/540: Advanced Machine Learning
Message Passing; MCMC

Danica Sutherland (building on materials from Mark Schmidt)

University of British Columbia

Winter 2023

Last Time: Markov Chains

State space, initial probabilities, transition matrix

Homogeneous or inhomogeneous

MLE: just fit appropriate categorical distribution (by counting) for each part
Inference: ancestral sampling, marginals with CK equations

Application: Voice Photoshop bonus!

@ Adobe VoCo uses decoding in a Markov chain as part of synthesizing voices:

Query | [
ouy | spsa || sie || rer G_RAH
'/' r ™
sp_S_1 -1 S.JIK IY_G_R G_R_AH
sp_S_I =1 SIIE IY GR ; G_REY
spS1 k-1 SIT 1GN \ G.REY
\ SIYG /| 160 | \ GRAY
sp LG
[Initial candidate table
P1G including all Triphones
R and Diphones.
Triphone match et i ‘ Diphone match " - Co;“::‘::\

Fig. 7. Dynamic triphone preselection. For each query triphone (top) we
find a candidate set of good potential matches (columns below). Good paths
through this set minimize differences from the query, number and severity
of breaks, and contextual mismatches between neighboring triphones.

http://gfx.cs.princeton.edu/pubs/Jin_2017_VTI/Jin2017-VoCo-paper.pdf

e https://www.youtube.com/watch?v=I314XLZ59iw

http://gfx.cs.princeton.edu/pubs/Jin_2017_VTI/Jin2017-VoCo-paper.pdf
https://www.youtube.com/watch?v=I3l4XLZ59iw

Decoding: Maximizing Joint Probability

Decoding the mode in density models: finding x with highest joint probability:

argmax p(z1,Ta,...,xq).
L1,L2,--+yLd

For CS grad student (d = 60) the mode is industry for all years.

e The mode often doesn't look like a typical sample.
e The mode can change if you increase d.

Decoding is easy for independent models:

o Here, p(x1, 22,23, x4) = p(x1)p(22)p(z3)p(24).
e You can optimize p(x1, z2,x3,24) by optimizing each p(z;) independently.

Can we also maximize the marginals to decode a Markov chain?

Example of Decoding vs. Maximizing Marginals

o Consider the “plane of doom” 2-variable Markov chain:

land alive]
land alive
crash dead
X — |explode dead
crash dead
land alive

@ 40% of the time the plane lands and you live.
@ 30% of the time the plane crashes and you die.

@ 30% of the time the explodes and you die.

Example of Decoding vs. Maximizing Marginals

@ Initial probabilities are given by
Pr(z; =1land) = 0.4, Pr(z; = crash) =0.3, Pr(zx; = explode) = 0.3,
and transition probabilites are:

Pr(Xs = alive | X; = land) =1, Pr(Xy =alive|X; = crash) =0,
Pr(Xy = alive | X; = explode) = 0.

@ From the CK equations, we know
Pr(Xy = alive) = 0.4, Pr(Xy=dead) =0.6

e Maximizing the marginals p(z;) independently gives (1and, dead).
e This has probability 0, since Pr(dead | 1and) = 0.

@ Decoding considers the joint assignment to x1 and xo maximizing probability.
o In this case it's (land, alive), which has probability 0.4.

Decoding with Dynamic Programming

@ Note that decoding can't be done forward in time as in CK equations.

o Even if Pr(z; = 1) = 0.99, the most likely sequence could have 1 = 2.
e So we need to optimize over all k% assignments to all variables.

@ Fortunately, we can solve this problem using dynamic programming.

@ Ingredients of dynamic programming:
@ Optimal sub-structure.
@ We can divide the problem into sub-problems that can be solved individually.
@ Overlapping sub-problems.

@ The same sub-problems are reused several times.

Decoding with Dynamic Programming

@ For decoding in Markov chains, we'll use the following sub-problem:
e Compute the highest probability sequence of length j ending in state c.
o We'll use M;(c) as the probability of this sequence.
M;(c) = . Ign'z'l‘);;lp(xl,xg, Co i1, 0).
@ Optimal sub-structure:
o We can find the decoding by taking arg max, My(x4), then backtracking.
e Base case: M;(c) = Pr(X; = ¢), which we're given.
o We can compute other M;(s) recursively (derivation of this coming up),
M]<S> = max PI‘($J =C | Xjfl = l‘j,l) Mjfl(xjfl) .

Tj—1

given recurse

@ Overlapping sub-problems:
o The same k values of M;_1(s) are used to compute the k values of M, (s).

Digression: Recursive Joint Maximization

@ To derive the M; formula, it will be helpful to re-write joint maximizations as

max f(x1,x2) = maxg(x1) where g¢(z1)=max f(z1,z2).
1,%2 1 o

e This f; "maximizes out” xo, similar to marginalization rule in probability.

@ Can also write this as

max f(x1,x2) = maxmax f(x1,x2) .
1,22 x1 T2
—_———
g(x1)

@ You can do this trick repeatedly and/or with any number of variables.

Decoding with Dynamic Programming

@ Derivation of recursive calculation for M;(x;) for decoding Markov chains:

M;(zj) = o Iyéxzj_l p(z1,x2,...,T;5) (definition of Mj(x;))

= max p(zj | w1, w2,. .. xj_1)p(x1,®2,...,25_1) (product rule)
T1,X2,..Tj—1

= max p(z; | zj_1)p(®1,22,...,%5-1) (Markov property)
T1,X2,..T51

— max { max plz; | xjfl)pm,m,mjfl)} (max f(a, b) = max{max f(a,5)})
ZTj—1 (T1,%2,..-T5-2 a,b a b

= max {p(zj | 1) max p(ml,xg,mj_l)} (max aa; = amaxa; for a > 0)
Tj—1 T1,X2,.-Tj_2 [3 7

=max p(x; | xj—1) Mj_1(zj_1) (definition of M;_q(xj_1))
i1

given recurse

@ We also store the argmax over x;_; for each (j,s) .

o Once we have M;(z; = s) for all j and s values,
backtrack using these values to solve problem.

Example: Decoding the Plane of Doom

e We have M;(z1) = p(x1) so in “plane of doom” we have
M;i(land) = 0.4, M;j(crash)=0.3, M;(explode)=0.3.
o We have My (x2) = max,, p(za | x1)Mi(x1) so we get
Ms(alive) = 0.4, Ms(dead) =0.3.

@ M>5(2) # p(x2 = 2) because we needed to choose either crash or explode.
e And notice that Zle My (z; = ¢) # 1 (this is not a distribution over x3).

e We maximize Ms(x2) to find that the optimal decoding ends with alive.
o We now need to backtrack to find the state that led to alive, giving land.

Viterbi Decoding

@ The Viterbi decoding dynamic programming algorithm:
© Set M (x1) = p(x) for all 2.
@ Compute Ms(x2) for all a2, store argmax of 1 leading to each z5.
© Compute M3(x3) for all z3, store argmax of xo leading to each z3.
Q ...
© Maximize My(x4) to find value of x4 in a decoding.
@ Bactrack to find the value of x4_1 that led to this x4.
@ Backtrack to find the value of x4_5 that led to this z4_1.
Q ...
© Backtrack to find the value of x; that led to this x5.

e For a fixed j, computing all M;(z;) given all M;_1(zj_1) costs O(k?).
o Total cost is only O(dk?) to search over all k¢ paths.
e Has numerous applications, like decoding digital TV.

Viterbi Decoding

e What Viterbi decoding data structures might look like (d = 4,k = 3):

0.25 0.25 0.50 /I
0.35 0.15 0.05 1 1 3
M= 0.10 0.05 0.05|’ B= 2 1 1
0.02 0.03 0.05 2 2 1

@ The d x k matrix M stores the values M;(s), while B stores the argmax values.

@ From the last row of M and the backtracking matrix B,
the decoding is 1 = 1,20 = 2,23 = 1,24 = 3.

Conditional Probabilities in Markov Chains: Easy Case

@ How do we compute conditionals like Pr(z; = ¢ | z;; = ¢’) in Markov chains?

e Consider conditioning on an earlier time, like computing p(z19 | x3):
o We are given the value of z3.
o We obtain p(z4 | 23) by looking it up among transition probabilities.
o We can compute p(x5 | 23) by adding conditioning to the CK equations,

p(xs | x3) Zp x5, %4 | x3) (marginalizing)
= Zp x5 | x4, x3)p(x4 | T3) (product rule)
= Zp x5 | x4) p(ag | x3) (Markov property).
—_——— ———
glven recurse

o Repeat this to find p(xg | x3), then p(x7 | x3), up to p(x10 | x3).

Conditional Probabilities in Markov Chains with “Forward” Messages

@ How do we condition on a future time, like computing p(x3 | 26)?
@ Need to sum over “past” values z; and x5, and over “future” values x4 and z5.

p(ws | @) o plzs,w6) = D > > > p(w1, w2, w3, 4,5, T6)

T5 T4 X2 T

=333 plws | ws)p(ws | wa)p(ea | ws)p(ws | w2)p(ws | 21)p(w1)
= ip(; |2x5>1§jp(x5 | wa)p(aa | w3) Y plas | m);pm | 21)p(x1)
= fjp(x@ | @5) fjpm | za)p(za | xs,)ip(m | m)Mlz(xz)

= ZSp@ca | xs>iw—, | za)p(zs | m()

= plxe | 25) Mo (25) = M (o)

@ The forward message M;(z;) gives “everything you need to know up to time j, for this z; value.”

@ Value of Mg depends on z3 (for j > 3); to get p(x3 | x¢), normalize by sum for all 3.

Conditional Probabilities in Markov Chains with “Backward” Messages

@ We could exchange order of sums to do computation “backwards” in time:

p(zs | x6) ZZZZP z1)p(x2 | z1)p(zs | z2)p(xs | z3)p(xs | 4)p(zs | x5)

1 T2 T4 Ts

= p(@1) > p(xz | @)p(es | w2) Y plaa | 23)Y plas | wa)p(ws | x5)
=D p(@) Y plez | z)p(es | @2)) plea | 5)Vi(ea)

T4

= Zp(wl)z p(xo | x1)p(zs | 22)Va(xs3)
x1 ro

= Zp(iﬁl)‘v\ (z1)
x1

@ The V; summarize “everything you need to know after time j for this x; value”.

o Sometimes called “cost to go” function, as in “what is the cost for going to x;."
o Sometimes called a value function, as in “what is the future value of being in z;."

Motivation for Forward-Backward Algorithm

@ Why do care about being able to solve this “forward” or “backward” in time?
o Cost is O(dk?) in both directions to compute conditionals in Markov chains.

e Consider computing p(x1 | A), p(za | A),..., p(xzq | A) for some event A.

@ Need all these conditionals to add features, compute conditionals with neural
networks, or partial observations (as in hidden Markov models, HMMs).

@ We could solve this in O(dk?) for each time, giving a total cost of O(d?k?).
o Using forward messages M;(z;) at each time, or backwards messages V;(z;).

o Alternately, the forward-backward algorithm computes all conditionals in O(dk?).
e By doing one “forward” pass and one “backward” pass with appropriate messages.

Potential Function Representation of Markov Chains

@ Forward-backward algorithm considers probabilities written in the form

1 d d
p($17$2,---733d) = E quj(x]) qub](m.]’xjfl)
j=1 J=2

@ The ¢; and v; functions are called potential functions.
o They can map from a state (¢) or two states (¢/) to a non-negative number.
o Normalizing constant Z ensures we sum/integrate to 1 (over all z1, z2,...,2q).

e We can write Markov chains in this form by using (in this case Z = 1):
o ¢1(z1) =p(x1) and ¢;(z;) =1 when j # 1.
° ’Ij/’j(ll'j,l,l’j) = p(il/‘j | II/'J',l).

@ Why do we need the ¢; functions?
e To condition on z; = ¢, set ¢;(c) =1 and ¢;(¢') =0 for ¢’ # c.
o For "hidden Markov models” (HMMs), the ¢; will be the “emission probabilities”.
o For neural networks, ¢; will be exp(neural network output) (generalizes softmax).

Forward-Backward Algorithm

e Forward pass in forward-backward algorithm (generalizes CK equations):
o Set each M (1) = ¢1(x1).
e For j =2 to j =d, set each Mj(ﬂﬁj) = ij71 ¢j(ﬂ?j)¢j(l‘j,l‘j_l)Mj_l(JCj_l).

e “Multiply by new terms at time j, summing up over x;_; values.”

@ Backward pass in forward-backward algorithm:
o Set each Vd(xd) = qu(xd).
o For (d—1)toj=1, seteach Vj(z;) = >, . &;(x;)Yj1(xj41,25)Vig1(2j41).

¢5(x5)
e Not obvious; see bonus for how it gives conditional in Markov chain.
o We divide by ¢;(z;) since it is included in both the forward and backward messages.

@ We then have that p(z;) o

@ You can alternately shift ¢; to earlier/later message to remove division.

@ We can also get the normalizing constant as Z = 212:1 My(c).

Sequential Monte Carlo (Particle Filters) bonus!

@ For continuous non-Gaussian Markov chains, we usually need approximate
inference.

@ A popular strategy in this setting is sequential Monte Carlo (SMC).
e Importance sampling where proposal g, changes over time from simple to posterior.
o AKA sequential importance sampling, annealed importance sampling, particle filter.
@ And can be viewed as a special case of genetic algorithms.
o “Particle Filter Explained without Equations”:
https://www.youtube.com/watch?v=aUkBalzMKv4

https://www.youtube.com/watch?v=aUkBa1zMKv4

Forward-Backward for Decoding and Sampling

@ Viterbi decoding can be generalized to use potentials ¢ and :
o Compute forward messages, but with summation replaced by maximization:

M;(z5) oc maxy;_, @;(x;)v; (x5, 25-1)M;_1(xj-1)-

o Find the largest value of My(x4), then backtrack to find decoding.

e Forward-filter backward-sample is a potentials (¢ and 1) variant for sampling.

e Forward pass is the same.

o Backward pass generates samples (ancestral sampling backwards in time):
e Sample z4 from Ma(zq) = p(za).

Sample z4—1 using My—1(z4—1) and sampled 4.

Sample z4_2 using My_2(z4—2) and sampled z4_1.

(continue until you have sampled 1)

bomAS,(

Outline

@ McMC

Markov Chains for Monte Carlo Estimation

@ We've been discussing inference in Markov chains.
e Sampling, marginals, stationary distribution, decoding, conditionals.

@ We can also use Markov chains for inference in other models.

e Most common way to do this is Markov chain Monte Carlo (MCMC).
o Widely used for approximate inference, e.g. in Bayesian logistic regression.

o High-level idea of MCMC:
e We want to use Monte Carlo estimates with a distribution p.
@ But we don't know how to generate [ID samples from p.
o Design a homogeneous Markov chain whose stationary distribution is p.
e This is usually surprisingly easy to do.
e Use ancestral sampling to sample from a long version of this Markov chain.
o Use the Markov chain samples within the Monte Carlo approximation.

Degenerate Example: “Pointless MCMC"

o Consider finding the expected value of a fair die:
o For a 6-sided die, the expected value is 3.5.

o Consider the following “pointless MCMC" algorithm:

e Start with some initial value, like “4".
o At each step, roll the die and generate a random number w:

o If u < 0.5, “accept” the roll and take the roll as the next sample.
o Otherwise, “reject” the roll and take the old value (e.g. “4") as the next sample.

@ Generates samples from a Markov chain with this transition probability:

7/12 Tt = Tt—1

Q(:Et | l’tfl) = {1/12 S .

e Using ¢ to avoid confusion with the probability p we want to sample.

Degenerate Example: “Pointless MCMC"

@ Pointless MCMC in action:
Start with “4”, so record “4".
Roll a “6" and generate 0.234, so record “6
Roll a “3" and generate 0.612, so record “6
Roll a “2" and generate 0.523, so record “6".
Roll a “3" and generate 0.125, so record “3
Roll a “2" and generate 0.433, so record “2

@ So our samples are 4,6,6,6,3,2. ..
o If you run this long enough, you will spend 1/6 of the time on each number.
@ Stationary distribution of pointless MCMC is 7(c) = 1/6, so

m(z) = p(x),
which is the key feature underlying MCMC methods.
e This property lets us use the dependent samples within Monte Carlo.

@ It is “pointless” since it assumes we can generate IID samples from p.
e If you can do that, don't use MCMC to get approximate samples!

Markov Chain Monte Carlo (MCMC)

e Markov chain Monte Carlo (MCMC):
e Design a Markov chain that has 7(z) = p(z).

o For large enough k, a sample 2* from the chain will be distributed according to p(x).
o We changed notation a bit: 2 is the first sampled state, 2 the second, ..., 2" last.

e Use the Markov chain samples within a Monte Carlo estimator,
1 — .
Elg(a)] ~ > g(a).
t=1

@ Law of large numbers can be generalized to show this converges as n — co.

e "“Ergodic theorem.”
e But convergence is slower since we're generating dependent samples.

@ A popular way to design the Markov chain is Metropolis-Hastings algorithm.
o Oldest algorithm out of the “10 Best Algorithms of the 20th Century”.

Special Case: Metropolis Algorithm

@ The Metropolis algorithm for sampling from a continuous target p(x):

e Assumes we can evaluate p up to a normalizing constant, p(z) = p(x)/Z.
0

o Start with some initial value z°.
e On each iteration add zero-mean Gaussian noise to 2/~ ! to give proposal &*.
o And generate a u uniformly between 0 and 1.

“Accept” the proposal and set 2t = &t if

" p(ah) (probability of proposed)
~ p(zt—1)" (probability of current)

o Otherwise “reject” the sample and use 2'~! again as the next sample z!.

@ Proposals that increase probability are always accepted.
@ Proposals that decrease probability might be accepted or rejected.

A random walk, but sometimes rejecting steps that decrease probability:

e A valid MCMC algorithm on continuous densities, but convergence may be slow.
@ You can implement this even if you don’t know normalizing constant.

Metropolis Algorithm in Action

" | M=0.615,0.398; N,=1000, ::“;:o,ag
"é -
while True:
g xhat = x + \
& rs.multivariate_normal (cov=Sigma)
= u = rs.random()
if u < p(xhat) / p(x):
il x = xhat
° yield x

0.0 0.2 0.4 0.6 08 1.0

http://www.columbia.edu/~cjdl1l/charles_dimaggio/DIRE/styled-4/

http://www.columbia.edu/~cjd11/charles_dimaggio/DIRE/styled-4/styled-11/code-5
http://www.columbia.edu/~cjd11/charles_dimaggio/DIRE/styled-4/styled-11/code-5

Metropolis Algorithm Analysis
@ Markov chain with transitions ¢ = g(zf = s’ | 217! = s) is reversible if
W(S)QWS’ = W(S/)QS’987

for some distribution 7 (this condition is called detailed balance).

@ Reversibility implies 7 is a stationary distribution:

7t (s) = Zw(s’)qsqs = Zw(s)qﬁsl (detailed balance for each term)

s’ s’
=7(5) > Gs>s
s/

——
1

=7(s) (stationary condition).

e Metropolis is reversible with 7 = p (bonus slide), so p is stationary distribution.
o And positive transition probabilities mean 7 exists, and is unique/reached.

Markov Chain Monte Carlo
MCMC sampling from a Gaussian:

From top left to bottom right: histograms of 1000 independent

Markov chains with a normal distribution as target distribution.

E:3

=

http://www.cs.ubc.ca/~arnaud/stat535/slides10.pdf

http://www.cs.ubc.ca/~arnaud/stat535/slides10.pdf

MCMC Implementation Issues

@ In practice, we often don't take all samples in our Monte Carlo estimate:

e Burn in: throw away the initial samples when we're far from stationary.
e Thinning: only keep every k samples, since they'll be highly correlated.

@ Two common ways that MCMC is applied:
@ Sample from a huge number of Markov chains for a long time, use final states.

o Great for parallelization.
@ No need for thinning, since you throw all but last samples.
o Need to worry about burn in for each chain.

@ Sample from one Markov chain for a really long time, use states across time.

@ Less worry about burn in.
@ May need to worry about thinning.

@ It can very hard to diagnose if we have reached stationary distribution.

o It's PSPACE-hard — even harder than NP-hard.
e Various heuristics exist.

Summary

Viterbi decoding allow efficient decoding with Markov chains.
o A special case of dynamic programming.

Potential representation of Markov chains (more general formulation).
o Non-negative potential ¢ at each time and v for each transition.

Forward-backward generalizes CK equations for potentials.
o Allows computing all marginals in O(dk?).

Markov chain Monte Carlo (MCMC) approximates complicated expectations.

o Generate samples from a Markov chain that has p as stationary distribution.
e Use these samples within a Monte Carlo approximation.

Next time: lots more MCMC and lots of DAGs.

Computing Markov Chain Conditional using Forward-Backward bﬂ"f-‘

p(z3 | z6) o Z Z Z Zp(zl, T2, T3, T4, T5,Te) (set up both sums to work “outside in”)
g, B W el

=> >3 > p(za | w3)p(as | za)p(z6 | z5)p(23 | x2)p(2 | 21)P(T1)

T4 T5 T T

= p(za | 23) Y p(=5 | wa)p(zs | @5) D p(zs | 22) Y p(@2 | 1)p(e1)
T4 x5 @ r1

=> p(@a | z3)) p(es | za)p(ze | @5) Y plas | x2) > p(z2 | 21)Mi (1)
T x5 xo 1

= p(za | 23) Y p(@5 | wa)p(ze | 25) D p(z3 | 22) Ma(2)
T2 =5

@3

= p(ea | 23) Y p(@s | wa)p(we | @5) M3 (23)
E T35
= Mz(23) > p(za | 23) > p(zs | 24)p(z6 | ®5) (take Mz (w3) outside sums)
xy x5

= Mz(23) Y _p(za | 23) D> p(es | 2a)p(z6 | 25)Ve(z6) (Ve(we) = 1)

7 zg

= Mz(23) Y _p(2a | 23) > ples | 24)Vs(zs)
T4 zg5

= Mz(23) Y p(z4 | 3)Va(za)
e

= M3 (z3)V3(xz3) (¢3(x3) = 1 so no division, normalize over x3 values to get final answer)

bon MS,(

Metropolis Algorithm Analysis

@ Metropolis algorithm has ¢, > 0 (sufficient to guarantee stationary distribution
is unique and we reach it), and satisfies detailed balance with target distribution p,

p(S)QS%s’ = p(S/)QS’%s-

@ We can show this by defining the transition probabilities as
exp (f%(sfs’)z_l(sfs’)) il
Cs_g/ = /1 = Cg—g/ ININ) =
o= (2 det 2)4/2 oot = Coms p(s)

and observing that

B — - p(s)min {1’ 556)

p(s) } = ¢;_y min {p(s), p(s") }

} = p()qs' s

	Message Passing
	MCMC

