
CPSC 440/540: Advanced Machine Learning
Markov Chains

Danica Sutherland (building on materials from Mark Schmidt)

University of British Columbia

Winter 2023

Example: Vancouver Rain Data

Consider density estimation on the “Vancouver Rain” dataset:

Variable xij = 1 if it rained on day j in month i.

Each row is a month, each column is a day of the month.
Data ranges from 1896-2004.

The strongest signals in the data:

It tends to rain more in the winter than the summer.
If it rained yesterday, it’s likely to rain today: Pr(Xj = Xj−1) ≈ 70%.

Rain Data with Product of Bernoullis

With product of Bernoullis, we get Pr(Xj =rain) ≈ 0.41 (sadly).

Samples from product of Bernoullis model (left) vs. real data (right):

Making days independent misses seasons and misses correlations.

Markov Chains

A better model for the between-day correlations is a Markov chain.
Models Pr(xj | Xj−1): probability of rain today given yesterday’s value.

Captures dependency between adjacent days.

It can perfectly capture the “position-independent” between-day correlation.

Only need a few parameters, and has a closed-form MLE.

Markov Chain for Rain: Ingredients
State space:

At time j, we can be in the rain state or the not-rain state.

Initial probabilities:

c Pr(X1 = c)

rain 0.37
not-rain 0.63

Transition probabilities (assumed to the same for all times j):

cold cnew Pr(Xj = cnew | Xj−1 = cold)

rain rain 0.65
rain not-rain 0.35

not-rain rain 0.25
not-rain not-rain 0.75

Because of “sum to 1” constraints, there are only 3 parameters in this model.

We’re assuming that the order of features is meaningful.
We’re modeling dependency of each feature on the previous feature.

Chain Rule of Probability

By using the product rule, p(a, b) = p(a)p(b | a), we can always decompose

p(x1, x2, . . . , xd) = p(x1) p(x2, x3, . . . , xd | x1)
= p(x1) p(x2 | x1) p(x3, x4, . . . , xd | x1, x2)
= p(x1) p(x2 | x1) p(x3 | x2, x1) p(x4, x5, . . . , xd | x1, x2, x3),

and so on until we get

p(x1, x2, . . . , xd) = p(x1) p(x2 | x1) p(x3 | x1, x2) · · · p(xd | x1, x2, . . . xd−1).

This factorization is called the chain rule of probability.

This turns multivariate density estimation into a sequence of univariate problems.

But with complicated conditioning. . .
For binary xj , we’d need 2d parameters for p(xd | x1, x2, . . . , xd−1) alone.
Or we could logistic regression / neural networks / etc to estimate conditionals.

Markov Chains
Markov chains simplify the distribution by assuming the Markov property:

p(xj | xj−1, xj−2, . . . , x1) = p(xj | xj−1),

that Xj is independent of the past given Xj−1.
“Don’t care what happened 2 days ago if you know what happened yesterday”.

The probability for a sequence x1, x2, · · · , xd in a Markov chain simplifies to

p(x1, x2, . . . , xd) = p(x1) p(x2 | x1) p(x3 | x2, x1) · · · p(xd | xd−1, xd−2, . . . , x1)

= p(x1) p(x2 | x1) p(x3 | x2) · · · p(xd | xd−1)

Another way to write this joint probability is

p(x1, x2, . . . , xd) = p(x1)︸ ︷︷ ︸
initial prob.

d∏
j=2

p(xj | xj−1)︸ ︷︷ ︸
transition prob.

.

Example: Modeling DNA Sequences

A nice demo of independent vs. Markov for DNA sequences:
http://a-little-book-of-r-for-bioinformatics.readthedocs.io/en/latest/src/chapter10.html

https://www.tes.com/lessons/WE5E9RncBhieAQ/dna

Independent model for elements of sequence:

http://a-little-book-of-r-for-bioinformatics.readthedocs.io/en/latest/src/chapter10.html
https://www.tes.com/lessons/WE5E9RncBhieAQ/dna

Example: Modeling DNA Sequences

Transition probabilities in a Markov chain model for elements of sequence:

(visualizing transition probabilities based on previous symbol):

Markov Chains

Markov chains are ubiquitous in sequence/time-series models:

Homogenous Markov Chains

For rain data it makes sense to use a homogeneous Markov chain:

Transition probabilities Pr(Xj | Xj−1) are the same for all times j.

An example of parameter tying:
1 You have more data available to estimate each parameter.

Don’t need to independently learn Pr(Xj | Xj−1) for days 3 and 24.

2 You can have training examples of different sizes.

Same model can be used for any number of days.
We could even treat the rain data as one long Markov chain (n = 1).

Homogenous Markov Chains

With discrete states, we could use tabular parameterization for transitions,

Pr(Xj = c | Xj−1 = c′) = θc,c′ ,

where θc,c′ ≥ 0 and
∑k

c=1 θc,c′ = 1 (and we use the same θc,c′ for all j).

So we have a categorical distribution over c values for each c′ value.

MLE for homogeneous Markov chain with discrete xj and tabular parameters:

θc,c′ =
(number of transitions from c′ to c)

(number of times we went from c′ to anything)
;

learning is just counting.

Density Estimation for MNIST Digits

We’ve previously considered density estimation for MNIST images of digits.

We saw that product of Bernoullis does terribly

This model misses correlation between adjacent pixels.

Could we capture this with a Markov chain?

Density Estimation for MNIST Digits

Samples from a homogeneous Markov chain (putting rows into one long vector):

Captures correlations between adjacent pixels in the same row.

But misses long-range dependencies in row and dependencies between rows.
Also, “position independence” of homogeneity means it loses position information.

Inhomogeneous Markov Chains

We could allow a different Pr(Xj | Xj−1) for each j.

This makes sense for digits data, but probably not for the rain data.

For discrete Xj we could use a tabular parameterization,

Pr(Xj = c | Xj=1 = c′) = θjc,c′ .

MLE under this parameterization is given by

θjc,c′ =
(number of transitions from c′ to c starting at (j − 1))

(number of times we saw c′ at position (j − 1))
,

Inhomogeneous Markov chains include independent models as special case:

Use p(xj | xj−1) = p(xj) for all j; becomes a product of independent models.

Density Estimation for MNIST Digits

Samples from an inhomogeneous Markov chain fit to digits:

We have correlations between adjacent pixels in rows, and position information.

But it isn’t capturing long-range dependencies or dependency between rows.
Later we’ll introduce graphical models to address this.

Training Markov Chains

Some common setups for fitting the parameters of Markov chains:
1 We have one long sequence, and fit parameters of a homogeneous Markov chain.

Here, we just focus on the transition probabilities.

2 We have many sequences of different lengths, and fit a homogeneous chain.

And we can use it to model sequences of any length.

3 We have many sequences of same length, and fit an inhomgeneous Markov chain.

This allows “position-specific” effects.

4 We use domain knowledge to guess the initial and transition probabilities.

Here we would be interested in inference in the model.

Fun with Markov Chains

Markov Chains “Explained Visually”:
http://setosa.io/ev/markov-chains

Snakes and Ladders:
http://datagenetics.com/blog/november12011/index.html

Candyland:
http://www.datagenetics.com/blog/december12011/index.html

Yahtzee:
http://www.datagenetics.com/blog/january42012/

Chess pieces returning home and K-pop vs. ska:
https://www.youtube.com/watch?v=63HHmjlh794

http://setosa.io/ev/markov-chains
http://datagenetics.com/blog/november12011/index.html
http://www.datagenetics.com/blog/december12011/index.html
http://www.datagenetics.com/blog/january42012/
https://www.youtube.com/watch?v=63HHmjlh794

Outline

1 Markov Chains

2 Inference in Markov Chains

3 Message Passing

Inference in Markov Chains

Given a Markov chain model, these are the most common inference tasks:
1 Sampling: generate sequences that follow the probability.

2 Marginalization: compute probability of being in state c at time j.

3 Stationary distribution: probability of being in state c as j goes to ∞.

Usually for homogeneous Markov chains.

4 Mode decoding: compute assignment of the xj that has highest joint probability.

Usually for inhomogeneous Markov chains (important for supervised learning).

5 Conditioning: do any of the above, assuming xj = c for some j and c.

For example, “filling in” missing parts of a sequence.

Ancestral Sampling

To sample dependent random variables we can use the chain rule of probability,

p(x1, x2, x3, . . . , xd) = p(x1) p(x2 | x1) p(x3 | x2, x1) · · · p(xd | xd−1, xd−2, . . . , x1).

The chain rule suggests the following sampling strategy:

Sample x1 from p(x1).
Given x1, sample x2 from p(x2 | x1).
Given x1 and x2, sample x3 from p(x3 | x2, x1).
. . .
Given x1 through xd−1, sample xd from p(xd | xd−1, xd−2, . . . x1).

This is called ancestral sampling.

It’s easy if conditional probabilities are simple, since sampling in 1D is usually easy.
But may not be simple; binary conditional j has 2j values of {x1, x2, . . . , xj}.

Ancestral Sampling Examples

For Markov chains the chain rule simplifies to

p(x1, x2, x3, . . . , xd) = p(x1) p(x2 | x1) p(x3 | x2) · · · p(xd | xd−1),

This means ancestral sampling simplifies, too:
1 Sample x1 from initial probabilities p(x1).
2 Given x1, sample x2 from transition probabilities p(x2 | x1).
3 Given x2, sample x3 from transition probabilities p(x3 | x2).
4 . . .
5 Given xd−1, sample xd from transition probabilities p(xd | xd−1).

Markov Chain Toy Example: CS Grad Career

“Computer science grad career” Markov chain:

Initial probabilities:

Transition probabilities (from row to column):

Here Pr(Xt = “Grad School” | Xt−1 = “Industry”) = 0.01.

Example of Sampling x1

Initial probabilities are:

0.1 (Video Games)
0.6 (Industry)
0.3 (Grad School)
0 (Video Games with PhD)
0 (Academia)
0 (Deceased)

So initial CDF is:

0.1 (Video Games)
0.7 (Industry)
1 (Grad School)
1 (Video Games with PhD)
1 (Academia)
1 (Deceased)

To sample the initial state x1:

First generate a number u ∼ Uniform(0, 1), for example u = 0.724.
Now find the first CDF value bigger than u, which in this case is “Grad School”.

Example of Sampling x2, Given x1 = “Grad School”

So we sampled x1 = “Grad School”.

To sample x2, we’ll use the “Grad School” row in transition probabilities:

Example of Sampling x2, Given x1 = “Grad School”

Transition probabilities:

0.06 (Video Games)
0.06 (Industry)
0.75 (Grad School)
0.05 (Video Games with PhD)
0.02 (Academia)
0.01 (Deceased)

So transition CDF is:

0.06 (Video Games)
0.12 (Industry)
0.87 (Grad School)
0.97 (Video Games with PhD)
0.99 (Academia)
1 (Deceased)

To sample the second state x2:

First generate a number u ∼ Uniform(0, 1), for example u = 0.113.
Now find the first CDF value bigger than u, which in this case is “Industry”.

Markov Chain Toy Example: CS Grad Career

Samples from “computer science grad career” Markov chain:

State 7 (“deceased”) is called an absorbing state (no probability of leaving).

Samples often give you an idea of what model knows (and what should be fixed).

Ancestral Sampling with Blocks of Variables

We sometimes factorize variables in terms of blocks of variables, as in

p(x1, x2, x3, x4, x5, x6) = p(x1, x2) p(x3, x4 | x1, x2) p(x5, x6 | x1, x2, x3, x4).

With this factorization ancestral sampling takes the form
1 Sample x1 and x2 from p(x1, x2).
2 Given x1 and x2, sample x3 and x4 from p(x3, x4 | x2, x1).
3 Given x1:4, sample x5 and x6 from p(x5, x6 | x1, x2, x3, x4).

For example, in Gaussian discriminant analysis we write

p(xi, yi) = p(yi) p(xi | yi).

Sampling from Gaussian discriminant analysis:
1 Sample yi from the categorical distribution p(yi).
2 Sample xi from the multivariate Gaussian p(xi | yi).

Marginalization and Conditioning

Given a density estimator, we often want to make probabilistic inferences:
Marginals: what is the probability that Xj = c?

What is the probability we’re in industry 10 years after graduation?

Conditionals: what is the probability that Xj = c given Xj′ = c′?

What is the probability of industry after 10 years, if we immediately go to grad school?

This is easy for simple independent models:

We directly model marginals p(xj).
Conditionals are marginals: p(xj | xj′) = p(xj).

For Markov chains, it’s more complicated.

p(x4) depends on the values of x1, x2 and x3.
p(x4 | x8) additionally depends on the values x5, x6, x7, x8.

Monte Carlo Methods for Markov Chains

We could use Monte Carlo approximations for inference in Markov chains:

Marginal Pr(Xj = c) is the number of chains that were in state c at time j.
Average value at time j, E[Xj], is approximated by average of samples xij .
Pr(5 ≤ Xj ≤ 10) is approximate by frequency of xj being between 5 and 10.

This makes more sense for continuous states than evaluating equalities.

Pr(xj ≤ 10, Xj+1 ≥ 10) is approximated by number of chains where both happen.

Monte Carlo works for continuous states too (for inequalities and expectations).

In typical settings Monte Carlo has slow convergence (like stochastic gradient).

For E[f(X)], the estimate 1
n

∑n
i=1 f(x

i) has variance Var(f(X))/n.

If all samples look about the same (Var(f(X)) is small), it converges quickly.
If samples vary a lot, it can be painfully slow.

Exact Marginal Calculation

For discrete-state Markov chains, we can actually compute marginals directly.

We’re given initial probabilities Pr(X1 = c) for all c as part of the definition.

We can use transition probabilities to compute p(x2 = c) for all c:

p(x2) =

k∑
x1=1

p(x2, x1)︸ ︷︷ ︸
marginalization rule

=

k∑
x1=1

p(x2 | x1)p(x1)︸ ︷︷ ︸
product rule

.

Same calculation gives

p(x3) =

k∑
x2=1

p(x3, x2) =

k∑
x2=1

p(x3 | x2)p(x2).

So we have p(x3) in terms of p(x2), and p(x2) in terms of p(x1), which we know.

Exact Marginal Calculation

Recursive formula for maginals at time j:

p(xj) =

k∑
xj−1=1

p(xj | xj−1)p(xj−1),

called the Chapman-Kolmogorov (CK) equations.

The CK equations can be implemented as matrix-vector multiplication:

Define πj as a vector containing the marginals at time t:

πj
c = Pr(Xj = c).

Define T j as a matrix cotaining the transition probabilities:

T j
cc′ = Pr(Xj = c | Xj−1 = c′).

Rule is just πj = T jπj−1.

Exact Marginal Calculation
Implementing the CK equations as a matrix multiplication:

T
j
π
j−1

=

Pr(Xj = 1 | Xj−1 = 1) Pr(Xj = 1 | xj−1 = 2) . . . Pr(Xj = 1 | xj−1 = k)
Pr(Xj = 2 | Xj−1 = 1) Pr(Xj = 2 | xj−1 = 2) . . . Pr(Xj = 2 | xj−1 = k)
Pr(Xj = k | Xj−1 = 1) Pr(Xj = k | xj−1 = 2) . . . Pr(Xj = k | xj−1 = k)



Pr(Xj−1 = 1)
Pr(Xj−1 = 2)

.

.

.
Pr(Xj−1 = k)



=



∑k
c=1 Pr(Xj = 1 | Xj−1 = c) Pr(Xj−1 = c)∑k
c=1 Pr(Xj = 2 | Xj−1 = c) Pr(Xj−1 = c)

.

.

.∑k
c=1 Pr(Xj = k | Xj−1 = c) Pr(Xj−1 = c)

 =


Pr(Xj = 1)
Pr(Xj = 2)

.

.

.
Pr(Xj = k)

 = π
j
.

Cost of multiplying a vector by a k × k matrix is O(k2).

So cost to compute marginals up to time d is O(dk2).

This is fast, considering that last step sums over all kd possible sequences.

p(xd) =

k∑
x1=1

k∑
x2=1

· · ·
k∑

xj−1=1

k∑
xj+1=1

· · ·
k∑

xd−1=1

p(x1, x2, . . . , xd).

Marginals in CS Grad Career

CK equations can give all marginals p(xj = c) from CS grad Markov chain:

Each row j is a state and each column c is a year.

Continuous-State Markov Chains

The CK equations also apply if we have continuous states:

p(xj) =

∫
xj−1

p(xj | xj−1)p(xj−1)dxj−1,

but this integral may not have a closed-form solution.

Gaussian probabilities are an important special case:
If p(xj−1) and p(xj | xj−1) are Gaussian, then p(xj) is Gaussian.

Marginal of product of Gaussians.

So we can write p(xj) in closed-form in terms of a mean and variance.

Also works if states are vectors, with initial/transition following multivariate Gaussian.

If the probabilities are non-Gaussian, usually can’t represent p(xj) distribution.
Gaussian has the special property that it is its own conjugate prior.
With other distributions, you’re stuck using Monte Carlo or other approximations.

Stationary Distribution

A stationary distribution of a homogeneous Markov chain is a distribution π with

π(c) =
∑
c′

p(xj = c | xj−1 = c′)π(c′) or equivalently π = Tπ.

“Marginal probabilities don’t change across time”.

A stationary distribution is called an “invariant” distribution.
Note this does not imply it converges to a single state.

Under certain conditions, marginals converge to a stationary distribution.

p(xj = c) → π(c) as j goes to ∞.
If we fit a Markov chain to the rain example, we have π(rain) = 0.41.
In the CS grad student example, we have π(deceased) = 1.

Stationary distribution is basis for Google’s PageRank algorithm.

Application: PageRank

Web search before Google:

http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf

It was also easy to fool search engines by copying popular websites.

http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf

State Transition Diagram

State transition diagrams are common for visualizing homogenous Markov chains:

T =


0 0 0.2 0.8
0 0 0 1
0.2 0 0 0.8
0 0.45 0.45 0.1


Each node is a state, each edge is a non-zero transition probability.

For web-search, each node will be a webpage.

Cost of CK equations is only O(z) instead of O(k2) if you have only z edges.

Application: PageRank

Wikipedia’s cartoon illustration of Google’s PageRank:

Large face means higher rank.

https://en.wikipedia.org/wiki/PageRank

“Important webpages are linked from other important webpages.”

“A link is more meaningful if the webpage has few links.”

https://en.wikipedia.org/wiki/PageRank

Application: PageRank

Google’s PageRank algorithm for measuring the importance of a website:
Stationary probability in “random surfer” Markov chain:

With probability α, surfer clicks on a random link on the current webpage.
Otherwise, surfer goes to a completely random webpage.

To compute the stationary distribution, they use the power method:

Just start with some distribution, then repeatedly apply the CK equations.
Iterations are faster than O(k2) due to sparsity of links.

Transition matrix is “sparse plus rank-1” which allows fast multiplication.

Can be easily parallelized.

Application: Game of Thrones

PageRank can be used in other applications.

“Who is the main character in the Game of Thrones books?”

http://qz.com/650796/mathematicians-mapped-out-every-game-of-thrones-relationship-to-find-the-main-character

http://qz.com/650796/mathematicians-mapped-out-every-game-of-thrones-relationship-to-find-the-main-character

Existence/Uniqueness of Stationary Distribution

Does a stationary distribution π exist and is it unique?

Sufficient condition for existence/uniqueness: all Pr(xj = c | xj′ = c′) > 0.

PageRank satisfies this by adding probability (1− α) of jumping to a random page.

Weaker sufficient condition for existence and uniqueness is ergodicity:
1 “Irreducible” (doesn’t get stuck in part of the graph).
2 “Aperiodic” (probability of returning to state isn’t on fixed intervals).

Summary
Markov chains model dependencies between adjacent features.

Set of possible states; initial probabilities; transition probabilities.

Chain rule of probability.
Writes joint probability in terms of conditionals over “earlier” variables.

Markov assumption.
Conditional independence from “past” times given previous time.

Homogeneous Markov chains: same transition probabilities across time.
Allows sequences of different lengths; more data to estimate transition parameters.

Inhomogeneous Markov chains: transition probabilities can vary.
Ancestral sampling generates samples from multivariate distributions.

Use chain rule of probability, sequentially sample variables from conditionals.

Chapman-Kolmogorov equations compute exact univariate marginals.
For discrete or Gaussian Markov chains.

Stationary distribution of homogenous Markov chain.
Marginals as time goes to ∞; basis of e.g. Google’s PageRank method.

Next time: voice Photoshop.

Label Propagation as a Markov Chain Problem

Semi-supervised label propagation method has a Markov chain interpretation.

We have n+ t states, one for each [un]labeled example.

Monte Carlo approach to label propagation (“adsorption”):

At time t = 0, set the state to the node you want to label.
At time t > 0 and on a labeled node, output the label.

Labeled nodes are absorbing states.

At time t > 0 and on an unlabeled node i:

Move to neighbour j with probability proportional wij (or w̄ij).

Final predictions are probabilities of outputting each label.

Nice if you only need to label one example at a time (slow if labels are rare).
Common hack is to limit random walk time to bound runtime.

Outline

1 Markov Chains

2 Inference in Markov Chains

3 Message Passing

Application: Voice Photoshop

Adobe VoCo uses decoding in a Markov chain as part of synthesizing voices:

http://gfx.cs.princeton.edu/pubs/Jin_2017_VTI/Jin2017-VoCo-paper.pdf

https://www.youtube.com/watch?v=I3l4XLZ59iw

http://gfx.cs.princeton.edu/pubs/Jin_2017_VTI/Jin2017-VoCo-paper.pdf
https://www.youtube.com/watch?v=I3l4XLZ59iw

Decoding: Maximizing Joint Probability

Decoding the mode in density models: finding x with highest joint probability:

argmax
x1,x2,...,xd

p(x1, x2, . . . , xd).

For CS grad student (d = 60) the mode is industry for all years.

The mode often doesn’t look like a typical sample.
The mode can change if you increase d.

Decoding is easy for independent models:

Here, p(x1, x2, x3, x4) = p(x1)p(x2)p(x3)p(x4).
You can optimize p(x1, x2, x3, x4) by optimizing each p(xj) independently.

Can we also maximize the marginals to decode a Markov chain?

Example of Decoding vs. Maximizing Marginals

Consider the “plane of doom” 2-variable Markov chain:

X =



land alive

land alive

crash dead

explode dead

crash dead

land alive
...

...


.

40% of the time the plane lands and you live.

30% of the time the plane crashes and you die.

30% of the time the explodes and you die.

Example of Decoding vs. Maximizing Marginals
Initial probabilities are given by

Pr(x1 = land) = 0.4, Pr(x1 = crash) = 0.3, Pr(x1 = explode) = 0.3,

and transition probabilites are:

Pr(X2 = alive | X1 = land) = 1, Pr(X2 = alive | X1 = crash) = 0,

Pr(X2 = alive | X1 = explode) = 0.

From the CK equations, we know

Pr(X2 = alive) = 0.4, Pr(X2 = dead) = 0.6

Maximizing the marginals p(xj) independently gives (land, dead).
This has probability 0, since Pr(dead | land) = 0.

Decoding considers the joint assignment to x1 and x2 maximizing probability.
In this case it’s (land, alive), which has probability 0.4.

Decoding with Dynamic Programming

Note that decoding can’t be done forward in time as in CK equations.

Even if Pr(x1 = 1) = 0.99, the most likely sequence could have x1 = 2.
So we need to optimize over all kd assignments to all variables.

Fortunately, we can solve this problem using dynamic programming.

Ingredients of dynamic programming:
1 Optimal sub-structure.

We can divide the problem into sub-problems that can be solved individually.

2 Overlapping sub-problems.

The same sub-problems are reused several times.

Decoding with Dynamic Programming

For decoding in Markov chains, we’ll use the following sub-problem:

Compute the highest probability sequence of length j ending in state c.
We’ll use Mj(c) as the probability of this sequence.

Mj(c) = max
x1,x2,...,xj−1

p(x1, x2, . . . , xj−1, c).

Optimal sub-structure:

We can find the decoding by taking argmaxxd
Md(xd), then backtracking.

Base case: M1(c) = Pr(X1 = c), which we’re given.
We can compute other Mj(s) recursively (derivation of this coming up),

Mj(s) = max
xj−1

Pr(xj = c | Xj−1 = xj−1)︸ ︷︷ ︸
given

Mj−1(xj−1)︸ ︷︷ ︸
recurse

.

Overlapping sub-problems:

The same k values of Mj−1(s) are used to compute the k values of Mj(s).

Digression: Recursive Joint Maximization

To derive the Mj formula, it will be helpful to re-write joint maximizations as

max
x1,x2

f(x1, x2) = max
x1

g(x1) where g(x1) = max
x2

f(x1, x2).

This f1 “maximizes out” x2, similar to marginalization rule in probability.

Can also write this as

max
x1,x2

f(x1, x2) = max
x1

max
x2

f(x1, x2)︸ ︷︷ ︸
g(x1)

.

You can do this trick repeatedly and/or with any number of variables.

Decoding with Dynamic Programming

Derivation of recursive calculation for Mj(xj) for decoding Markov chains:

Mj(xj) = max
x1,x2,...,xj−1

p(x1, x2, . . . , xj) (definition of Mj(xj))

= max
x1,x2,...xj−1

p(xj | x1, x2, . . . xj−1)p(x1, x2, . . . , xj−1) (product rule)

= max
x1,x2,...xj−1

p(xj | xj−1)p(x1, x2, . . . , xj−1) (Markov property)

= max
xj−1

{
max

x1,x2,...xj−2
p(xj | xj−1)p(x1, x2, xj−1)

}
(max

a,b
f(a, b) = max

a
{max

b
f(a, b)})

= max
xj−1

{
p(xj | xj−1) max

x1,x2,...xj−2
p(x1, x2, xj−1)

}
(max

i
αai = αmax

i
ai for α ≥ 0)

= max
xj−1

p(xj | xj−1)︸ ︷︷ ︸
given

Mj−1(xj−1)︸ ︷︷ ︸
recurse

(definition of Mj−1(xj−1))

We also store the argmax over xj−1 for each (j, s) .

Once we have Mj(xj = s) for all j and s values,
backtrack using these values to solve problem.

Example: Decoding the Plane of Doom

We have M1(x1) = p(x1) so in “plane of doom” we have

M1(land) = 0.4, M1(crash) = 0.3, M1(explode) = 0.3.

We have M2(x2) = maxx1 p(x2 | x1)M1(x1) so we get

M2(alive) = 0.4, M2(dead) = 0.3.

M2(2) ̸= p(x2 = 2) because we needed to choose either crash or explode.

And notice that
∑k

c=1M2(xj = c) ̸= 1 (this is not a distribution over x2).

We maximize M2(x2) to find that the optimal decoding ends with alive.

We now need to backtrack to find the state that led to alive, giving land.

Viterbi Decoding

The Viterbi decoding dynamic programming algorithm:
1 Set M1(x1) = p(x1) for all x1.
2 Compute M2(x2) for all x2, store argmax of x1 leading to each x2.
3 Compute M3(x3) for all x3, store argmax of x2 leading to each x3.
4 . . .
5 Maximize Md(xd) to find value of xd in a decoding.
6 Bactrack to find the value of xd−1 that led to this xd.
7 Backtrack to find the value of xd−2 that led to this xd−1.
8 . . .
9 Backtrack to find the value of x1 that led to this x2.

For a fixed j, computing all Mj(xj) given all Mj−1(xj−1) costs O(k2).

Total cost is only O(dk2) to search over all kd paths.
Has numerous applications, like decoding digital TV.

Viterbi Decoding

What Viterbi decoding data structures might look like (d = 4, k = 3):

M =


0.25 0.25 0.50
0.35 0.15 0.05
0.10 0.05 0.05
0.02 0.03 0.05

 , B =


∅ ∅ ∅
1 1 3
2 1 1
2 2 1

 .
The d× k matrix M stores the values Mj(s), while B stores the argmax values.

From the last row of M and the backtracking matrix B,
the decoding is x1 = 1, x2 = 2, x3 = 1, x4 = 3.

Conditional Probabilities in Markov Chains: Easy Case

How do we compute conditionals like Pr(xj = c | xj′ = c′) in Markov chains?

Consider conditioning on an earlier time, like computing p(x10 | x3):
We are given the value of x3.
We obtain p(x4 | x3) by looking it up among transition probabilities.
We can compute p(x5 | x3) by adding conditioning to the CK equations,

p(x5 | x3) =
∑
x4

p(x5, x4 | x3) (marg rule)

=
∑
x4

p(x5 | x4, x3)p(x4 | x3) (product rule)

=
∑
x4

p(x5 | x4)︸ ︷︷ ︸
given

p(x4 | x3)︸ ︷︷ ︸
recurse

(Markov property).

Repeat this to find p(x6 | x3), then p(x7 | x3), up to p(x10 | x3).

Conditional Probabilities in Markov Chains with “Forward” Messages
How do we condition on a future time, like computing p(x3 | x6)?

Need to sum over “past” values x1 and x2, and “future” values x4 and x5.

p(x3 | x6) ∝ p(x3, x6) =
∑
x5

∑
x4

∑
x2

∑
x1

p(x1, x2, x3, x4, x5, x6) (cond. prob. and marg. rule)

=
∑
x5

∑
x4

∑
x2

∑
x1

p(x6 | x5)p(x5 | x4)p(x4 | x3)p(x3 | x2)p(x2 | x1)p(x1)

=
∑
x5

p(x6 | x5)
∑
x4

p(x5 | x4)p(x4 | x3)
∑
x2

p(x3 | x2)
∑
x1

p(x2 | x1)p(x1)

=
∑
x5

p(x6 | x5)
∑
x4

p(x5 | x4)p(x4 | x3)
∑
x2

p(x3 | x2)M2(x2)

=
∑
x5

p(x6 | x5)
∑
x4

p(x5 | x4)p(x4 | x3)M3(x3)

=
∑
x5

p(x6 | x5)M5(x5)

= M6(x6) (the values Mj are called “forward messages”)

Mj(xj) summarizes “everything you need to know up to time j for this xj value”.
Different x3 will give different M6 values; normalize these to get final result.

Conditional Probabilities in Markov Chains with “Backward” Messages

We could exchange order of sums to do computation “backwards” in time:

p(x3 | x6) =
∑
x1

∑
x2

∑
x4

∑
x5

p(x1)p(x2 | x1)p(x3 | x2)p(x4 | x3)p(x5 | x4)p(x6 | x5)

=
∑
x1

p(x1)
∑
x2

p(x2 | x1)p(x3 | x2)
∑
x4

p(x4 | x3)
∑
x5

p(x5 | x4)p(x6 | x5)

=
∑
x1

p(x1)
∑
x2

p(x2 | x1)p(x3 | x2)
∑
x4

p(x4 | x3)V4(x4)

=
∑
x1

p(x1)
∑
x2

p(x2 | x1)p(x3 | x2)V3(x3)

=
∑
x1

p(x1)V1(x1) (the values Vj are called “backward messages”)

The Vj summarize “everything you need to know after time j for this xj value”.

Sometimes called “cost to go” function, as in “what is the cost for going to xj .”
Sometimes called a value function, as in “what is the future value of being in xj .”

Motivation for Forward-Backward Algorithm

Why do care about being able to solve this “forward” or “backward” in time?

Cost is O(dk2) in both directions to compute conditionals in Markov chains.

Consider computing p(x1 | A), p(x2 | A),. . . , p(xd | A) for some event A.

Need all these conditionals to add features, compute conditionals with neural
networks, or partial observations (as in hidden Markov models, HMMs).

We could solve this in O(dk2) for each time, giving a total cost of O(d2k2).

Using forward messages Mj(xj) at each time, or backwards messages Vj(xj).

Alternately, the forward-backward algorithm computes all conditionals in O(dk2).

By doing one “forward” pass and one “backward” pass with appropriate messages.

Potential Function Representation of Markov Chains
Forward-backward algorithm considers probabilities written in the form

p(x1, x2, . . . , xd) =
1

Z

 d∏
j=1

ϕj(xj)

 d∏
j=2

ψj(xj , xj−1)

 .

The ϕj and ψj functions are called potential functions.
They can map from a state (ϕ) or two states (ψ) to a non-negative number.
Normalizing constant Z ensures we sum/integrate to 1 (over all x1, x2,. . . ,xd).

We can write Markov chains in this form by using (in this case Z = 1):
ϕ1(x1) = p(x1) and ϕj(xj) = 1 when j ̸= 1.
ψj(xj−1, xj) = p(xj | xj−1).

Why do we need the ϕj functions?
To condition on xj = c, set ϕj(c) = 1 and ϕj(c

′) = 0 for c′ ̸= c.
For “hidden Markov models” (HMMs), the ϕj will be the “emission probabilities”.
For neural networks, ϕj will be exp(neural network output) (generalizes softmax).

Forward-Backward Algorithm

Forward pass in forward-backward algorithm (generalizes CK equations):

Set each M1(x1) = ϕ1(x1).
For j = 2 to j = d, set each Mj(xj) =

∑
xj−1

ϕj(xj)ψj(xj , xj−1)Mj−1(xj−1).

“Multiply by new terms at time j, summing up over xj−1 values.”

Backward pass in forward-backward algorithm:

Set each Vd(xd) = ϕd(xd).
For (d− 1) to j = 1, set each Vj(xj) =

∑
xj+1

ϕj(xj)ψj+1(xj+1, xj)Vj+1(xj+1).

We then have that p(xj) ∝ Mj(xj)Vj(xj)
ϕj(xj)

.

Not obvious; see bonus for how it gives conditional in Markov chain.
We divide by ϕj(xj) since it is included in both the forward and backward messages.

You can alternately shift ϕj to earlier/later message to remove division.

We can also get the normalizing constant as Z =
∑k

c=1Md(c).

Forward-Backward for Decoding and Sampling

Viterbi decoding can be generalized to use potentials ϕ and ψ:

Compute forward messages, but with summation replaced by maximization:

Mj(xj) ∝ maxxj−1
ϕj(xj)ψj(xj , xj−1)Mj−1(xj−1).

Find the largest value of Md(xd), then backtrack to find decoding.

Forward-filter backward-sample is a potentials (ϕ and ψ) variant for sampling.

Forward pass is the same.
Backward pass generates samples (ancestral sampling backwards in time):

Sample xd from Md(xd) = p(xd).
Sample xd−1 using Md−1(xd−1) and sampled xd.
Sample xd−2 using Md−2(xd−2) and sampled xd−1.
(continue until you have sampled x1)

	Markov Chains
	Inference in Markov Chains
	Message Passing

