CPSC 440/540: Advanced Machine Learning

End-to-End Learning, Exponential Families

Danica Sutherland (building on materials from Mark Schmidt)

University of British Columbia

Winter 2023

Last time: Rejection4+Importance Sampling, Laplace Approximation

Mostly, we want to estimate Ex ., f(X) for some f
o Indicators of events, conditional probabilities, mean / variance, ...

Rejection sampling finds exact samples from p, then Ex., f(z) = >, %f(x")

e Propose from ¢(z), know M > max, %; then accept with probability

e High rejection rate if ¢ “far from" p (e.g. in high dimensions)

p(z)
Mq(z)

Importance sampling gets weighted “samples”, then Ex~, f(z) = >, w' f(z")

o Sample z! w q(x), weight w' = p(z*)/(nq(x?))
o If we only know w' = p(x%)/q(z?), self-normalized IS uses ' = aﬂ/(zj w7)
o High variance (and, for self-norm, high bias) if ¢ far from p (e.g. in high dimensions)

Laplace approximation with a Gaussian ¢, then Ex ., f(X) =~ Ex.~q f(X)

27

e Fast but can be very bad if p doesn’t look like a Gaussian near its mode

o Find 2* = argmax, p(z), use ¢ = N (m*, (VZ[-log p(z)]

Outline

@ Regression with Neural Networks

Motivating Problem: Depth Estimation from Images

@ We want to predict “distance to car” for each pixel in an image.

https://paperswithcode.com/task/3d-depth-estimation
o We might consider using fully-convolutional networks.
e But we now have multiple continuous labels.

https://paperswithcode.com/task/3d-depth-estimation

Neural Network with Continuos Outputs
e Standard neural network with multiple continuous outputs (3 hidden layers):
gt = VA(W3h(W2h(W'zh)), so ¢ = vl h(W3h(W?2h(W!z?))).

@ Standard training objective is to minimize squared error,
1 n k ‘ '
FWEWEWE V) =2 0 (ve — i)

@ This corresponds to MLE in a network that outputs the mean of a Gaussian,

@ As usual, we only need to change the last layer to change output type.

Neural Networks with Covariances bonus!

@ The neural network could also parameterize the variance,
y' ~ NG, SWh(W2R(W'a')))),

where the function S transforms the hidden layer into a positive-definite matrix.
e So inferences over multiple variables will capture the label’s pairwise correlations.
@ For depth estimation, neighbouring pixels are likely to have similar depths.

@ Common choices for S:

o S parameterizes a diagonal matrix D (may output log(o.) values to make positive).
o S parameterizes a square root matrix A, such that ¥ = AAT.

@ We could also consider Bayesian neural networks.
e Where you might use a Laplace approximation of the posterior.
o Though the matrix V2 f(W?3, W2, W* V) may be too large and will be singular.

Object Localization

@ Object localization is task of finding locations of objects:

e Input is an image.
o Output is a bounding box for each object (among predefined classes).

person’.00 _parson 88

ipersen 09

— £4¢ 88 - ré ¥ +
e | b

persan. 6.

https://blog.athelas.com/a-brief-history-of-cnns-in-image-segmentation-from-r-cnn-to-mask-r-cnn-34ea83205de4

https://blog.athelas.com/a-brief-history-of-cnns-in-image-segmentation-from-r-cnn-to-mask-r-cnn-34ea83205de4

Region Convolutional Neural Networks: “Pipeline” Approach bonus!

—

e Early approach (region CNN) resemble classic computer vision “pipelines”:
@ Propose a bunch of potential boxes (based on segmenting image in various ways).
@ Compute features of each box using a CNN (after re-shaping box to standard size).

© Classify boxes using SVMs (max pool among regions with high overlap).
© Refine each box using linear regression on CNN features.

@ 4 continuous outputs: center x-coordinate, center y-coordinate, log-width, log-height.

R-CNN: Regions with CNN features

g verpedregion
< s :
— = {person?yes]
A = o CNNN :
e 2=
1. Input 2. Extract region 3. Compute 4. Classify
image proposals (~2k) CNN features regions

https://arxiv.org/pdf/1311.2524.pdf

@ Improved on state of the art, but slow and there are 4 parts to train.

https://arxiv.org/pdf/1311.2524.pdf

Fast R-CNNs bonus!

@ R-CNN was quickly replaced by fast R-CNN:
e Propose a bunch of potential bounding boxes (same as before).
o Apply CNN to whole image, then get features of bounding boxes.
o Faster than applying CNN to 2000 candidate regions.
o Make softmax (over k + 1 classes) and bounding box regression part of network.
@ More accurate since are parts are trained together.

Outputs: beX
softmax regressor

Rol FC FC
pooling
layer

FCs

Rol feature
vector For each Rol

https://arxiv.org/pdf/1504.08083.pdf

@ Most parts trained together, but bounding box proposals do not use encoding.

https://arxiv.org/pdf/1504.08083.pdf

Faster R-CNNs bonus!

e

o Faster R-CNNs made generating bounding boxes part of the network.

e Uses region-proposal network as part of network to predict potential bounding boxes.
e Many implementation details required to get it working.

classifier

proposals, j ;
Region Proposal Networl
feature maps

conv layers /
4
-7

https://arxiv.org/pdf/1506.01497.pdf

@ With all steps being part of one network, this called an end-to-end model.

https://arxiv.org/pdf/1506.01497.pdf

YOLO: You Only Look Once

it
Figure 1: The YOLO Detection System. Processing images
with YOLO is simple and straightforward. Our system (1) resizes
the input image to 448 x 448, (2) runs a single convolutional net-
work on the image, and (3) thresholds the resulting detections by
the model’s confidence.
https://arxiv.org/pdf/1506.02640.pdf
e Divides image into grid.

e Directly predict properties for a fixed number of bounding boxes for grid box:

@ Probability that box is an object (for pruning set of possible boxes).
@ Box x-coordinate, y-coordinate, width, height.

@ Class of box (no separate phase of “proposing boxes” and “classifying boxes").
e Max pooling (“non-max suppression”).

@ Reasonably-accurate real-time object detection (with fancy-enough hardware).

https://arxiv.org/pdf/1506.02640.pdf

Instance Segmentation and Pose Estimation bonus!

—

@ Can add extra predictions to these networks.
@ For example, mask R-CNNs add instance segmentation and/or pose estimation:

https://arxiv.org/pdf/1703.06870.pdf
@ Instance segmentation applies binary mask to bounding boxes (pixel labels).
@ Pose estimation predicts continuous joint keypoint locations.

https://arxiv.org/pdf/1703.06870.pdf

End-to-End Computer Vision Models

o Key ideas behind end-to-end systems:

@ Write each step as a differentiable operator.
@ Train all steps using backpropagation and stochastic gradient.

Has been called differentiable programming.

@ There now exist end-to-end models for all the standard vision tasks.
o Depth estimation, pose estimation, optical flow, tracking, 3D geometry, and so on.
e A bit hard to track the progress at the moment.
o A survey of & 200 papers from 2016 (has only grown since):

@ http://www.themtank.org/a-year-in-computer-vision

Pose estimation video: https://www.youtube.com/watch?v=pW6nZXeWlGM

Making 60-fps high-resolution colour version of videos from 120 year ago:
e https://www.youtube.com/watch?v=YZuP41ALx_Q

http://www.themtank.org/a-year-in-computer-vision
https://www.youtube.com/watch?v=pW6nZXeWlGM
https://www.youtube.com/watch?v=YZuP41ALx_Q

End of Part 3 (“Gaussian Variables”): Key Concepts

@ We discussed continuous density estimation with multivariate Gaussians.

o Parameterized by mean vector and positive definite covariance matrix.
e Assumes distribution is uni-modal, no outliers, untruncated.

@ And symmetric around principle axes.
e "Gaussianity” is preserved under many operations.
e Addition, marginalization, conditionining, product of densities.

@ We discussed conditional independence in Gaussians.
o Models correlations between variables where ¥;; # 0.
e Diagonal covariance corresponds to assuming variables all variables are independent.
o We define a graph based on the O;; values.

o If variables are blocked in graph, implies conditional independence.

End of Part 3 (“Gaussian Variables”): Key Concepts

@ We discussed several methods for sampling and/or Monte Carlo:
e Inverse transform method uses inverse of CDF to sample continuos densities.
e Rejection sampling rejects samples from a simpler distribution.
e Importance sampling reweights samples from a simpler distribution.

@ We discussed learning in Gaussians.
o Closed-form MLE given by data's mean and variance.
e Conjugate prior for mean in Gaussian.
e Adding a scaled identity matrix to MLE gives positive-definite estimate.
e Graphical Lasso allows learning sparse conditional independence graph.

@ Gaussian discriminant analysis is generative classifer with Gaussian classes.
e Does not need naive Bayes assumption.

End of Part 3 (“Gaussian Variables”): Key Concepts

@ We discussed regression.

e Supervised learning with continuous outputs.
o Least squares with L2-regularization assumes Gaussian likelihood and prior.

o We discussed Bayesian linear regression.

e Gives confidence in predictions.
o Empirical Bayes can be used to set many hyper-parameters.

o Automatic relevance determination: prefers simpler models that fit data well.
e Laplace approximation can be used in non-conjugate settings.

@ Special case of a variational inference method (approximate with simpler distribution).

@ We discussed end-to-end learning.

e Try to write each step as a differentiable operation.
e Train entire network with backprop and SGD.

@ We illustrated this with evolution of object localization in vision.

Outline

© Exponential Families

Previously: Density Estimation with Categorical /Gaussian Distributions

@ We have discussed density estimation with categorical and Gaussian distribution.
e Binary is special case of categorical.

@ These distributions have a lot of nice properties for learning/inference.

o NLL is convex, and MLE has closed-form (statistics in training data).
e A conjugate prior exists, so posterior is prior with “updated hyper-parameters.”

@ But these distributions make restrictive assumptions:

o Categorical assumes categories are unordered, non-hierarchical, and finite.
o Gaussian assumes symmetry, full support, no outliers, uni-modal.

e Many alternatives to categorical/Gaussian exist (examples later).
o Alternatives that are in the exponential family maintain nice properties.

Exponential Family: Definition

@ General form of exponential family likelihood for data x with parameters 0 is

oo | 8) M exp(n(6)Ts(x)
Z(0)

@ The value s(z) is the vector of sufficient statistics.

o s(x) tells us everything that is relevant to 6 about data z.
@ The parameter function 77 controls how parameters 6 interact with the statistics.

o We'll focus a lot on 7(#) = 6, which is called the canonical form.
@ The support function h contains terms that don't depend on 6.

e Also called the base measure.
@ The normalizing constant Z ensures it sums/integrates to 1 over z.

e Also called the partition function.

Bernoulli as Exponential Family

@ Is Bernoulli in the exponential family for some parameters w?

7 h(x)ex Tp(x
p(x]6) = 6°(1 —)" 1z € {0.1)) £ @) pgz(:)) F(x))

@ To get an exponential, take log of exp (cancelling operations),

pla [0) =60"(1-0)""" L(z € {0,1}) = exp(log(6”(1 — 0)' %)) L(z € {0,1})
= exp(xzlogh + (1 — x)log(l —0)) 1(z € {0,1})

=(1-6)exp <:Elog <130>> I(z €{0,1}).

The sufficient statistic is s(z) = x and normalizing constant is Z(0) = 1/(1 — 6).
The parameter is 7(0) = log(6/(1 — 0)) (the log odds).

e Not in canonical form. Canonical form would use log odds directly as the parameter.

The support function is h(z) = 1(x € {0,1}) — says if we're “in the support”.

There are also other ways to write Bernoulli as an exponential family.

Gaussian as Exponential Family

@ Writing univariate Gaussian as an exponential family:

1
p($ ’ H, 02) = \/ﬂO’ exp (—(ZC - /"l‘)2/20-2)
1
= exp (—2%/20% + px/o® — p?/20%)
2no

o ([[2])

e The sufficient statistics are 2 and 2, and canonical params are ;1/0? and —1/20?

e The normalizing constant is o exp(p?/202), and support is 1//27.

@ Again, there is more than one way to represent as an exponential family.
o If 02 is considered fixed, then x /02 is the sufficient statistic and y is canonical.

Learning with Exponential Families

@ With n IID examples and canonical parameters 6, the likelihood is

= Z(1¢9)” exp (9T Z s(x’)) H h(z")
i=1 j=1

where the sufficient statistics are s(X) = Y7, s(z%).
@ s(X) contain everything relevant for learning — can throw away the actual data.
o For Gaussians, only knowledge of data we need is > ;- , % and > (2%)%.
e No point in using SGD: you just compute s on each example once.
o Exponential families are the only class of distributions with a finite sufficient statistic.

Learning with Exponential Families

o With IID data and canonical 8, NLL is f(8) = —0"s(X) + nlog Z(6) + const.
@ The gradient divided by n (average NLL) for a feature j is

90, 1(6) = —15,(X) + 57550, 2(0)
—%sj (X) + Z(le)V(;j /h(az) exp <9Ts(3:)) dz (use Z for discrete x)
exp(0Ts
= —%sj(X) + /xh(;r)p(;(e)(x))s](X) dx (w/ conditions)

=50+ [(e |)51

= — Ex~data [SJ(X)] + Ex~model [S](X)]

@ The stationary points where V f(6) = 0 correspond to moment matching:

e Set parameters 6 so that expected sufficient statistics equal to statistics in data.
e This is the source of the simple/intuitive closed-form MLEs we've seen so far.

Convexity and Entropy in Exponential Families

@ If you take the second derivative of the NLL you get
V2f(6) = Cov[s(X)],

the covariance of the sufficient statistics.

o Covariances are positive semi-definite, Cov[s(X)] = 0, so NLL is convex.
e This is why “setting the gradient to zero and solve for 6" gives MLE.

o Higher-order derivatives give higher-order moments.
o We call log(Z) the cumulant function.

@ Can show MLE maximizes entropy over all distributions that match moments.
e Entropy is a measure of “how random” a distribution is.

bonus,(

e So Gaussian is “most random” distribution that fits means and covariance of data.

@ Or you can think of this as Gaussian makes “least assumptions”.

o Details for special case of h(z) =1 in bonus slides.

Conjugate Priors in Exponential Family

@ Exponential families in canonical form are guaranteed to have conjugate priors.
@ For example, we could choose a prior like
T
exp(f’ «)
0| a) x ———=.
PO 0) x =70

e «is “pseudo-counts” for the sufficient statistics.
o k modifies the stength of the prior (Z above is normalizer for the likelihood).
o For fixed k, itself an exp. family in 6: s(#) = 6, parameter «, base measure Z(6)~%.

Then the posterior has the same form,

exp(07 (s(X) + a))
Z(Q)ntk

p(| X, a) o
@ Prior's normalizing constant (some (j(«), not Z()) useful for Bayesian inference.

o e.g. can derive, like before, that p(X | @) = (i(s(z) + a)/Ck(a) - [Tie, h(z?).

Discriminative Models and the Exponential Family

@ Going from an exponential family to a discriminative supervised learning:

e Set canonical parameter to w'a?.
o Gives a convex NLL, where MLE tries to match data/model’s conditional statistics.
o Called generalized linear model (GLM) — see Stat 538A, Generalized Linear Models :)

@ For example, consider Gaussian with fixed variance for 3.
o Canonical parameter is 1, and we know setting ;1 = w2’ gives least squares.

o If we start with Bernoulli for y?, we obtain logistic regression.

o Canonical parmaeter is log-odds. A
o Set w'a® = log(y*/(1 — ")) and solve for ¥’ to get sigmoid function.

e Finally, we know “why use the sigmoid function?”

@ You can obtain regression models for other settings using this kind of approach.

o Set canonical parameters to v h(W?2h(W'z?)) for neural networks.
e Use a different exponential family to handle a different type of data.

Examples of Exponential Families bonus!

Bernoulli: distribution on {0,1}.

Categorical: distribution on {1,2,...,k}.
Gaussian: distribution on R?.

Beta: distribution on [0, 1] (including uniform).
Dirichlet: distribution on discrete probabilities.
Wishart: distribution on positive-definite matrices.
Poisson: distribution on non-negative integers.

Gamma: distribution on positive real numbers.

Many many others:
o en.wikipedia.org/wiki/Exponential_family#Table_of_distributions

@ ...can even have infinite-dimensional statistics via kernel exponential families.

en.wikipedia.org/wiki/Exponential_family#Table_of_distributions

Non-Examples of Exponential Families bonus!

@ Laplace and student t distribution are not exponential families.

oors oce
o
IJ n o nJ

o “Heavy-tailed”: have larger probability that data is far from mean.
e More robust to outliers than Gaussian.

@ Ordinal logistic regression is not in exponential family.
o Can be used for categorical variables where ordering matters.
@ In these cases, we may not have nice properties:

e MLE may not be intuitive or closed-form, NLL may not be convex.
e May not have conjugate prior, so need Monte Carlo or variational methods.

Summary

@ Neural networks with continous output:

e Typically trained using squared error, corresponding to Gaussian likelihood.
@ End to end models: use a neural network for everything.

e Each step in a vision “pipeline” as a differentiable operator; train with SGD.

@ Exponential families:
e Have sufficient statistics and canonical parameters.
e Maximimum likelihood becomes moment matching; always have conjugate priors.
o Can build discriminative models by using canonical parameter s(z) = w'z.
o Many things (but not everything!) are exponential families.

Next time: Markov chains!

Convex Conjugate and Entropy bonus!

@ The convex conjugate of a function A is given by

A(p) = sup {n"w — A(w)}.

e E.g., if we consider for logistic regression
A(w) = log(1 + exp(w)),

we have that A*(u) satisfies w = log(u)/log(1 —).
e When 0 < i < 1 we have

A*(p) = plog(p) + (1 — p)log(1 — p)
= _H(pu)a

negative entropy of binary distribution with mean .
e If u does not satisfy boundary constraint, sup is oc.

Convex Conjugate and Entropy bonus!

@ More generally, if A(w) = log(Z(w)) for an exponential family then
A () = —H(pu),

subject to boundary constraints on x and constraint:
1= VA(w) = E[s(X)].

@ Convex set satisfying these is called marginal polytope M.
e If Ais convex (and LSC), A** = A. So we have

A(w) = ilelg{wTu — A* ()}
and when A(w) = log(Z(w)) we have
log(Z(w)) = “Sélﬁg{wTu + H(pu)}-

@ This can be used to derive variational methods, since we have
written computing log(Z) as a convex optimization problem.

Maximum Likelihood and Maximum Entropy

maximum likelihood parameters w in exponential family satisfy:

uI}I;él —w's(D) + log(Z(w))

@ The

= min —w's(D) + sup {w'u+ H(p,)} (convex conjugate)
weRY PEM
= min sup {—w's(D)+w'pu+ H(p,)}
weRY HEM
= sup {min —w's(D) +w'pu+ H(p,)} (convex/concave)
UEM weR?

= p (e.g., maximum likelihood w), so we have
— 1
i Ts(D) + log(Z(w))

— H
= Mg (Pu),

which is —oo unless s(D)

subject to s(D) = p.
@ Maximum likelihood = maximum entropy + moment constraints.

bonus,(

	Regression with Neural Networks
	Exponential Families

