
CPSC 440/540: Advanced Machine Learning
End-to-End Learning, Exponential Families

Danica Sutherland (building on materials from Mark Schmidt)

University of British Columbia

Winter 2023



Last time: Rejection+Importance Sampling, Laplace Approximation

Mostly, we want to estimate EX∼p f(X) for some f

Indicators of events, conditional probabilities, mean / variance, . . .

Rejection sampling finds exact samples from p, then EX∼p f(x) ≈
∑

i
1
nf(x

i)

Propose from q(x), know M ≥ maxx
p̃(x)
q(x) ; then accept with probability p̃(x)

Mq(x)

High rejection rate if q “far from” p (e.g. in high dimensions)

Importance sampling gets weighted “samples”, then EX∼p f(x) ≈
∑

iw
if(xi)

Sample xi iid∼ q(x), weight wi = p(xi)/(nq(xi))

If we only know w̃i = p̃(xi)/q(xi), self-normalized IS uses ŵi = w̃i/(
∑

j w̃
j)

High variance (and, for self-norm, high bias) if q far from p (e.g. in high dimensions)

Laplace approximation with a Gaussian q, then EX∼p f(X) ≈ EX∼q f(X)

Find x∗ = argmaxx p(x), use q = N
(
x∗,
(
∇2

x[− log p(x)]
∣∣
x∗

)−1
)

Fast but can be very bad if p doesn’t look like a Gaussian near its mode



Outline

1 Regression with Neural Networks

2 Exponential Families



Motivating Problem: Depth Estimation from Images

We want to predict “distance to car” for each pixel in an image.

https://paperswithcode.com/task/3d-depth-estimation

We might consider using fully-convolutional networks.

But we now have multiple continuous labels.

https://paperswithcode.com/task/3d-depth-estimation


Neural Network with Continuos Outputs

Standard neural network with multiple continuous outputs (3 hidden layers):

ŷi = V h(W 3h(W 2h(W 1xi))), so ŷic = vTc h(W
3h(W 2h(W 1xi))).

Standard training objective is to minimize squared error,

f(W 1,W 2,W 3, V ) =
1

2

n∑
j=1

k∑
c=1

(yic − ŷic)
2.

This corresponds to MLE in a network that outputs the mean of a Gaussian,

yi ∼ N (ŷi, I).

As usual, we only need to change the last layer to change output type.



Neural Networks with Covariances

The neural network could also parameterize the variance,

yi ∼ N (ŷi, S(W 3h(W 2h(W 1xi)))),

where the function S transforms the hidden layer into a positive-definite matrix.
So inferences over multiple variables will capture the label’s pairwise correlations.

For depth estimation, neighbouring pixels are likely to have similar depths.

Common choices for S:

S parameterizes a diagonal matrix D (may output log(σc) values to make positive).
S parameterizes a square root matrix A, such that Σ = AAT .

We could also consider Bayesian neural networks.
Where you might use a Laplace approximation of the posterior.

Though the matrix ∇2f(W 3,W 2,W 1, V ) may be too large and will be singular.



Object Localization

Object localization is task of finding locations of objects:

Input is an image.
Output is a bounding box for each object (among predefined classes).

https://blog.athelas.com/a-brief-history-of-cnns-in-image-segmentation-from-r-cnn-to-mask-r-cnn-34ea83205de4

https://blog.athelas.com/a-brief-history-of-cnns-in-image-segmentation-from-r-cnn-to-mask-r-cnn-34ea83205de4


Region Convolutional Neural Networks: “Pipeline” Approach

Early approach (region CNN) resemble classic computer vision “pipelines”:
1 Propose a bunch of potential boxes (based on segmenting image in various ways).
2 Compute features of each box using a CNN (after re-shaping box to standard size).
3 Classify boxes using SVMs (max pool among regions with high overlap).
4 Refine each box using linear regression on CNN features.

4 continuous outputs: center x-coordinate, center y-coordinate, log-width, log-height.

https://arxiv.org/pdf/1311.2524.pdf

Improved on state of the art, but slow and there are 4 parts to train.

https://arxiv.org/pdf/1311.2524.pdf


Fast R-CNNs

R-CNN was quickly replaced by fast R-CNN:
Propose a bunch of potential bounding boxes (same as before).
Apply CNN to whole image, then get features of bounding boxes.

Faster than applying CNN to 2000 candidate regions.

Make softmax (over k + 1 classes) and bounding box regression part of network.
More accurate since are parts are trained together.

https://arxiv.org/pdf/1504.08083.pdf

Most parts trained together, but bounding box proposals do not use encoding.

https://arxiv.org/pdf/1504.08083.pdf


Faster R-CNNs

Faster R-CNNs made generating bounding boxes part of the network.
Uses region-proposal network as part of network to predict potential bounding boxes.
Many implementation details required to get it working.

https://arxiv.org/pdf/1506.01497.pdf

With all steps being part of one network, this called an end-to-end model.

https://arxiv.org/pdf/1506.01497.pdf


YOLO: You Only Look Once

A more-recent variant that further speeds things up is YOLO:

https://arxiv.org/pdf/1506.02640.pdf

Divides image into grid.
Directly predict properties for a fixed number of bounding boxes for grid box:

Probability that box is an object (for pruning set of possible boxes).
Box x-coordinate, y-coordinate, width, height.
Class of box (no separate phase of “proposing boxes” and “classifying boxes”).

Max pooling (“non-max suppression”).

Reasonably-accurate real-time object detection (with fancy-enough hardware).

https://arxiv.org/pdf/1506.02640.pdf


Instance Segmentation and Pose Estimation

Can add extra predictions to these networks.

For example, mask R-CNNs add instance segmentation and/or pose estimation:

https://arxiv.org/pdf/1703.06870.pdf

Instance segmentation applies binary mask to bounding boxes (pixel labels).

Pose estimation predicts continuous joint keypoint locations.

https://arxiv.org/pdf/1703.06870.pdf


End-to-End Computer Vision Models

Key ideas behind end-to-end systems:
1 Write each step as a differentiable operator.
2 Train all steps using backpropagation and stochastic gradient.

Has been called differentiable programming.

There now exist end-to-end models for all the standard vision tasks.

Depth estimation, pose estimation, optical flow, tracking, 3D geometry, and so on.
A bit hard to track the progress at the moment.
A survey of ≈ 200 papers from 2016 (has only grown since):

http://www.themtank.org/a-year-in-computer-vision

Pose estimation video: https://www.youtube.com/watch?v=pW6nZXeWlGM

Making 60-fps high-resolution colour version of videos from 120 year ago:

https://www.youtube.com/watch?v=YZuP41ALx_Q

http://www.themtank.org/a-year-in-computer-vision
https://www.youtube.com/watch?v=pW6nZXeWlGM
https://www.youtube.com/watch?v=YZuP41ALx_Q


End of Part 3 (“Gaussian Variables”): Key Concepts

We discussed continuous density estimation with multivariate Gaussians.

Parameterized by mean vector and positive definite covariance matrix.
Assumes distribution is uni-modal, no outliers, untruncated.

And symmetric around principle axes.

“Gaussianity” is preserved under many operations.

Addition, marginalization, conditionining, product of densities.

We discussed conditional independence in Gaussians.
Models correlations between variables where Σij ̸= 0.

Diagonal covariance corresponds to assuming variables all variables are independent.

We define a graph based on the Θij values.

If variables are blocked in graph, implies conditional independence.



End of Part 3 (“Gaussian Variables”): Key Concepts

We discussed several methods for sampling and/or Monte Carlo:

Inverse transform method uses inverse of CDF to sample continuos densities.
Rejection sampling rejects samples from a simpler distribution.
Importance sampling reweights samples from a simpler distribution.

We discussed learning in Gaussians.

Closed-form MLE given by data’s mean and variance.
Conjugate prior for mean in Gaussian.
Adding a scaled identity matrix to MLE gives positive-definite estimate.
Graphical Lasso allows learning sparse conditional independence graph.

Gaussian discriminant analysis is generative classifer with Gaussian classes.

Does not need naive Bayes assumption.



End of Part 3 (“Gaussian Variables”): Key Concepts

We discussed regression.

Supervised learning with continuous outputs.
Least squares with L2-regularization assumes Gaussian likelihood and prior.

We discussed Bayesian linear regression.

Gives confidence in predictions.
Empirical Bayes can be used to set many hyper-parameters.

Automatic relevance determination: prefers simpler models that fit data well.

Laplace approximation can be used in non-conjugate settings.

Special case of a variational inference method (approximate with simpler distribution).

We discussed end-to-end learning.

Try to write each step as a differentiable operation.
Train entire network with backprop and SGD.

We illustrated this with evolution of object localization in vision.



Outline

1 Regression with Neural Networks

2 Exponential Families



Previously: Density Estimation with Categorical/Gaussian Distributions

We have discussed density estimation with categorical and Gaussian distribution.

Binary is special case of categorical.

These distributions have a lot of nice properties for learning/inference.

NLL is convex, and MLE has closed-form (statistics in training data).
A conjugate prior exists, so posterior is prior with “updated hyper-parameters.”

But these distributions make restrictive assumptions:

Categorical assumes categories are unordered, non-hierarchical, and finite.
Gaussian assumes symmetry, full support, no outliers, uni-modal.

Many alternatives to categorical/Gaussian exist (examples later).

Alternatives that are in the exponential family maintain nice properties.



Exponential Family: Definition
General form of exponential family likelihood for data x with parameters θ is

p(x | θ) = h(x) exp(η(θ)Ts(x))

Z(θ)
.

The value s(x) is the vector of sufficient statistics.

s(x) tells us everything that is relevant to θ about data x.

The parameter function η controls how parameters θ interact with the statistics.

We’ll focus a lot on η(θ) = θ, which is called the canonical form.

The support function h contains terms that don’t depend on θ.

Also called the base measure.

The normalizing constant Z ensures it sums/integrates to 1 over x.

Also called the partition function.



Bernoulli as Exponential Family
Is Bernoulli in the exponential family for some parameters w?

p(x | θ) = θx(1− θ)1−x 1(x ∈ {0, 1}) ?
=

h(x) exp(η(θ)TF (x))

Z(θ)
.

To get an exponential, take log of exp (cancelling operations),

p(x | θ) = θx(1− θ)1−x 1(x ∈ {0, 1}) = exp(log(θx(1− θ)1−x)) 1(x ∈ {0, 1})
= exp(x log θ + (1− x) log(1− θ)) 1(x ∈ {0, 1})

= (1− θ) exp

(
x log

(
θ

1− θ

))
1(x ∈ {0, 1}).

The sufficient statistic is s(x) = x and normalizing constant is Z(θ) = 1/(1− θ).

The parameter is η(θ) = log(θ/(1− θ)) (the log odds).
Not in canonical form. Canonical form would use log odds directly as the parameter.

The support function is h(x) = 1(x ∈ {0, 1}) – says if we’re “in the support”.

There are also other ways to write Bernoulli as an exponential family.



Gaussian as Exponential Family

Writing univariate Gaussian as an exponential family:

p(x | µ, σ2) =
1√
2πσ

exp
(
−(x− µ)2/2σ2

)
=

1√
2πσ

exp
(
−x2/2σ2 + µx/σ2 − µ2/2σ2

)
=

1√
2π

exp
(
−µ2/2σ2

)
σ

exp

([
µ/σ2

−1/2σ2

]T [
x
x2

])
.

The sufficient statistics are x and x2, and canonical params are µ/σ2 and −1/2σ2

The normalizing constant is σ exp(µ2/2σ2), and support is 1/
√
2π.

Again, there is more than one way to represent as an exponential family.

If σ2 is considered fixed, then x/σ2 is the sufficient statistic and µ is canonical.



Learning with Exponential Families

With n IID examples and canonical parameters θ, the likelihood is

p(X | θ) =
n∏

i=1

h(xi)
exp(θTs(xi))

Z(θ)

=
1

Z(θ)n
exp

(
θT

n∑
i=1

s(xi)

)
n∏

j=1

h(xi)

=
exp(θTs(X))

Z(θ)n

n∏
j=1

h(xi),

where the sufficient statistics are s(X) =
∑n

i=1 s(x
i).

s(X) contain everything relevant for learning – can throw away the actual data.

For Gaussians, only knowledge of data we need is
∑n

i=1 x
i and

∑n
i=1(x

i)2.
No point in using SGD: you just compute s on each example once.
Exponential families are the only class of distributions with a finite sufficient statistic.



Learning with Exponential Families
With IID data and canonical θ, NLL is f(θ) = −θTs(X) + n logZ(θ) + const.

The gradient divided by n (average NLL) for a feature j is

1

n
∇θjf(θ) = − 1

n
sj(X) +

1

Z(θ)
∇θjZ(θ)

= − 1

n
sj(X) +

1

Z(θ)
∇θj

∫
h(x) exp

(
θTs(x)

)
dx (use

∑
for discrete x)

= − 1

n
sj(X) +

∫
x
h(x)

exp(θTs(X))

Z(θ)
sj(X) dx (w/ conditions)

= − 1

n
sj(X) +

∫
x
p(x | θ)sj(x)dx

= −EX∼data[sj(X)] + EX∼model[sj(X)].

The stationary points where ∇f(θ) = 0 correspond to moment matching:

Set parameters θ so that expected sufficient statistics equal to statistics in data.
This is the source of the simple/intuitive closed-form MLEs we’ve seen so far.



Convexity and Entropy in Exponential Families

If you take the second derivative of the NLL you get

∇2f(θ) = Cov[s(X)],

the covariance of the sufficient statistics.

Covariances are positive semi-definite, Cov[s(X)] ⪰ 0, so NLL is convex.
This is why “setting the gradient to zero and solve for θ” gives MLE.

Higher-order derivatives give higher-order moments.

We call log(Z) the cumulant function.

Can show MLE maximizes entropy over all distributions that match moments.

Entropy is a measure of “how random” a distribution is.
So Gaussian is “most random” distribution that fits means and covariance of data.

Or you can think of this as Gaussian makes “least assumptions”.

Details for special case of h(x) = 1 in bonus slides.



Conjugate Priors in Exponential Family
Exponential families in canonical form are guaranteed to have conjugate priors.

For example, we could choose a prior like

p(θ | α) ∝ exp(θTα)

Z(θ)k
.

α is “pseudo-counts” for the sufficient statistics.
k modifies the stength of the prior (Z above is normalizer for the likelihood).
For fixed k, itself an exp. family in θ: s(θ) = θ, parameter α, base measure Z(θ)−k.

Then the posterior has the same form,

p(θ | X, α) ∝ exp(θT(s(X) + α))

Z(θ)n+k
.

Prior’s normalizing constant (some ζk(α), not Z(θ)) useful for Bayesian inference.

e.g. can derive, like before, that p(X | α) = ζk(s(x) + α)/ζk(α) ·
∏n

i=1 h(x
i).



Discriminative Models and the Exponential Family
Going from an exponential family to a discriminative supervised learning:

Set canonical parameter to wTxi.
Gives a convex NLL, where MLE tries to match data/model’s conditional statistics.
Called generalized linear model (GLM) – see Stat 538A, Generalized Linear Models :)

For example, consider Gaussian with fixed variance for yi.

Canonical parameter is µ, and we know setting µ = wTxi gives least squares.

If we start with Bernoulli for yi, we obtain logistic regression.

Canonical parmaeter is log-odds.
Set wTxi = log(yi/(1− yi)) and solve for yi to get sigmoid function.

Finally, we know “why use the sigmoid function?”

You can obtain regression models for other settings using this kind of approach.

Set canonical parameters to vTh(W 2h(W 1xi)) for neural networks.
Use a different exponential family to handle a different type of data.



Examples of Exponential Families

Bernoulli: distribution on {0, 1}.
Categorical: distribution on {1, 2, . . . , k}.
Gaussian: distribution on Rd.

Beta: distribution on [0, 1] (including uniform).

Dirichlet: distribution on discrete probabilities.

Wishart: distribution on positive-definite matrices.

Poisson: distribution on non-negative integers.

Gamma: distribution on positive real numbers.

Many many others:

en.wikipedia.org/wiki/Exponential_family#Table_of_distributions

. . . can even have infinite-dimensional statistics via kernel exponential families.

en.wikipedia.org/wiki/Exponential_family#Table_of_distributions


Non-Examples of Exponential Families

Laplace and student t distribution are not exponential families.

“Heavy-tailed”: have larger probability that data is far from mean.
More robust to outliers than Gaussian.

Ordinal logistic regression is not in exponential family.

Can be used for categorical variables where ordering matters.

In these cases, we may not have nice properties:

MLE may not be intuitive or closed-form, NLL may not be convex.
May not have conjugate prior, so need Monte Carlo or variational methods.



Summary

Neural networks with continous output:

Typically trained using squared error, corresponding to Gaussian likelihood.

End to end models: use a neural network for everything.

Each step in a vision “pipeline” as a differentiable operator; train with SGD.

Exponential families:

Have sufficient statistics and canonical parameters.
Maximimum likelihood becomes moment matching; always have conjugate priors.
Can build discriminative models by using canonical parameter s(x) = wTx.
Many things (but not everything!) are exponential families.

Next time: Markov chains!



Convex Conjugate and Entropy

The convex conjugate of a function A is given by

A∗(µ) = sup
w∈W

{µTw −A(w)}.

E.g., if we consider for logistic regression

A(w) = log(1 + exp(w)),

we have that A∗(µ) satisfies w = log(µ)/ log(1− µ).

When 0 < µ < 1 we have

A∗(µ) = µ log(µ) + (1− µ) log(1− µ)

= −H(pµ),

negative entropy of binary distribution with mean µ.
If µ does not satisfy boundary constraint, sup is ∞.



Convex Conjugate and Entropy

More generally, if A(w) = log(Z(w)) for an exponential family then

A∗(µ) = −H(pµ),

subject to boundary constraints on µ and constraint:

µ = ∇A(w) = E[s(X)].

Convex set satisfying these is called marginal polytope M.

If A is convex (and LSC), A∗∗ = A. So we have

A(w) = sup
µ∈U

{wTµ−A∗(µ)}.

and when A(w) = log(Z(w)) we have

log(Z(w)) = sup
µ∈M

{wTµ+H(pµ)}.

This can be used to derive variational methods, since we have
written computing log(Z) as a convex optimization problem.



Maximum Likelihood and Maximum Entropy

The maximum likelihood parameters w in exponential family satisfy:

min
w∈Rd

−wTs(D) + log(Z(w))

= min
w∈Rd

−wTs(D) + sup
µ∈M

{wTµ+H(pµ)} (convex conjugate)

= min
w∈Rd

sup
µ∈M

{−wTs(D) + wTµ+H(pµ)}

= sup
µ∈M

{min
w∈Rd

−wTs(D) + wTµ+H(pµ)} (convex/concave)

which is −∞ unless s(D) = µ (e.g., maximum likelihood w), so we have

min
w∈Rd

−wTs(D) + log(Z(w))

= max
µ∈M

H(pµ),

subject to s(D) = µ.
Maximum likelihood ⇒ maximum entropy + moment constraints.
Converse: MaxEnt + fit feature frequencies ⇒ ML(log-linear).


	Regression with Neural Networks
	Exponential Families

