
CPSC 440/540: Advanced Machine Learning
Bayesian Linear Regression, Approximate Inference

Danica Sutherland (building on materials from Mark Schmidt)

University of British Columbia

Winter 2023

Last Time: L2-Regularized Least Squares and Gaussians
We started discussing regression:

Supervised learning with a continuous output yi.

Linear regression models make predictions as ŷi = wTxi.

A common training objective is L2-regularized least squares,

argmin
w

1

2σ2
∥Xw − y∥2 + λ

2
∥w∥2.

This corresponds to MAP estimation with a Gaussian likelihood and prior,

Y ∼ N (wTX,σ2), w ∼ N (0, λ−1I).

The unique MAP estimate is given by:

wMAP =
1

σ2

(
1

σ2
XTX+ λI

)−1

XTy.

Bayesian Linear Regression
Keep linear a Gaussian likelihood and prior,

Y ∼ N (wTX,σ2), w ∼ N (0, λ−1I).

Can use Gaussian identities to work out that the posterior has the form

w | X,y ∼ N

(
wMAP,

(
1

σ2
XTX+ λI

)−1
)
,

which is a Gaussian centered at the MAP estimate.
The variance tells us how much variation we have around the MAP estimate.

In other models, the posterior mode (MAP) is usually not the posterior mean.

By more tedious Gaussian identities the posterior predictive has the form

ỹ | X,y, x̃ ∼ N (wT
MAPx̃, σ

2 + x̃T
(

1

σ2
XTX+ λI

)−1

x̃).

Posterior predictive mode is the MAP prediction (also special for Gaussians).
But working with the full posterior predictive gives us variance of predictions.

Bayesian Linear Regression

Bayesian perspective gives us variability in w and predictions:

http://krasserm.github.io/2019/02/23/bayesian-linear-regression

http://krasserm.github.io/2019/02/23/bayesian-linear-regression

Bayesian Linear Regression

Bayesian linear regression with Gaussian RBFs as features:

http://krasserm.github.io/2019/02/23/bayesian-linear-regression

We have not only a prediction, but Bayesian inference gives “error bars”.

Gives an idea of “where model is confident” and where it is not.

http://krasserm.github.io/2019/02/23/bayesian-linear-regression

Digression: Kernelized Bayesian Linear Regression

In CPSC 340 you may have seen the kernel trick

We can also do that here: with Θ = 1
σ2X

TX+ λI ∈ Rd×d, we can rewrite

ỹ | x̃,X,y ∼ N
(

1

σ2
x̃TΘ−1Xy, x̃TΘ−1x̃

)
= N

(
1

λ
x̃TXA−1y,

1

λ
x̃Tx̃− 1

λ2
x̃TXTA−1Xx̃

)
where A = λ−1XXT + σ2I ∈ Rn×n is a regularized kernel matrix
and Xx̃ ∈ Rn is the train-to-test kernel evaluations

Allows us to efficiently use some exponential-sized or infinite-sized feature sets.
Uses e.g. Woodbury matrix identity to rewrite

Digression: Gaussian Processes

Another view as a Gaussian process (GP)

Notation: a stochastic process is an infinite collection of random variables.
One way to view is as a random function f

Gaussian process is a stochastic process where any finite sample is Gaussian.(
f(x1), . . . , f(xT)

)
∈ RT is multivariate normal for any choice of x1, . . . , xT

Defined in terms of a mean function and a covariance function.

E f(x) = m(x), Cov(f(x1), f(x2)) = k(x1, x2)
k is a valid covariance function if and only if it’s a valid kernel function.

GP prior + Gaussian likelihood gives a GP posterior
Predictive distribution exactly agrees with (kernelized) Bayesian linear regression

A popular book on this topic if you want to read more:
http://www.gaussianprocess.org/gpml/chapters/RW.pdf

We’ll assume we have explicit features, but you could use kernels/GPs instead.

http://www.gaussianprocess.org/gpml/chapters/RW.pdf

Setting Hyper-Parameters with Empirical Bayes
To set hyper-parameters like σ2 and λ, we could use a validation set.

But could also use empirical Bayes and optimize the marginal likelihood,

σ̂2, λ̂ ∈ argmax
σ2,λ

p(y | X, σ2, λ).

The marginal likelihood integrates over the parameters w,

p(y | X, σ2, λ) =

∫
w
p(y, w | X, σ2, λ)dw =

∫
w
p(y | X, w, σ2)p(w | λ)dw (w ⊥⊥ X).

This is the marginal in a product of Gaussians, which is (with some work):

p(y | X, σ2, λ) =
(λ)d/2(σ

√
2π)−n√

det
(

1
σ2XTX+ λI

) exp(− 1

2σ2
∥XwMAP − y∥2 − λ

2
∥wMAP∥2

)
.

You could run gradient descent on the negative log of this to set hyper-parameters.
You could do“projected” gradient to handle parameters with constraints.

Setting Hyper-Parameters with Empirical Bayes

Consider having a hyper-parameter λj for each wj ,

yi ∼ N (wTxi, σ2), wj ∼ N (0, λ−1
j).

Too expensive for cross-validation, but can still do empirical Bayes.
You can do projected gradient descent to optimize the λj .

Or parameterize as λj = exp(ℓj) and use unconstrained optimization.

Weird fact: this yields sparse solutions.

It can send some λj → ∞, concentrating posterior for wj at exactly 0.
This is L2 regularization, but empirical Bayes naturally encourages sparsity.

Called “Automatic relevance determination” (ARD)

Non-convex, and theory isn’t well understood.

Tends to yield much sparser solutions than L1-regularization.

Setting Hyper-Parameters with Empirical Bayes

Consider also having a hyper-parameter σi for each i,

yi ∼ N (wTxi, σ2
i), wj ∼ N (0, λ−1

j).

You can also use empirical Bayes to optimize these hyper-parameters.

The “automatic relevance determination” selects training examples (σi → ∞).

This is like the support vectors in SVMs, but tends to be much more sparse.

Can also use Empirical Bayes to learn kernel parameters.

Do gradient descent on the σ values (or log σ) in the Gaussian kernel.

Bonus slides: Bayesian feature selection gives probability that wj is non-zero.

Posterior can be more informative than standard sparse MAP methods.

Choosing Polynomial Degree with Empirical Bayes

Using empirical Bayes to choose degree hyper-parameter with polynomial basis:

http://krasserm.github.io/2019/02/23/bayesian-linear-regression

Marginal likelihood (“evidence”) is highest for degree 3.

“Bayesian Occam’s Razor”: prefers simpler models that fit data well.
p(y | X, σ2, λ, k) is smaller for degree 4 polynomials since they can fit more datasets.
Non-monotonic: prefers degree 1 and 3 over degree 2.
Model selection criteria like BIC are approximations to marginal likelihood as n → ∞.

http://krasserm.github.io/2019/02/23/bayesian-linear-regression

Choosing Polynomial Degree with Empirical Bayes

Why is the marginal likelihood higher for degree 3 than 7?

Marginal likelihood for degree 3 (ignoring conditioning on hyper-parameters):

p(y | X) =

∫
w0

∫
w1

∫
w2

∫
w3

p(y | X, w)p(w | λ)dw

Marginal likelihood for degree 7:

p(y | X) =

∫
w0

∫
w1

∫
w2

∫
w3

∫
w4

∫
w5

∫
w6

∫
w7

p(y | X, w)p(w | λ)dw.

Higher-degree integrates over high-dimensional volume:

A non-trivial proportion of degree 3 functions fit the data really well.

There are many degree 7 functions that fit the data even better,
but they are a much smaller proportion of all degree 7 functions.

Choosing Between Bases with Empirical Bayes

We could compare marginal likelihood between different non-linear transforms:

p(y | X, polynomial basis) > p(y | X,Gaussian RBF as basis)?

This is the idea behind Bayes factors for hypothesis testing (see bonus slides).

Alternative to classic hypothesis tests like t-tests.

Usual warning: empirical Bayes can sometimes becomes degenerate.

May need a non-vague prior on the hyper-parameters.

But we could have a hyper-prior over possible non-linear transformations.

And use empirical Bayes in this hierarchical model to learn basis and parameters.

Application: Automatic Statistician

Can be viewed as an automatic statistician:
http://www.automaticstatistician.com/examples

http://www.automaticstatistician.com/examples

Outline

1 Bayesian Linear Regression

2 Rejection and Importance Sampling

3 Laplace Approximation

Motivation: Bayesian Logistic Regression

A classic way to fit a binary classifier is L2-regularized logistic loss,

ŵ ∈ argmax
w

n∑
i=1

log(1 + exp(−yiwTxi)) +
λ

2
∥w∥2.

This corresponds to using a sigmoid likelihood and Gaussian prior,

p(yi | xi, w) = 1

1 + exp(−yiwTxi)
, w ∼ N

(
0,

1

λ
I

)
.

In Bayesian logistic regression, we’d work with the posterior.

But the posterior is not a Gaussian, so this is not a conjugate prior.
We don’t have a nice expression for the posterior predictive or marginal likelihood.

Motivation: Monte Carlo for Bayesian Logistic Regression

Posterior predictive in Bayesian logistic regression has the form

p(ỹi | x̃i,X,y, λ) =

∫
w
p(ỹi | x̃i, w) p(w | X,y, λ)dw

= Ew[p(ỹ
i | x̃i, w) | X,y, λ].

If we could sample from the posterior, we could compute this with Monte Carlo!

But we don’t know how to generate IID samples from this posterior.

Later, we’ll cover MCMC, which is a standard method in scenarios like this.

But we’ll start simpler: rejection sampling and importance sampling.

These assume you can generate from a simple distribution q (like a Gaussian).
But you really want to solve an integral for a complicated distribution p.

Like the posterior for Bayesian logistic regression.

Rejection Sampling for Conditionals

We already mentioned rejection sampling for conditional sampling:

Example: sampling from a Gaussian conditional on knowing x ∈ [−1, 1].

Generate Gaussian samples, throw out (“reject”) the ones that aren’t in [−1, 1].
The remaining samples will follow the conditional distribution.

Can be used to generate IID samples from conditional distributions.

General Rejection Sampling Algorithm
General rejection sampling algorithm tries to “sample area under the graph”:

General Rejection Sampling Algorithm
General rejection sampling algorithm tries to “sample area under the graph”:

General Rejection Sampling Algorithm
General rejection sampling algorithm tries to “sample area under the graph”:

General Rejection Sampling Algorithm
General rejection sampling algorithm tries to “sample area under the graph”:

General Rejection Sampling Algorithm
General rejection sampling algorithm tries to “sample area under the graph”:

General Rejection Sampling Algorithm
General rejection sampling algorithm tries to “sample area under the graph”:

General Rejection Sampling Algorithm
General rejection sampling algorithm tries to “sample area under the graph”:

General Rejection Sampling Algorithm
General rejection sampling algorithm tries to “sample area under the graph”:

General Rejection Sampling Algorithm

Ingredients of the general rejection sampling algorithm:
1 Ability to evaluate unnormalized p̃(x),

p(x) =
p̃(x)

Z
.

2 A distribution q that we can sample from.
3 An upper bound M on p̃(x)/q(x).

Rejection sampling algorithm:
1 Sample x from q(x).
2 Keep the sample with probability p̃(x)/(Mq(x)):

Sample u from U(0, 1).
Keep the sample if u ≤ p̃(x) / (Mq(x)).

The accepted samples will be from p(x) (as long as M is a valid upper bound).

General Rejection Sampling Algorithm

For Bayesian logistic regression, we could propose samples from the prior:

p̃(w | X,y) = p(y | X, w)p(w) q(w) = p(w)

p̃(w | y,X)

q(w)
=

p(y | X, w)p(w)

p(w)
= p(y | X, w) ≤ 1

Recall y is discrete here, so p(y | X, w) ≤ 1 and can use M = 1
w sampled from prior would tend to be kept if they explain the data well.

Drawbacks of rejection sampling:
You need to know a bound M on p̃(x)/q(x) (may be hard/impossible to find).

If x is unbounded and p has heavier tails than q, no M exist.

You may reject a large number of samples.

Most samples are rejected for high-dimensional complex distributions.

If − log p(x) is convex and x is 1D there is a fancier version:

Adaptive rejection sampling refines piecewise-linear q after each rejection.

Importance Sampling

Importance sampling instead accepts all samples.

Derivation:

EX∼p[f(X)] =

∫
p(x)f(x) dx

=

∫
q(x)

p(x)

q(x)
f(x) dx

= EX∼q

[
p(X)

q(X)
f(X)

]
≈ 1

n

n∑
i=1

p(xi)

q(xi)
f(xi),

using a Monte Carlo approximation with IID samples from q.

Replace integral with a sum for discrete distributions.

We can sample from q, but reweight by p(x)/q(x) to compute expectation.

Only assumption is that q is always non-zero if p is non-zero.

Self-Normalized Importance Sampling

What if we just have p̃, with p(x) = p̃(x)/Z? Letting r(x) = p̃(x)/q(x):

EX∼p[f(X)] =

∫
p(x)f(x) dx =

1

Z

∫
q(x)

p̃(x)

q(x)
f(x) dx

=
EX∼q[r(X)f(X)]∫

p̃(x) dx
=

EX∼q[r(X)f(X)]∫
q(x) p̃(x)q(x) dx

=
EX∼q[r(X)f(X)]

EX∼q[r(X)]

Can use Monte Carlo estimator based on n samples from q:

EX∼p[f(X)] ≈
1
n

∑n
i=1 r(x

i)f(xi)
1
n

∑n
i=1 r(x

i)

Weighted mean, normalized by r(xi) = p̃(xi)/q(xi)
Biased estimator: E 1

Ẑ
> 1

Z for non-constant distributions (Jensen’s inequality)

Importance Sampling

Importance sampling is only efficient if q is close to p.

Otherwise, weights will be huge for a small number of samples.

Even though unbiased, variance can be huge.

Can be problematic if q has lighter “tails” than p:

You rarely sample the tails, so those samples get huge weights.

As with rejection sampling, does not tend to work well in high dimensions.
There’s room, though, to cleverly design q.

Like “alternate between sampling two Gaussians with different variances”.

Outline

1 Bayesian Linear Regression

2 Rejection and Importance Sampling

3 Laplace Approximation

Overview of Bayesian Inference Tasks
Bayesian inference requires computing expectations with respect to posterior,

E[f(θ)] =

∫
θ
f(θ)p(θ | x)dθ.

Examples:
If f(θ) = p(x̃ | θ), we get posterior predictive.
If f(θ) = I(θ ∈ S) we get probability of S (e.g., marginals or conditionals).
If f(θ) = 1 and we use p̃(θ | x), we get marginal likelihood.

But posterior often doesn’t have a closed-form expression.
We don’t just want to flip coins and multiply Gaussians.

Our two main tools for aproximate inference:
1 Monte Carlo methods.
2 Variational methods.

Classic ideas from statistical physics, that revolutionized Bayesian stats.

Approximate Inference

Two main strategies for approximate inference:
1 Monte Carlo methods:

Approximate p with empirical distribution over samples,

p(x) ≈ 1

n

n∑
i=1

1(xi = x).

Turns inference into sampling.

2 Variational methods:

Approximate p with “closest” distribution q from a tractable family,

p(x) ≈ q(x).

Gaussian, product of Bernoulli, any other model with easy inference. . . .

Turns inference into optimization.

Variational Inference Illustration

Approximate non-Gaussian p by a Gaussian q:

Variational methods try to find simple distribution q that is closest to target p.
Unlike Monte Carlo, does not converge to true solution.

A Gaussian may not be able to perfectly model posterior.

Variational methods quickly give an approximate solution.

Sometimes all we need.
Sometimes, approximation is better than any reasonable amount of Monte Carlo!

Laplace Approximation

A classic variational method is the Laplace approximation.
1 Find an x that maximizes p(x),

x∗ ∈ argmin
x

{− log p(x)}.

2 Computer second-order Taylor expansion of f(x) = − log p(x) at x∗.

− log p(x) ≈ f(x∗) +∇f(x∗)︸ ︷︷ ︸
0

T
(x− x∗) +

1

2
(x− x∗)T ∇2f(x∗) (x− x∗).

3 Use distribution q that has this − log q(x) everywhere:

− log q(x) = f(x∗) +
1

2
(x− x∗)∇2f(x∗)(x− x∗),

This means the distribution q is exactly N (x∗,∇2f(x∗)−1).

Same approximation as used by Newton’s method in optimization.

Laplace Approximation

Laplace approximation replaces a complicated p with a Gaussian q.

Centered at the mode, and agrees with 1st/2nd-derivatives of log-likelihood there:

Now you only need to compute Gaussian integrals (linear algebra for many f).

Very fast: just solve an optimization (compared to super-slow Monte Carlo).
Bad approximation if posterior is heavy-tailed, multi-modal, skewed, and so on.

It might not even give you the “best” Gaussian approximation:

We’ll discuss fancier variational methods later.

Summary

Bayesian Linear Regression

Gaussian conditional likelihood and Gaussian prior gives Gaussian posterior.
Posterior predictive is also Gaussian (“regression with error bars”).

Empirical Bayes to choose hyperparameters based on marginal likelihood.

Bayesian Occam’s razor: can encourage sparsity and simplicity.

Bayesian logistic regression: Gaussian prior isn’t conjugate; need approximations.

Rejection sampling: generate exact samples from complicated distributions.

Tends to reject too many samples in high dimensions.

Importance sampling: reweights samples from the wrong distribution.

Tends to have high variance in high dimensions.

Variational methods approximate p with a simpler distribution q.

Laplace approximation simple variationl inference method.

Use Gaussian centered at MAP that agrees with first two derivatives of NLL.

Next time: the exponential family.

MLE for Multivariate Gaussians (Covariance Matrix)

To get MLE for Σ we re-parameterize in terms of precision matrix Θ = Σ−1,

1

2

n∑
i=1

(xi − µ)⊤Σ−1(xi − µ) +
n

2
log |Σ|

=
1

2

n∑
i=1

(xi − µ)⊤Θ(xi − µ) +
n

2
log |Θ−1| (ok because Σ is invertible)

=
1

2

n∑
i=1

Tr
(
(xi − µ)⊤Θ(xi − µ)

)
+

n

2
log |Θ|−1 (scalar y⊤Ay = Tr(y⊤Ay))

=
1

2

n∑
i=1

Tr((xi − µ)(xi − µ)⊤Θ)− n

2
log |Θ| (Tr(ABC) = Tr(CAB))

Where the trace Tr(A) is the sum of the diagonal elements of A.

That Tr(ABC) =Tr(CAB) when dimensions match is the cyclic property of trace.

MLE for Multivariate Gaussians (Covariance Matrix)

From the last slide we have in terms of precision matrix Θ that

=
1

2

n∑
i=1

Tr((xi − µ)(xi − µ)⊤Θ)− n

2
log |Θ|

We can exchange the sum and trace (trace is a linear operator) to get,

=
1

2
Tr

(
n∑

i=1

(xi − µ)(xi − µ)⊤Θ

)
− n

2
log |Θ|

∑
i

Tr(AiB) = Tr

(∑
i

AiB

)

=
n

2
Tr


 1

n

n∑
i=1

(xi − µ)(xi − µ)⊤︸ ︷︷ ︸
sample covariance ‘S’

Θ

− n

2
log |Θ|.

(∑
i

AiB

)
=

(∑
i

Ai

)
B

MLE for Multivariate Gaussians (Covariance Matrix)

So the NLL in terms of the precision matrix Θ and sample covariance S is

f(Θ) =
n

2
Tr(SΘ)− n

2
log |Θ|, with S =

1

n

n∑
i=1

(xi − µ)(xi − µ)⊤

Weird-looking but has nice properties:

Tr(SΘ) is linear function of Θ, with ∇Θ Tr(SΘ) = S.
(it’s the matrix version of an inner-product s⊤θ)

Negative log-determinant is strictly convex, and has ∇Θ log detΘ = Θ−1.
(generalizes ∇ log |x| = 1/x for for x > 0).

Using these two properties the gradient matrix has a simple form:

∇f(Θ) =
n

2
S − n

2
Θ−1.

Trace Regularization and L1-regularization

A classic regularizer for Σ is to add a diagonal matrix to S and use

Σ = S+λI,

which satisfies Σ ≻ 0 because S ⪰ 0 (eigenvalues at least λ).

This corresponds to L1-regularization of diagonals of precision.

f(Θ) = Tr(SΘ) − log |Θ| + λ
d∑

j=1

|Θjj | (Gauss. NLL plus L1 of diags)

= Tr(SΘ) − log |Θ| + λ
d∑

j=1

Θjj (Diagonals of pos. def. matrix are > 0)

= Tr(SΘ) − log |Θ| + λTr(Θ) (Definition of trace)

= Tr(SΘ+λΘ) − log |Θ| (Linearity of trace)

= Tr((S + λI)Θ) − log |Θ| (Distributive law)

Taking gradient and setting to zero gives Σ = S + λ.
But doesn’t set to exactly zero as log-determinant term is too “steep” at 0.

Gradient of Validation/Cross-Validation Error

It’s also possible to do gradient descent on λ to optimize
validation/cross-validation error of model fit on the training data.

For L2-regularized least squares, define w(λ) = (XTX + λI)−1XT y.

You can use chain rule to get derivative of validation error Evalid with respect to λ:

d

dλ
Evalid(w(λ)) = E′

valid(w(λ))w
′(λ).

For more complicated models, you can use total derivative to get gradient with
respect to λ in terms of gradient/Hessian with respect to w.

Bayesian Feature Selection

Classic feature selection methods don’t work when d >> n:

AIC, BIC, Mallow’s, adjusted-R2, and L1-regularization return very different results.

Here maybe all we can hope for is posterior probability of wj = 0.

Consider all models, and weight by posterior the ones where wj = 0.

If we fix λ and use L1-regularization, posterior is not sparse.

Probability that a variable is exactly 0 is zero.
L1-regularization only leads to sparse MAP, not sparse posterior.

Bayesian Feature Selection

Type II MLE gives sparsity because posterior variance goes to zero.

But this doesn’t give probability of individual wj values being 0.

We can encourage sparsity in Bayesian models using a spike and slab prior:

Mixture of Dirac delta function at 0 and another prior with non-zero variance.
Places non-zero posterior weight at exactly 0.
Posterior is still non-sparse, but answers the question:

“What is the probability that variable is non-zero”?

Bayesian Feature Selection

Monte Carlo samples of wj for 18 features when classifying ‘2’ vs. ‘3’:
Requires “trans-dimensional” MCMC since dimension of w is changing.

“Positive” variables had wj > 0 when fit with L1-regularization.
“Negative” variables had wj < 0 when fit with L1-regularization.
“Neutral’ variables had wj = 0 when fit with L1-regularization.

Bayes Factors for Bayesian Hypothesis Testing

Suppose we want to compare hypotheses:

E.g., “this data is best fit with linear model” vs. a degree-2 polynomial.

Bayes factor is ratio of marginal likelihoods,

p(y | X, degree 2)

p(y | X, degree 1)
.

If very large then data is much more consistent with degree 2.
A common variation also puts prior on degree.

A more direct method of hypothesis testing:

No need for null hypothesis, “power” of test, p-values, and so on.
As usual only says which model is more likely, not whether any are correct.

American Statistical Assocation:
“Statement on Statistical Significance and P-Values”.
http://amstat.tandfonline.com/doi/pdf/10.1080/00031305.2016.1154108

“Hack Your Way To Scientific Glory”:
https://fivethirtyeight.com/features/science-isnt-broken

“Replicability crisis” in social psychology and many other fields:
https://en.wikipedia.org/wiki/Replication_crisis

http://www.nature.com/news/big-names-in-statistics-want-to-shake-up-much-maligned-p-value-1.22375

“T-Tests Aren’t Monotonic”: https://www.naftaliharris.com/blog/t-test-non-monotonic

Bayes factors don’t solve problems with p-values and multiple testing.
But they give an alternative view, are more intuitive, and make assumptions clear.

Some notes on various issues associated with Bayes factors:
http://www.aarondefazio.com/adefazio-bayesfactor-guide.pdf

http://amstat.tandfonline.com/doi/pdf/10.1080/00031305.2016.1154108
https://fivethirtyeight.com/features/science-isnt-broken
https://en.wikipedia.org/wiki/Replication_crisis
http://www.nature.com/news/big-names-in-statistics-want-to-shake-up-much-maligned-p-value-1.22375
https://www.naftaliharris.com/blog/t-test-non-monotonic
http://www.aarondefazio.com/adefazio-bayesfactor-guide.pdf

	Bayesian Linear Regression
	Rejection and Importance Sampling
	Laplace Approximation

