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Last Time: L2-Regularized Least Squares and Gaussians

@ We started discussing regression:
o Supervised learning with a continuous output 3.

o Linear regression models make predictions as §* = w2’

@ A common training objective is L2-regularized least squares,
1 A
arg min — || Xw — y|> + = |jw|*.
gmin o [Xw -y + Slw

@ This corresponds to MAP estimation with a Gaussian likelihood and prior,
Y ~ Nw'X,0%), w~N(O,AT).

@ The unique MAP estimate is given by:

1 /1 -1
WMAP — ﬁ <0_2XTX + )\I) XTy



Bayesian Linear Regression

@ Keep linear a Gaussian likelihood and prior,
Y ~Nw X, 0%, w~ N0, ).

@ Can use Gaussian identities to work out that the posterior has the form
1ot !
w| X,y ~N | wuap, EX X+ AI :

which is a Gaussian centered at the MAP estimate.
e The variance tells us how much variation we have around the MAP estimate.
@ In other models, the posterior mode (MAP) is usually not the posterior mean.

@ By more tedious Gaussian identities the posterior predictive has the form
1 -1
g ’X,y,"i‘NN(w—l\aApi', 02+£T <2XTX+)\I> .ﬁ%)
(o

@ Posterior predictive mode is the MAP prediction (also special for Gaussians).
e But working with the full posterior predictive gives us variance of predictions.



Bayesian Linear Regression

@ Bayesian perspective gives us variability in w and predictions:

1o Posterior density (N = 1}
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Bayesian Linear Regression

@ Bayesian linear regression with Gaussian RBFs as features:
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@ We have not only a prediction, but Bayesian inference gives “error bars”.
o Gives an idea of "where model is confident” and where it is not.


http://krasserm.github.io/2019/02/23/bayesian-linear-regression

Digression: Kernelized Bayesian Linear Regression

@ In CPSC 340 you may have seen the kernel trick
@ We can also do that here: with © = %XTX + AI € R%¥4 we can rewrite

1

jlEX,y~N <2~T@—1Xy,:zT@—1:E>
g

1. 1

=N (iiTXAly, 13- )\QiTXTAIXa?>

where A = A7IXXT + 62T € R™ " is a regularized kernel matrix
and X7z € R" is the train-to-test kernel evaluations

o Allows us to efficiently use some exponential-sized or infinite-sized feature sets.

o Uses e.g. Woodbury matrix identity to rewrite

bonus,(



Digression: Gaussian Processes bonus!

@ Another view as a Gaussian process (GP)

@ Notation: a stochastic process is an infinite collection of random variables.
e One way to view is as a random function f

@ Gaussian process is a stochastic process where any finite sample is Gaussian.
° (f(xl), e f(:ET)) € R is multivariate normal for any choice of z1,...,zr
e Defined in terms of a mean function and a covariance function.

o Ef(z) = m(z), Cov(f(21), f(x2)) = k(z1, x2)

e k is a valid covariance function if and only if it's a valid kernel function.

o GP prior + Gaussian likelihood gives a GP posterior
o Predictive distribution exactly agrees with (kernelized) Bayesian linear regression

@ A popular book on this topic if you want to read more:
e http://www.gaussianprocess.org/gpml/chapters/RW.pdf

o We'll assume we have explicit features, but you could use kernels/GPs instead.


http://www.gaussianprocess.org/gpml/chapters/RW.pdf

Setting Hyper-Parameters with Empirical Bayes

e To set hyper-parameters like 2 and ), we could use a validation set.

@ But could also use empirical Bayes and optimize the marginal likelihood,

52\ € argmax p(y | X, 0%, \).
o2\

@ The marginal likelihood integrates over the parameters w,

Py | X, 0% 2) = / Py, w | X, 02, Ndw = / Py | X, w,0%)p(w | Ndw  (w L X).

w

@ This is the marginal in a product of Gaussians, which is (with some work):
(N2 (ov2m) "

(y]Xa A)
\/det LXTX 4+ AT

1 A
o (- gy lXumse — 17 - Sl ).

e You could run gradient descent on the negative log of this to set hyper-parameters.
@ You could do“projected” gradient to handle parameters with constraints.



Setting Hyper-Parameters with Empirical Bayes

o Consider having a hyper-parameter \; for each wj,
Y~ N(w'az',0?), wj ~N(0, /\;1).

@ Too expensive for cross-validation, but can still do empirical Bayes.
e You can do projected gradient descent to optimize the A;.
@ Or parameterize as A\; = exp(¢;) and use unconstrained optimization.

@ Weird fact: this yields sparse solutions.

e It can send some \; — 0o, concentrating posterior for w; at exactly 0.
e This is L2 regularization, but empirical Bayes naturally encourages sparsity.

o Called “Automatic relevance determination” (ARD)

@ Non-convex, and theory isn’t well understood.
e Tends to yield much sparser solutions than L1-regularization.



Setting Hyper-Parameters with Empirical Bayes

o Consider also having a hyper-parameter o; for each 1,
. T _1
Y~ N(wha', o?), wj ~ N(0,A;7).

@ You can also use empirical Bayes to optimize these hyper-parameters.

@ The “automatic relevance determination” selects training examples (o; — 0).
o This is like the support vectors in SVMs, but tends to be much more sparse.

@ Can also use Empirical Bayes to learn kernel parameters.
o Do gradient descent on the o values (or log o) in the Gaussian kernel.

@ Bonus slides: Bayesian feature selection gives probability that w; is non-zero.
e Posterior can be more informative than standard sparse MAP methods.



Choosing Polynomial Degree with Empirical Bayes

o Using empirical Bayes to choose degree hyper-parameter with polynomial basis:
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e Marginal likelihood (“evidence") is highest for degree 3.

“Bayesian Occam’s Razor": prefers simpler models that fit data well.

p(y | X, 02, \, k) is smaller for degree 4 polynomials since they can fit more datasets.
Non-monotonic: prefers degree 1 and 3 over degree 2.

Model selection criteria like BIC are approximations to marginal likelihood as n — oo.


http://krasserm.github.io/2019/02/23/bayesian-linear-regression

Choosing Polynomial Degree with Empirical Bayes

@ Why is the marginal likelihood higher for degree 3 than 77
e Marginal likelihood for degree 3 (ignoring conditioning on hyper-parameters):

p(yIX)Z/WO/u}l/wz/wp(yIXaw)p(wlA)dw

e Marginal likelihood for degree 7:

p<y|x>:/wo/wl/m/m/wél/ws/%/mp<y|x,w>p<w|x>dw.

e Higher-degree integrates over high-dimensional volume:
@ A non-trivial proportion of degree 3 functions fit the data really well.

@ There are many degree 7 functions that fit the data even better,
but they are a much smaller proportion of all degree 7 functions.



Choosing Between Bases with Empirical Bayes

@ We could compare marginal likelihood between different non-linear transforms:

p(y | X, polynomial basis) > p(y | X, Gaussian RBF as basis)?

@ This is the idea behind Bayes factors for hypothesis testing (see bonus slides).
e Alternative to classic hypothesis tests like t-tests.

@ Usual warning: empirical Bayes can sometimes becomes degenerate.
e May need a non-vague prior on the hyper-parameters.

@ But we could have a hyper-prior over possible non-linear transformations.
e And use empirical Bayes in this hierarchical model to learn basis and parameters.



Application: Automatic Statistician

@ Can be viewed as an automatic statistician:
http://www.automaticstatistician.com/examples

An automatic report for the dataset : 01-airline
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Outline

© Rejection and Importance Sampling



Motivation: Bayesian Logistic Regression

@ A classic way to fit a binary classifier is L2-regularized logistic loss,

n
L A
w e argmaleog(l + exp(—yiw'zt)) + 5HwH2

w i=1

@ This corresponds to using a sigmoid likelihood and Gaussian prior,

S 1 1
bt = A A ~N|{0,-1).
po 1 0) = oo e e (0,51
@ In Bayesian logistic regression, we'd work with the posterior.

o But the posterior is not a Gaussian, so this is not a conjugate prior.
o We don't have a nice expression for the posterior predictive or marginal likelihood.



Motivation: Monte Carlo for Bayesian Logistic Regression

@ Posterior predictive in Bayesian logistic regression has the form

p(i' |3, X,y, ) = / p(f" | &, w)p(w | Xy, \)dw
= Eu[p(§' | &', w) | X,y \.

o If we could sample from the posterior, we could compute this with Monte Carlo!
e But we don’t know how to generate [ID samples from this posterior.

o Later, we'll cover MCMC, which is a standard method in scenarios like this.

@ But we'll start simpler: rejection sampling and importance sampling.

e These assume you can generate from a simple distribution ¢ (like a Gaussian).
e But you really want to solve an integral for a complicated distribution p.

o Like the posterior for Bayesian logistic regression.



Rejection Sampling for Conditionals

@ We already mentioned rejection sampling for conditional sampling:
e Example: sampling from a Gaussian conditional on knowing = € [—1,1].

/ /

+

o Generate Gaussian samples, throw out (“reject”) the ones that aren't in [—1,1].
e The remaining samples will follow the conditional distribution.

@ Can be used to generate |ID samples from conditional distributions.



General Rejection Sampling Algorithm
@ General rejection sampling algorithm tries to “sample area under the graph”:

Wan?" 1o S*Mr/f
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General Rejection Sampling Algorithm
@ General rejection sampling algorithm tries to “sample area under the graph”:
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General Rejection Sampling Algorithm
@ General rejection sampling algorithm tries to “sample area under the graph”:
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General Rejection Sampling Algorithm
@ General rejection sampling algorithm tries to “sample area under the graph”:

[?w fimes M such tr.1
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General Rejection Sampling Algorithm
@ General rejection sampling algorithm tries to “sample area under the graph”:
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General Rejection Sampling Algorithm
@ General rejection sampling algorithm tries to “sample area under the graph”:
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General Rejection Sampling Algorithm
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General Rejection Sampling Algorithm
@ General rejection sampling algorithm tries to “sample area under the graph”:
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General Rejection Sampling Algorithm

@ Ingredients of the general rejection sampling algorithm:
@ Ability to evaluate unnormalized p(z),
_ (=)

@ A distribution ¢ that we can sample from.
© An upper bound M on p(x)/q(x).

@ Rejection sampling algorithm:
© Sample x from ¢(z).
@ Keep the sample with probability p(z)/(Mq(z)):
e Sample u from U(0,1).
o Keep the sample if u < p(x) / (Mg(x)).

@ The accepted samples will be from p(x) (as long as M is a valid upper bound).



General Rejection Sampling Algorithm

@ For Bayesian logistic regression, we could propose samples from the prior:

plw | X,y) =ply | X, w)p(w) q(w) = p(w)
p(wq(i’), X) _ply| ;((;ng)p(w) oy | Xow) <1

o Recall y is discrete here, so p(y | X,w) <1 and can use M =1
e w sampled from prior would tend to be kept if they explain the data well.
@ Drawbacks of rejection sampling:
e You need to know a bound M on p(x)/q(x) (may be hard/impossible to find).
o If x is unbounded and p has heavier tails than ¢, no M exist.
e You may reject a large number of samples.

@ Most samples are rejected for high-dimensional complex distributions.

o If —logp(x) is convex and x is 1D there is a fancier version:
o Adaptive rejection sampling refines piecewise-linear ¢ after each rejection.



Importance Sampling

@ Importance sampling instead accepts all samples.

@ Derivation:

Exoplf(X)] = / (2)/ () de
()

= [a@E S @) da

E“q[g) ] pz )

'Q’U

’B

q

using a Monte Carlo approximation with |ID samples from q.
e Replace integral with a sum for discrete distributions.

@ We can sample from ¢, but reweight by p(x)/q(x) to compute expectation.

@ Only assumption is that ¢ is always non-zero if p is non-zero.



Self-Normalized Importance Sampling

e What if we just have p, with p(z) = p(z)/Z7 Letting r(x) = p(z)/q(x):

Bxy f00] = [p)f@)de = 5 [)Z 2 1)
_Ex~q[( 0] _ ExegfrX)/00) _EM[ () (X)
[ p(z) [ q(z z(x dx Exng[r(X)]

@ Can use Monte Carlo estimator based on n samples from ¢:

s~ e f(2
Bl ()] = 2o )
n i=1

o Weighted mean, normalized by 7(x%) = p(z%)/q(z?)
o Biased estimator: IE% > % for non-constant distributions (Jensen's inequality)



Importance Sampling

@ Importance sampling is only efficient if ¢ is close to p.
@ Otherwise, weights will be huge for a small number of samples.
e Even though unbiased, variance can be huge.

@ Can be problematic if ¢ has lighter “tails” than p:
e You rarely sample the tails, so those samples get huge weights.

A /)(‘E/x,)(\-‘\,

@ As with rejection sampling, does not tend to work well in high dimensions.
e There's room, though, to cleverly design q.

o Like “alternate between sampling two Gaussians with different variances”.



Outline

© Laplace Approximation



Overview of Bayesian Inference Tasks

@ Bayesian inference requires computing expectations with respect to posterior,

/f p(0 | 2)d

@ Examples:
o If f(8) =p(&|0), we get posterior predictive.
o If f(8) =1(f € S) we get probability of S (e.g., marginals or conditionals).
o If f(6) =1 and we use p(@ | z), we get marginal likelihood.

@ But posterior often doesn't have a closed-form expression.

e We don't just want to flip coins and multiply Gaussians.

Our two main tools for aproximate inference:
@ Monte Carlo methods.
@ Variational methods.

o Classic ideas from statistical physics, that revolutionized Bayesian stats.



Approximate Inference

Two main strategies for approximate inference:
@ Monte Carlo methods:
e Approximate p with empirical distribution over samples,

1 — ;
p(z) ~ - Zl(m =2x).
i=1
e Turns inference into sampling.

© Variational methods:
e Approximate p with “closest” distribution ¢ from a tractable family,

e Gaussian, product of Bernoulli, any other model with easy inference. . ..

e Turns inference into optimization.



Variational Inference lllustration

@ Approximate non-Gaussian p by a Gaussian ¢:

_—

@ Variational methods try to find simple distribution ¢ that is closest to target p.
e Unlike Monte Carlo, does not converge to true solution.
@ A Gaussian may not be able to perfectly model posterior.
e Variational methods quickly give an approximate solution.

@ Sometimes all we need.
@ Sometimes, approximation is better than any reasonable amount of Monte Carlo!



Laplace Approximation

@ A classic variational method is the Laplace approximation.
© Find an z that maximizes p(z),

x* € argmin{—logp(z)}.
xr
@ Computer second-order Taylor expansion of f(z) = —logp(z) at z*.

~logple) ~ f(a*) + Vi(a") (@~ ) + w —2")T V(") (o~ 2°).
0

© Use distribution ¢ that has this —log g(x) everywhere:

~logg(a) = f(a*) + (¢ — )V f (@) — ),

This means the distribution ¢ is exactly N'(z*, V2 f(x*)™1).
@ Same approximation as used by Newton's method in optimization.



Laplace Approximation

@ Laplace approximation replaces a complicated p with a Gaussian g¢.
o Centered at the mode, and agrees with 1st/2nd-derivatives of log-likelihood there:

q()«)
% o)
@ Now you only need to compute Gaussian integrals (linear algebra for many f).

o Very fast: just solve an optimization (compared to super-slow Monte Carlo).
e Bad approximation if posterior is heavy-tailed, multi-modal, skewed, and so on.

@ It might not even give you the “best” Gaussian approximation:

_ O

e We'll discuss fancier variational methods later.



Summary

@ Bayesian Linear Regression

e Gaussian conditional likelihood and Gaussian prior gives Gaussian posterior.
o Posterior predictive is also Gaussian (“regression with error bars").

Empirical Bayes to choose hyperparameters based on marginal likelihood.
e Bayesian Occam'’s razor: can encourage sparsity and simplicity.

Bayesian logistic regression: Gaussian prior isn't conjugate; need approximations.

Rejection sampling: generate exact samples from complicated distributions.
e Tends to reject too many samples in high dimensions.

Importance sampling: reweights samples from the wrong distribution.
e Tends to have high variance in high dimensions.

Variational methods approximate p with a simpler distribution q.

Laplace approximation simple variationl inference method.
e Use Gaussian centered at MAP that agrees with first two derivatives of NLL.

@ Next time: the exponential family.



MLE for Multivariate Gaussians (Covariance Matrix) bonus!

o To get MLE for ¥ we re-parameterize in terms of precision matrix © = £ ~1,

DO | —
=

@
Il
—

. _ . n
(2" = ) ' B7H (@' = p) + 5 log 3|

[l
N —
gk

@
Il
—

(" — )T O(zt — ) + glog S (ok because ¥ is invertible)

Il
N | —
]+

@
I
—

Tr ((g;i — )T e - u)) + glog 0] (scalar y " Ay = Tr(y" Ay))

Il
DO —
)=

@
Il
i

Tr((2' — )2 — p)7O) — glog 0| (Tr(ABC) = Tr(CAB))

@ Where the trace Tr(A) is the sum of the diagonal elements of A.
o That Tr(ABC) =Tr(C AB) when dimensions match is the cyclic property of trace.



MLE for Multivariate Gaussians (Covariance Matrix) bonus!
@ From the last slide we have in terms of precision matrix © that
1< i i T n
=5 > TH(@ — (i — 1)) - S logle)
i=1

@ We can exchange the sum and trace (trace is a linear operator) to get,

%Tr (Z(:c’ — )z — M)T@> - glog |©] ZTr A;B) (ZA B)

=1

=2 | 2 - wet—wT | e | - Floglel (ZAZ'B>:<ZAZ‘>B

=1

sample covariance 'S’



MLE for Multivariate Gaussians (Covariance Matrix) bonus!

@ So the NLL in terms of the precision matrix © and sample covariance S is

n

n n i 1 . . T
F(©) = 5THS8) ~ Flog O, with § = 23 (a* — )(a' ~ 1)
1=
@ Weird-looking but has nice properties:
o Tr(SO) is linear function of ©, with Vg Tr(S©) = S.

(it's the matrix version of an inner-product s ' 6)
o Negative log-determinant is strictly convex, and has Vg logdet ® = ©~ 1.
(generalizes Vlog |z| = 1/z for for z > 0).

@ Using these two properties the gradient matrix has a simple form:

n n_._



Trace Regularization and L1-regularization

o A classic regularizer for X is to add a diagonal matrix to S and use
¥ =S+,

which satisfies ¥ > 0 because S > 0 (eigenvalues at least \).

@ This corresponds to L1-regularization of diagonals of precision.

d
f(©) =Tr(S©) —log 6] + A > [0, (Gauss. NLL plus L1 of diags)
j=1
d
= Tr(SO) — log |© + A Z 9;; (Diagonals of pos. def. matrix are > 0)
j=1
= Tr(S©) — log |©| + ATr(©) (Definition of trace)
= Tr(S©+X0) — log |©| (Linearity of trace)
=Tr((S + A\I)©) — log |©| (Distributive law)

e Taking gradient and setting to zero gives ¥ = S + A.

o But doesn't set to exactly zero as log-determinant term is too “steep” at 0.

bonus,(



Gradient of Validation/Cross-Validation Error bonus!

@ It's also possible to do gradient descent on A to optimize
validation /cross-validation error of model fit on the training data.

o For L2-regularized least squares, define w(\) = (XX + A\I)~1XTy.

@ You can use chain rule to get derivative of validation error E,,jiq with respect to \:

%Evalid(w()\)): ! ig(wA)w' (A).

@ For more complicated models, you can use total derivative to get gradient with
respect to A in terms of gradient/Hessian with respect to w.



Bayesian Feature Selection bonus!

@ Classic feature selection methods don't work when d >> n:
o AIC, BIC, Mallow's, adjusted-R?, and L1-regularization return very different results.

@ Here maybe all we can hope for is posterior probability of w; = 0.
o Consider all models, and weight by posterior the ones where w; = 0.

@ If we fix A and use L1-regularization, posterior is not sparse.

e Probability that a variable is exactly 0 is zero.
o L1-regularization only leads to sparse MAP, not sparse posterior.



Bayesian Feature Selection bonus!

o Type Il MLE gives sparsity because posterior variance goes to zero.
o But this doesn't give probability of individual w; values being 0.

@ We can encourage sparsity in Bayesian models using a spike and slab prior:

V)

e Mixture of Dirac delta function at 0 and another prior with non-zero variance.
o Places non-zero posterior weight at exactly 0.
e Posterior is still non-sparse, but answers the question:

o “What is the probability that variable is non-zero"?



Bayesian Feature Selection

@ Monte Carlo samples of w; for 18 features when classifying 2" vs. ‘3"
o Requires “trans-dimensional” MCMC since dimension of w is changing.
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o "Positive” variables had w; > 0 when fit with L1-regularization.
o “Negative” variables had w; < 0 when fit with L1-regularization.
o “Neutral’ variables had w; = 0 when fit with L1-regularization.
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Bayes Factors for Bayesian Hypothesis Testing bonus!

@ Suppose we want to compare hypotheses:
o E.g., “this data is best fit with linear model” vs. a degree-2 polynomial.

@ Bayes factor is ratio of marginal likelihoods,

p(y | X, degree 2)
p(y | X,degree 1)’

o If very large then data is much more consistent with degree 2.
e A common variation also puts prior on degree.

@ A more direct method of hypothesis testing:

e No need for null hypothesis, “power" of test, p-values, and so on.
o As usual only says which model is more likely, not whether any are correct.



bon MS,‘
American Statistical Assocation: —

e “Statement on Statistical Significance and P-Values".
@ http://amstat.tandfonline.com/doi/pdf/10.1080/00031305.2016.1154108

“Hack Your Way To Scientific Glory":

@ https://fivethirtyeight.com/features/science-isnt-broken

“Replicability crisis” in social psychology and many other fields:
@ https://en.wikipedia.org/wiki/Replication_crisis

@ http://www.nature.com/news/big-names-in-statistics-want-to-shake-up-much-maligned-p-value-1.22375

“T-Tests Aren't Monotonic”: https://www.naftaliharris.com/blog/t-test-non-monotonic

Bayes factors don’t solve problems with p-values and multiple testing.
o But they give an alternative view, are more intuitive, and make assumptions clear.

Some notes on various issues associated with Bayes factors:

@ http://www.aarondefazio.com/adefazio-bayesfactor-guide.pdf
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