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Couple of things

New slides format: let me know if something’s worse about it
Or if things are going too fast – these slides are now closer to “old 540”

Homework pushed back a day or two (deadline will be too)

Project details also coming v. soon

Final exam date has been set: Saturday April 22 at noon



Last Time: Multivariate Gaussians

X ⇠ N (µ,⌃) has p(x | µ,⌃) = 1

(2⇡)
d
2 det(⌃)

1
2
exp

�
�1

2(x� µ)T⌃�1(x� µ)
�

where µ 2 Rd, ⌃ 2 Rd⇥d is symmetric with ⌃ � 0 (⌃ is strictly positive definite)
If ⌃ is singular (so det(⌃) = 0), degenerate Gaussian: supported on subspace of Rd

E[X] = µ and Cov(X) = ⌃, i.e. Cov(Xj , Xj0) = ⌃jj0 .

AX + b ⇠ N (Aµ+ b, A⌃AT)

Marginalizing: if


X
Z

�
⇠ N

✓
µX

µZ

�
,


⌃XX ⌃XZ

⌃ZX ⌃ZZ

�◆
, then X ⇠ N (µX ,⌃XX)

Conditioning: X | Z ⇠ N (µX + ⌃XZ⌃
�1
ZZ(Z � µZ), ⌃XX � ⌃XZ⌃

�1
ZZ⌃ZX)

Implies Xj ?? Xj0 i↵ ⌃jj0 = 0
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Conditional Independence in Gaussians

Independence in Gaussians is determined by sparsity pattern of the covariance ⌃.
Sparsity pattern: “where the non-zeroes are”.
Xi ?? Xj i↵ ⌃ij = 0.

Gaussians’ conditional independence: sparsity of the precision matrix, ⇥ , ⌃�1.
Xi ?? Xj | {Xk : k /2 {i, j}} i↵ ⇥ij = 0.

We use the sparsity pattern of ⇥ to define a graph.
Each node in the graph corresponds to a variable j 2 {1, 2, . . . , d}.
Each edge in the graph corresponds to a non-zero ⇥ij .

Checking independence and conditional independence using the graph:
Xi ?? Xj if no path exists between Xi and Xj in the graph.
Xi ?? Xj | Xk if Xk blocks all paths from Xi to Xj in the graph.

Technically, this only checks whether independence is implied by the sparsity pattern.
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Conditional Independence in Gaussians
Consider a Gaussian with the following covariance matrix:

⌃ =

2

6664

0.0494 �0.0444 �0.0312 0.0034 �0.0010
�0.0444 0.1083 0.0761 �0.0083 0.0025
�0.0312 0.0761 0.1872 �0.0204 0.0062
0.0034 �0.0083 �0.0204 0.0528 �0.0159
�0.0010 0.0025 0.0062 �0.0159 0.2636

3

7775

⌃ij 6= 0, so all variables are dependent: X1 6?? X2, X1 6?? X5, and so on.
This would show up in graph: you’d be able to reach any Xi from any Xj .

The inverse of this particular ⌃ is a tri-diagonal matrix:

⌃�1 =

2

6664

32.0897 13.1740 0 0 0
13.1740 18.3444 �5.2602 0 0

0 �5.2602 7.7173 2.1597 0
0 0 2.1597 20.1232 1.1670
0 0 0 1.1670 3.8644

3

7775

So conditional independence is described by a 5-node “chain’-structured” graph:
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Conditional Independence in Gaussians

All variables are dependent in this graph, since a path exists.

But we have many conditional independences such as:
X1 ?? X3 | X2.
X2 ?? X5 | X4.
X1 ?? X5 | X3.
X1 ?? X3, X4, X5 | X2 (the “Markov property”).
X1, X2 ?? X4, X5 | X3.
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Conditional Independence in Gaussians

Checking conditional independence among variable groups in Gaussians:
A ?? B | C if C blocks all paths from any A to any B.

Example:
A 6?? C.
A 6?? C | B.
A ?? C | B,E.
A,B 6?? F | C
A,B ?? F | C,E.
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Discussion of Independence in Gaussians

If ⌃ is diagonal then ⇥ is diagonal.
This gives a disconnected graph: all variables are independent.

If ⇥ is a full matrix, graph does not imply any conditional independences.
“Everything depends on everything, no matter how many of the Xj you know.”

Dependencies can exist if ⇥ij = 0 due to correlations with other variables.
Only independent if all paths that correlation could go across are blocked.
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Conditional Independence and the Precision Matrix

Where does the connection of ⇥ to the precision matrix come from?

Let’s use linear regression to predict Xi from {Xk : k 6= i, k 6= j}
Define Ri,¬j as the residual, Xi �

P
k/2{i,j}wkXk � b

The partial correlation coe�cient is the correlation between Ri,¬j and Rj,¬i
Can work out that it’s exactly �⇥ij/

p
⇥ii⇥jj

Thus partial correlation coe�cient is 0 i↵ ⇥ij = 0

In Gaussians, dependencies are linear: zero partial correlation i↵ conditionally
independent
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Outline

1 Conditional Independence

2 Learning in Multivariate Gaussians

3 Supervised Learning with Gaussians

4 Bayesian Linear Regression

5 Rejection and Importance Sampling



MLE for Multivariate Gaussian (Mean Vector)

If xi
iid⇠ N (µ,⌃), we have

p(xi | µ,⌃) = 1

(2⇡)
d
2 |⌃|

1
2

exp

✓
�1

2
(xi � µ)>⌃�1(xi � µ)

◆
,

so up to a constant our negative log-likelihood for n examples is

1

2

nX

i=1

(xi � µ)>⌃�1(xi � µ) +
n

2
log |⌃|.

This is a convex quadratic in µ. Setting gradient to zero gives

µ̂ =
1

n

nX

i=1

xi.

MLE for µ is the mean along each dimension, and it does not depend on ⌃.
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MLE for Multivariate Gaussians (Covariance Matrix)

To get MLE for ⌃ we can re-parameterize in terms of precision matrix ⇥ = ⌃�1,

1

2

nX

i=1

(xi � µ)>⌃�1(xi � µ) +
n

2
log det⌃

=
1

2

nX

i=1

(xi � µ)>⇥(xi � µ) +
n

2
log det⇥�1

After some work (bonus slides), we obtain that this is equal to

f(⇥) =
n

2
Tr(S⇥)� n

2
log det⇥, with S =

1

n

nX

i=1

(xi � µ)(xi � µ)>

where:
S is the sample covariance: if X̃ = X� µ1µT is centred data, S = (1/n)X̃TX̃.
Trace operator Tr(A) is the sum of the diagonal elements of A.
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MLE for Multivariate Gaussians (Covariance Matrix)
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MLE for Multivariate Gaussians (Covariance Matrix)

Gradient matrix of NLL with respect to ⇥ is (not obvious)

rf(⇥) =
n

2
S� n

2
⇥�1.

The MLE for a given µ is obtained by setting gradient matrix to zero, giving

⇥ = S�1 or ⌃ =
1

n

nX

i=1

(xi � µ)(xi � µ)>.

The constraint ⌃ � 0 means we need positive-definite sample covariance, S � 0.
If S is not positive-definite, NLL is unbounded below and MLE doesn’t exist.
This is like requiring “not all values are the same” in univariate Gaussian.

In d-dimensions, you need d linearly independent xi
values (no “multi-collinearity”)

Note: most distributions’ MLEs don’t do “moment matching” like this.
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MAP Estimation for Mean
For fixed ⌃, conjugate prior for mean is a Gaussian:

xi ⇠ N (µ,⌃) µ ⇠ N (µ0,⌃0) implies µ | X,⌃ ⇠ N (µ+,⌃+),

where (using product of Gaussians property we are about to cover)

⌃+ = (n⌃�1 + ⌃�1
0 )�1,

µ+ = ⌃+(n⌃�1µMLE + ⌃�1
0 µ0). MAP estimate of µ

In special case of ⌃ = �2I and ⌃0 = (1/�)I, we get

⌃+ = ((n/�2)I+ �I)�1 =
1

1
�2/n + 1

�

I,

µ+ = ⌃+(
n

�2
µMLE + �µ0).

Posterior predictive is N (µ+,⌃+⌃+) – take product of (n+2) then marginalize.
Many Bayesian inference tasks have closed form, or Monte Carlo is easy.
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Product of Gaussian Densities Property

Consider variable x whose PDF is written as product of two Gaussians,

p(x) = f1(x)f2(x)

where:
f1 is proportional to a Gaussian density with mean µ1 and covariance I.
f2 is proportional to a Gaussian density with mean µ2 and covariance I.

Then this product of Gaussian PDFs is a Gaussian with µ = µ1+µ2
2 and ⌃ = 1

2 .
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Product of Gaussian Densities Property
If p(x) / f1(x)f2(x) with

f1 proportional to a Gaussian with mean µ1 and covariance ⌃1.
f2 proportional to a Gaussian with mean µ2 and covariance ⌃2.

Then p is a Gaussian with (see PML2 2.2.7.6)

covariance ⌃ = (⌃�1
1 + ⌃�1

2 )�1.

mean µ = ⌃⌃�1
1 µ1 + ⌃⌃�1

2 µ2,

How we do we use this to derive the posterior distribution for the mean?

p(µ | X,⌃, µ0,⌃0) / p(µ | µ0,⌃0)
nY

i=1

p(xi | µ,⌃) (Bayes rule)

= p(µ | µ0,⌃0)
nY

i=1

p(µ | xi,⌃) (symmetry of xi and µ)

= (product of (n+ 1) Gaussians).
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MAP Estimation in Multivariate Gaussian (Trace Regularization)

A common MAP estimate for ⌃ is

⌃̂ = S+ �I,

where S is the covariance of the data.
Key advantage: ⌃̂ is positive-definite (eigenvalues are at least �).

This corresponds to L1 regularization of precision diagonals (see bonus)

f(⇥) = Tr(S⇥)� log det⇥| {z }
NLL times 2/n

+ �
dX

j=1

|⇥jj |.

Note it doesn’t set ⇥jj values to exactly zero.
Log-determinant term becomes arbitrarily steep as the ⇥jj approach 0.
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Graphical LASSO

A popular generalization called the graphical LASSO,

f(⇥) = Tr(S⇥)� log det⇥+ �
dX

i=1

dX

j=1

|⇥ij |,

where we apply L1 regularization to all elements of ⇥.

With large enough �, gives sparse o↵-diagonals in ⇥.
Need specialized optimization algorithms to solve this problem.

Recall that sparsity of ⇥ determines conditional independence.
When we set a ⇥ij = 0 it remove an edges from the graph.

Makes the graph simpler, and can make computations cheaper.
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Graphical LASSO Example

Graphical LASSO applied to stocks data:

https://normaldeviate.wordpress.com/2012/09/17/high-dimensional-undirected-graphical-models

https://normaldeviate.wordpress.com/2012/09/17/high-dimensional-undirected-graphical-models


Graphical LASSO Example

Graphical LASSO applied to US senate voting data (Bush junior era):

https://normaldeviate.wordpress.com/2012/09/17/high-dimensional-undirected-graphical-models

https://normaldeviate.wordpress.com/2012/09/17/high-dimensional-undirected-graphical-models


Graphical LASSO Example

Graphical LASSO applied to protein data:

https://normaldeviate.wordpress.com/2012/09/17/high-dimensional-undirected-graphical-models

https://normaldeviate.wordpress.com/2012/09/17/high-dimensional-undirected-graphical-models


Graphical LASSO on Digits

Precision matrix from graphical LASSO applied to MNIST digits (� = 1/8):

To understand this picture, first the size of the precision matrix:
The images of digits, which are m⇥m matrices (m pixels by m pixels)

This gives d = m2
elements of xi

, which we’ll assume are in “column-major” order.

Frist m elements of xi
are column 1, next m elements are columm 2, and so on.

The picture above, which is d⇥ d so will thus be m2 ⇥m2.
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Graphical LASSO on Digits

Precision matrix from graphical LASSO applied to MNIST digits (� = 1/8):

So what are the non-zeroes in the precision matrix?
1 The diagonals ⇥i,i (positive-definite matrices must have positive diagonals).

2 The first o↵-diagonals ⇥i,i+1 and ⇥i+1,i.
This represents the dependencies between adjacent pixels vertically.

3 The (m+ 1) o↵-diagonals ⇥i,i+m and ⇥i+m,i.
This represents the dependencies between adjacent pixels horizontally.

Because in “column-major” order, you go “right” a pixel every m indices.
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Graphical LASSO on Digits

Precision matrix from graphical LASSO applied to MNIST digits (� = 1/8):

The edges in the graph are pixels next to each other in the image.

Graphical Lasso is a special case of structure learning in graphical models.
We will discusss graphical models more later.
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Conjugate Priors for Covariance

Graphical LASSO is not using a conjugate prior.

Conjugate prior for ⇥ with known mean is Wishart distribution
A multi-dimensional generalization of the gamma distribution.

Gamma is a distribution over positive scalars.

Wishart is a distribution over positive-definite matrices.

Posterior predictive is a student t distribution.
Conjugate prior for ⌃ is inverse-Wishart (equivalent posterior).

If both µ and ⇥ are variables, conjugate prior is normal-Wishart.
Normal times Wishart, with a particular dependency among parameters.
Posterior predictive is again a student t distribution.

Wikipedia has already done a lot of possible homework questions for you:
https://en.wikipedia.org/wiki/Conjugate_prior

https://en.wikipedia.org/wiki/Conjugate_prior
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Outline

1 Conditional Independence

2 Learning in Multivariate Gaussians

3 Supervised Learning with Gaussians

4 Bayesian Linear Regression

5 Rejection and Importance Sampling



Generative Classification with Gaussians

We previously considerd the generative classifier, naive Bayes.
Assumed Xi ?? Xj | Y , which is strong/unrealistic.

Consider a generative classifier with continuous features:

p(yi | xi) / p(xi, yi)

= p(xi | yi)| {z }
continuous

p(yi)| {z }
discrete

.

In Gaussian discriminant analysis (GDA) we assume X | Y is Gaussian.
It’s classification: output Y is categorical.
Classifier asks “which Gaussian makes this xi most likely?”
This can model pairwise correlations within each class.

Doesn’t need naive Bayes assumption.



Generative Classification with Gaussians

We previously considerd the generative classifier, naive Bayes.
Assumed Xi ?? Xj | Y , which is strong/unrealistic.

Consider a generative classifier with continuous features:

p(yi | xi) / p(xi, yi)

= p(xi | yi)| {z }
continuous

p(yi)| {z }
discrete

.

In Gaussian discriminant analysis (GDA) we assume X | Y is Gaussian.
It’s classification: output Y is categorical.
Classifier asks “which Gaussian makes this xi most likely?”
This can model pairwise correlations within each class.

Doesn’t need naive Bayes assumption.



Generative Classification with Gaussians

We previously considerd the generative classifier, naive Bayes.
Assumed Xi ?? Xj | Y , which is strong/unrealistic.

Consider a generative classifier with continuous features:

p(yi | xi) / p(xi, yi)

= p(xi | yi)| {z }
continuous

p(yi)| {z }
discrete

.

In Gaussian discriminant analysis (GDA) we assume X | Y is Gaussian.
It’s classification: output Y is categorical.
Classifier asks “which Gaussian makes this xi most likely?”

This can model pairwise correlations within each class.
Doesn’t need naive Bayes assumption.



Generative Classification with Gaussians

We previously considerd the generative classifier, naive Bayes.
Assumed Xi ?? Xj | Y , which is strong/unrealistic.

Consider a generative classifier with continuous features:

p(yi | xi) / p(xi, yi)

= p(xi | yi)| {z }
continuous

p(yi)| {z }
discrete

.

In Gaussian discriminant analysis (GDA) we assume X | Y is Gaussian.
It’s classification: output Y is categorical.
Classifier asks “which Gaussian makes this xi most likely?”
This can model pairwise correlations within each class.

Doesn’t need naive Bayes assumption.



Gaussian Discriminant Analysis (GDA) and Closed-Form MLE

In Gaussian discriminant analysis we assume X | Y is a Gaussian.

p(xi, yi = c) = p(yi) p(xi | yi = c)| {z }
product rule

= ⇡c|{z}
Pr(yi=c)

p(xi | µc,⌃c)| {z }
Gaussian PDF

.

A special case is linear discriminant analysis (LDA):
Assume that ⌃c is the same for all classes c.

In LDA the MLE has a simple closed-form expression:

⇡̂c =
nc

n
, µ̂c =

1

nc

X

yi=c

xi.

⇡̂c is fraction of times we are in class c; µ̂ is mean of class c.
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Linear Discriminant Analysis (LDA)

Example of fitting linear discriminant analysis (LDA) to a 3-class problem:

https://web.stanford.edu/~hastie/Papers/ESLII.pdf

LDA is a linear classifier.
Unlike other linear classifiers (logistic regression, SVMs), it has a closed-form MLE.
Might not work well if assumptions (each class Gaussian, cov ⌃) are bad fit to data.

If class proportions ⇡c are equal, class label is determined by nearest mean.
Prediction is like in k-means clustering.

https://web.stanford.edu/~hastie/Papers/ESLII.pdf
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Gaussian Discriminant Analysis (GDA)
We can also have a di↵erent covariance ⌃c for each class.

So the class will be determined by class proportions, means, and variances.

The MLE for each each ⌃c is the covariance of data in class c,

⌃̂c =
1

nc

X

yi=c

(xi � µ̂c)(xi � µ̂c)
T ,

https://web.stanford.edu/~hastie/Papers/ESLII.pdf

This leads to a quadratic classifier.
GDA is sometimes called quadratic discriminant analysis.

https://web.stanford.edu/~hastie/Papers/ESLII.pdf
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Regression with Gaussians
Regression is a variant on supervised learning where yi is continuous.

https://en.wikipedia.org/wiki/Regression_analysis

It’s possible to use generative regression models.
For example, we could model p(x, y) as a multivariate Gaussian.

Then use that the conditional p(y | x) is Gaussian for prediction.

But we usually treat features as fixed (as in discriminative classification models).
And to start, we will consider models that make linear predictions, ŷi = wTxi.

https://en.wikipedia.org/wiki/Regression_analysis
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https://en.wikipedia.org/wiki/Regression_analysis


L2-Regularized Least Squares and Gaussians

A common linear regression model is L2-regularized least squares,

argmin
w

1

2�2
kXw � yk2 + �

2
kwk2.

This corresponds to MAP estimation with a Gaussian likelihood and prior,

Y ⇠ N (wTX,�2), w ⇠ N (0,��1I).

By setting the gradient to zero, the unique solution is given by:

ŵ =
1

�2

✓
1

�2
XTX+ �I

◆�1

XTy.

In 340 we fixed �2 = 1 (since changing �2 is equivalent to changing �).
In Bayesian inference, both �2 and � a↵ect the predictions.

To predict on new example x̃ with MAP estimate, we use ŷ = ŵT x̃.
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Summary

MLE for multivariate Gaussian:
MLE for µ is mean of data, MLE for ⌃ is covariance of data (if positive definite).

Posterior and posterior predictive under Gaussian prior on mean is Gaussian.
Can be shown using that product of Gaussians is Gaussian.

Graphical Lasso uses L1-regularization of precision matrix.
Leads to a sparse graph structure representing conditional independences.

Supervised learning with Gaussians
Generative classifier with Gaussian classes is Gaussian discriminant analysis (GDA).
L2-regularized least squares is obtained using a Gaussian likelihood and prior.

Regression model assuming features fixed/non-random as in discriminative classifiers.



MLE for Multivariate Gaussians (Covariance Matrix)

To get MLE for ⌃ we re-parameterize in terms of precision matrix ⇥ = ⌃�1,

1

2

nX

i=1

(xi � µ)>⌃�1(xi � µ) +
n

2
log |⌃|

=
1

2

nX

i=1

(xi � µ)>⇥(xi � µ) +
n

2
log |⇥�1| (ok because ⌃ is invertible)

=
1

2

nX

i=1

Tr
⇣
(xi � µ)>⇥(xi � µ)

⌘
+

n

2
log |⇥|�1 (scalar y>Ay = Tr(y>Ay))

=
1

2

nX

i=1

Tr((xi � µ)(xi � µ)>⇥)� n

2
log |⇥| (Tr(ABC) = Tr(CAB))

Where the trace Tr(A) is the sum of the diagonal elements of A.
That Tr(ABC) =Tr(CAB) when dimensions match is the cyclic property of trace.
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MLE for Multivariate Gaussians (Covariance Matrix)

From the last slide we have in terms of precision matrix ⇥ that
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We can exchange the sum and trace (trace is a linear operator) to get,
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MLE for Multivariate Gaussians (Covariance Matrix)

So the NLL in terms of the precision matrix ⇥ and sample covariance S is

f(⇥) =
n

2
Tr(S⇥)� n

2
log |⇥|, with S =

1

n

nX

i=1

(xi � µ)(xi � µ)>

Weird-looking but has nice properties:
Tr(S⇥) is linear function of ⇥, with r⇥ Tr(S⇥) = S.

(it’s the matrix version of an inner-product s>✓)

Negative log-determinant is strictly convex, and has r⇥ log det⇥ = ⇥�1.
(generalizes r log |x| = 1/x for for x > 0).

Using these two properties the gradient matrix has a simple form:

rf(⇥) =
n

2
S � n

2
⇥�1.
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Trace Regularization and L1-regularization

A classic regularizer for ⌃ is to add a diagonal matrix to S and use

⌃ = S+�I,

which satisfies ⌃ � 0 because S ⌫ 0 (eigenvalues at least �).

This corresponds to L1-regularization of diagonals of precision.

f(⇥) = Tr(S⇥) � log |⇥| + �
dX

j=1

|⇥jj | (Gauss. NLL plus L1 of diags)

= Tr(S⇥) � log |⇥| + �
dX

j=1

⇥jj (Diagonals of pos. def. matrix are > 0)

= Tr(S⇥) � log |⇥| + �Tr(⇥) (Definition of trace)

= Tr(S⇥+�⇥) � log |⇥| (Linearity of trace)

= Tr((S + �I)⇥) � log |⇥| (Distributive law)

Taking gradient and setting to zero gives ⌃ = S + �.
But doesn’t set to exactly zero as log-determinant term is too “steep” at 0.
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A classic regularizer for ⌃ is to add a diagonal matrix to S and use

⌃ = S+�I,

which satisfies ⌃ � 0 because S ⌫ 0 (eigenvalues at least �).

This corresponds to L1-regularization of diagonals of precision.

f(⇥) = Tr(S⇥) � log |⇥| + �
dX

j=1

|⇥jj | (Gauss. NLL plus L1 of diags)

= Tr(S⇥) � log |⇥| + �
dX

j=1

⇥jj (Diagonals of pos. def. matrix are > 0)

= Tr(S⇥) � log |⇥| + �Tr(⇥) (Definition of trace)

= Tr(S⇥+�⇥) � log |⇥| (Linearity of trace)

= Tr((S + �I)⇥) � log |⇥| (Distributive law)

Taking gradient and setting to zero gives ⌃ = S + �.
But doesn’t set to exactly zero as log-determinant term is too “steep” at 0.
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