CPSC 440/540: Advanced Machine Learning



End of Part 2 (“Categorical Variables”): Key Concepts

* We discussed categorical density estimation.
— Model the proportion of times different categories appear.
— Categorical 6. parameterization and unnormalized probabilities éc.
— Sampling using the cumulative distribution function (CDF).

* We discussed Monte Carlo for approximating expectations.
— Generate samples from a model.
— Compute the average function value on the samples.

 We discussed conjugate priors.

— For a given likelihood, a prior that leads to posterior in “family” of prior.

— Conjugate prior for categorical distribution is the Dirichlet distribution.
 Dirichlet gives a “probability over discrete probabilities”.



End of Part 2 (“Categorical Variables”): Key Concepts

 We reviewed standard conditional independence assumptions:
— Datais IID [given parameters].
— Data is independent of hyper-parameters given parameters.
— Discriminative models assume parameters are independent of features.

* We discussed Bayesian learning:

— Instead of using a single parameter, sum/integrate over all parameters.

— Prediction using the posterior predictive distribution.
* And possibly a cost function for Bayesian decision theory.

— Very-strong protection against overfitting.
* We discussed empirical Bayes:

— Optimize hyper-parameters using the marginal likelihood.

— Can optimize a large number of hyper-parameters, without a validation set.
* We discussed hierarchical Bayes:

— Putting a prior on the prior, which we used to model non-IID grouped data.



End of Part 2 (“Categorical Variables”): Key Concepts

* We discussed multi-class classification.
— Categorical generalization of sigmoid function is the softmax function.

e We discussed multi-class neural networks.

— Put softmax on the last layer.
— Other layers can stay the same, and the same tricks are used/needed.

* We discussed “what have we learned”.
— Layers in CNNs seem to be doing something sensible.
— But ML models are easily fooled in various ways.
— And ML models can have harmful biases.



End of Part 2 (“Categorical Variables”): Key Concepts

 We discussed recurrent neural networks (RNNs).

— Use tied parameters across time to model sequences of different lengths.
* Makes vanishing/exploding gradient and “forgetting” problems worse.

— Sequence-to-sequence handles output sequences of unknown lengths.

— Multi-modal learning considers input and output of different formats.
 We discussed long short term memory (LSTM) models.

— Include memory cells that are read/written/cleared with gates.

— Allows modeling longer-range dependencies than standard RNNs.

* We discussed attention.
— Allows decoder to access information from all encoding steps.

 We discussed transformers.
— “Fully-connected” attention that forms basis for many modern methods.



Next Topic: Gaussian Density Estimation



Motivating Problem: Cell Phone Battery Life

* Consider modeling battery life between charges:

— It makes sense to view this as a continuous quantity.
* Rather than a fixed set of values, the battery life could be any real number.

* Reviews/advertisements will often advertise estimates:

If you want the longest battery life, the iPhone 13 Pro Max is the one to get. In our °.
battery test, the iPhone 13 Pro Max streamed a continuous video at full screen '“'
brightness for a whopping 20 hours and 18 minutes. Nov 11, 2021

https://www.businessinsider.com ... » Tech » Smartphones  :

iPhone 13 Pro Max Review: Longest Battery Life and Biggest ...

 We'd like to find the full distribution over charging times.

— Lets us solve real-world problems like:

* “If | haven’t charged for 18 hours, what is the probability | will make it to 21 hours?”
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General Problem: Continuous Density Estimation

* We can view this as density estimation with a continuous variable:
— Input: n IID samples of continuous values x!, x?, x3,..., x" from a population.
— Output: model of probability density for any real number X.

* Continuous density estimation as a picture:

Battery Life

20h18m00s
16h53m42s
21h03m50s
17h33m13s
27h46m28s

:> p(x = 20h18m02s) = 0.8

* Watch out: we are estimating the density here, not the probability.

— We could have p(x) > 1.

— Obtain probabilities by integrating the density over an interval. 11



Other Applications

* Other applications where continuous density estimation is useful:
— Modeling sizes (size of food grown in field, birthweight of babies).
— Modeling times or control values in a manufacturing process.
— Modeling stock variations or income distributions.
— Modeling continuous medical measurements (blood pressure).
— Modeling grades.

* Even with 1 variable there are many possible distributions.
— More complicated than binary/categorical.

 We'll start with the simple case where we assume data is Gaussian.
— Also called a “normal” distribution.



Univariate Gaussian

 The Gaussian probability density has the form

| (x'=a)’

f(x{ Ly o) =5 exp(~ g

— The mean parameter u can be any real number.

— The standard deviation o can be any positive number.
* We call g2 the variance.

e Gaussians are also known as normal distributions.

* If we assume x' follows a Gaussian distribution, we often write:

x' ~ M(u0°)

[ A
X' s 9"‘“*"’“’1“l from a normal distribgin

with mear U ohd Ve ¢!
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Univariate Gaussian
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 Mean parameter u controls location of center of density.
* Variance parameter o controls how spread out density is.

— As 0 — 0 you get a “spike” at the mean, as 0 — oo you get uniform.
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Motivation for Gaussian

 Why use the Gaussian distribution?

— Data might actually follow a Gaussian.
* Good justification if true, but usually false.

— Central limit theorem: many sums of random variables converge* to Gaussian.

e Often a bad justification: does not imply data distribution itself converges to a Gaussian.
— You would have to argue that your data comes from an asymptotic process where CLT applies.

— The distribution with maximum entropy that fits mean and variance of data.

* “Makes the least assumptions” while matching the mean and variance of data.
— We will discuss this later when we discuss the “exponential family”.

* But for complicated problems, just matching means and variances is not enough.

— Makes many computations and doing theory much easier.
* The same reason we use a lot of the common distributions.
* Sometimes Gaussians are “good enough to be useful”.
e Gaussians are common “building blocks” in more advanced methods.
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Motivations for not using Gaussians

* Histogram of x' values with red line being MLE Gaussian density:
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Next Topic: Gaussian Inference and Learning



Inference in Univariate Gaussians

* Decoding the mode: find x that maximizes the PDF p(x | i, 2).
— The mode is the mean L.

 Computing likelihood of an IID dataset:

a;(xu ) =T plelsy0?) = ",m"* ('(xz:l‘) "(T.I—;> '7‘6,(/,( (x ,q)

erp(-3 G
(Gm)e?( 2 6° )
— Note that the likelihood is a density, not a probability.
 Computing probability that an X lies in an interval:
b
P aS xS L Juo?)= § 0 L6 )dx = prollx€h | g?) = problx € 4 fun p?
A A W\N\)f fp\/_fﬂ’)

— If a=b this is zero: any single x value has probability zero.

-—
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Cumulative Distribution Function (CDF)

* We often use F(c) = prob(x < c) = f_coo p(x) to denote the CDF.

— F(c) is between 0 and 1, giving proportion of times X is below c.
— F(c) monotonically increases with ‘c’

1 /
0
* The Gaussian CDF is given by: f(,)= [’ * ”F( )]

— The “error function” erf is computed numerlcally and given by:

erf(z)= \r e_'t A1)




Sampling with the Inverse CDF (“Quantile”) Function

* How can we sample from a continuous density?

* We want to write a function that takes a uniform sample and:
— 50% of the time it returns a sample in the region where F(c)= 50%.
— 25% of the time it returns a sample in the region where F(c) = 25%.
— 75% of the time it returns a sample in the region where F(c) = 75%.
— 10% of the time it returns a sample in the region where F(c) = 10%.
— And so on, so the CDF F(c) divides up the interval [0,1].

* The function we want is the inverse of the CDF F1 (“quantile” function):
— F1(u) = c for the unique ‘c’ where F(c) = u.
— Allows sampling from Gaussians and using Monte Carlo with Gaussians.



Inverse Transform Method (Exact 1D Sampling)

* |nverse transform method for exact sampling of a continuous density in 1D:

1. Sample u uniformly between 0 and 1.
2. Return F(u).

* For Gaussians, we have F(u) =u + av2erfl(2u - 1).
— This formula converts uniform u values into samples from a Gaussian.

* Showing that CDF of samples has CDF we want to sample from (for invertible ‘F’):

‘)/oL.:(Gamrleé 6) = loraL(F.’(u)éc7 (Smf/, (s 7&.,,/\ /a), F-’{M))
= {)roL( F (F.'(M)) < F(C )) (a,f’.ly slriclh, ~mmtonc ‘£ inepualify)
= P,olo(us F(c)) (F owd F' ave imwses)
= F(c) ({)rolo(u57):\/ For wiform ')

— After the inverse transform, we have the CDF of the distribution we want.
e Video on pseudo-randomness and inverse-transform sampling.



https://www.youtube.com/watch?v=C82JyCmtKWg

MLE for Univariate Gaussian

We showed that the likelihood for n I1ID examples is given by:

2\ _ ' 0¥ (—l,%()(l‘,«.)’
a{X’ﬂ)G’)'wm) f) -—:l—dr’)

To compute the MLE, minimize the NLL (which is convex):
2) — n .
_— '(Jﬂ )D(X I//()o) =N ,09@/ +Z-’,x_f (X,"M>2 -+ (onjﬁmf
Setting derivative with respect to u to 0 gives MLE of: «=—+ 2 ¥

=)

— So MLE for the mean is the mean of the samples.

Plugging in i and setting derivative with respect to o to 0 gives:s'=
— So MLE for the variance is the variance of the samples.

* Unless all x' are equal (then NLL is not bounded below, and MLE does not exist).
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Conjugate Prior and Posterior for Mean
For fixed variance, conjugate prior for mean is Gaussian.

1f each xi/"/‘/(/()az) and ,u"’/V(mv) fhen ,oL/;«)x X ’V/l// \7)

2 n
Where -’—D- 4+ % m and v=(0 L
vntg? /wﬁ V"+0 o* Vv

— “Self conjugacy” is a very special property (a key to usefulness of Gaussians).
* Derived by using < and “completing the square” in exponent (see notes on webpage).
— Formulas look a bit weird, but consider m and ¥ change as ‘n” grows:
e Asn grows, posterior mean m converges from prior mean m towards MLE.
e As n grows, posterior variance U converges from prior variance v down to 0.
— MAP estimate is given by m (it has the highest PDF of the posterior).
— Posterior predictive is also given by a Gaussian (not obvious, see notes linked on webpage).
 With mean 1 and variance ¥ + o2.
e For complicated Bayeisan inference tasks, can use Monte Carlo by sampling from Gaussian posterior.

We will come back to MAP/Bayes estimation for variance later. .



Next Topic: Multivariate Gaussians



Motivation: Modeling Air Quality
 We want to model “air quality” in different rooms in a building.
* So we measure number of pollutant molecules (PM10, CO, O3, and so on):

n 0.2 1.3 0.1 1.9 1.1 0.9 0.1 0.1 1.1

et 0.1 0.3 1.4 2.0 0.7 0.3 0.1 0.2 0.4

- E "4 01 11 02 21 11 11 01 03 05

H 2.7 2.6 2.5 5.1 2.4 2.8 3.2 2.5 3.1

- 0.1 0.4 0.2 1.8 1.3 0.4 0.1 0.4 1.0
BEtE %ﬁ“r { [~ VEW 0.1 1.2 0.2 1.8 1.4 1.1 0.7 0.7 0.5

e We want to build a model of this data, to identify patterns/problems.
— Some rooms usually bad air quality, some usually have good air quality.
— The quality of some rooms may be correlated (rooms are adjacent or share air supply).
— There are also temporal correlations (we will come back to temporal correlations later).



To Start: Product of Gaussians

* As usual, we could choose to make different dimensions independent

X5 v NV, 57

* Then the joint density would be
P(X | Mia a,01) = ﬁJP(XJ AL 5‘.) L ‘ﬁL@)ﬁ}o & M) M)
J-!

‘ZO"”

= w(‘i o by a4)" /.>H— [/«]
= expl-s (xm" z M) )

z-
o --."o;"

* General multivariate Gaussian: allow non-diagonal X
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Multivariate Gaussians

* Many of the nice properties of univariates
— Closed-form, intuitive MLE / conjugate priors / etc
— Many nice analytic properties 0.1
— Multivariate central limit theorem

* Non-diagonal covariance matrix models correlations

— “Adjacent rooms have similar air qualities”
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Multivariate Gaussian Distribution

€ KN 2, plelun2) =~ oie xp (-5 (- 2 (o))

« 1 €R% T e R has T > 0, det is the determinant
— 2 > 0 means that 2 is (strictly) positive definite

* All eigenvalues are positive
— Diagonals entries must be positive, but off-diagonal entries can be negative

* Equivalently, vT £ v > 0 for all vectors v # 0
* Implies there’san A suchthat = A AT

* Canderive fromX = A Z + u, where Z; ~ N'(0,1) iid bonus!
I,(S.v& fo/lwlze, 0‘4"/""’"’4(9(@ €ormulg P(K)"dd<i%,$)ip[%) | Fodbioe (b)
Z=A'(X M), 2 = 22 _ A, p(xb&A)— (,1,,)4, exp(% KA (x M), A (x-r) >) 1det A" X/5 3XJ

~em :"'*Al exp(z &N'A A (x )4))
= @t laeff-l"’ expls W' E Cx-,a))




Kinds of covariances

 IfX = al, level curves of the density are circles
— Each X; ~ V' (0, @) is independent; 1 parameter

* If X = diag(o¥?, ...,07) is a general diagonal: axis- allgned ellipses
— Each X; ~ V' (0, of ) is independent; product of normals; d parameters

* If X is general, might not be axis-aligned

—d(d + 1)/2 parameters
(not d?: the matrix is symmetric)




Degenerate Gaussians

* Ifdet(2) = 0 (but still have X = 0, positive semi-definite),

we call it a degenerate Gaussian
— Standard density function doesn’t exist (divide by 0)

* |n 1d, degenerate Gaussians have g% = 0, a point mass
* In 2d, non-zero probability is along a line (or a point)
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Independence structure in Gaussians

In multivariate Gaussians, X; L X, iff Xij) = 0

— If 2 is diagonal, all off-diagonals are 0 and the X; are all mutually independent

— Can be positive or negative

# 0, then Xj and Xj, are correlated

This means we can model dependencies between all pairs

— Unlike all the previous “product of [...]” distributions we’ve used

But no “higher-order” interactions



Example: Multivariate Gaussians on MNIST

* Let’s try continuous density estimation on handwritten digits

W 45,&

Diagonal X:

General X:

il is the
same (!)

Y is big

(784 by 784)




Next Topic: Multivariate Gaussian Inference



Inference with Multivariate Gaussians

e How do we use this model?

— Compute likelihoods with the formula we saw
 Like 1d Gaussians (and Betas, and any other continuous dist.), likelihood now a density

— Decode the mode: it’s again just the mean u
— What about marginal distributions, p(x;)?

— Or conditionals, p(x; | x;7)?

— Or sampling from the distribution?

e Gaussians have many nice properties that make computations easy

— We'll mostly introduce them as we go



Affine Transformations

s f X ~NWwX),thenX+b~N(u+b,X)

s fX ~N(2X),thenAX+b~NAu+b AXA")
— A Y AT might be singular, in which case A X + b is degenerate!
e e.g. A=0,0rifXisldand Ais 5x1...

* This gives us a nice sampling algorithm:

— Sample d independent standard normals, Z; ~ N(0, 1)

—ReturnAZ + u ~ N (u, AA™)
* Find an A sothat AAT = X, e.g. Cholesky factorization (np.linalg.cholesky)



Marginalizing Gaussians
If we have a joint on (X1, Xy, ..., X3), might want just X;

( ) [ dxq -

xj—1f dx;j 41 o [ dxg p(x | 1,2

— ...but we can skip the integration by thinking a bit!

Let’s partition our variables, [)Z(] ~ N( ] [

Now notice that

v= alf}
and so
X~N([1 0]

X ~ N (ux, 2xx)

HUx
Uz

[

z:XX z:XZ
ZZX ZZZ

X I
Z?; "’N |

Lxx ZXZ] T
[ 0 [ 0
I 0] S, Loy I O]

D
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Marginalizing Gaussians

. If [)Z(] - N([Z}Z(]’ E)Z(;( ?ZD then X ~ NV (uy, Zxx)

* j.e. we can justignore a subset of the variables

I

(x)d




Conditioning in Gaussians

5]~ w (L] [5% 57]) what's x 1 22

By doing a bunch of linear algebra , you get
X1z~ N(MXIZ: ZXIZ)
Uxiz = Ux + Zxz277(Z — piz)
x|z = Xxx — szzﬁl Xzx
If you know Z = z, distribution of X is still (a different) Gaussian
If Xy, =0,g8etX | Z ~ N (uy,2y),andsothen X IL Z

Notice that 2y, doesn’t depend on the particular value of Z!



Summary

Gaussian density estimation:

— Modeling continuous variable samples,
assuming it follows a Gaussian.

— We use Gaussians because they have lots of
nice properties.

— But Gaussians assume symmetric, no
outliers, no truncation, uni-modal.

Mean and variance parameterization of
Gaussians:

— Mean specifies center of distribution.

— Variance specifies spread of distribution.
Inverse transform method for sampling:

— Apply the “inverse” of the CDF to uniform
samples to generate samples.

MLE and MAP for Gaussians:

— MLE is given by mean and variance of
samples.

— Conjugate prior for mean is another
Gaussian.

* MAP moves between mean of samples and
prior mean.

* Posterior predictive is also Gaussian in this case.

Multivariate Gaussian for vectors.

— Mean vector and positive-definite
covariance.

— Diagonal covariance < product of
independent Gaussians.

— Correlations with off-diagonal entries.

Inference with multivariate Gaussians
— Affine transforms of Gaussians are Gaussian.
— Can use that to sample.
— Marginals, conditionals are also Gaussians.

Next time: learning about how to learn

multivariate Gaussians. .
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Cumulative Distribution Function (CDF)

 CDF can be used for discrete and continuous variables (and mixed).

1 ® 1 1
: ) / /
e—O
o 0 —

0 0

* We can generalize the quantile function to non-invertible case.



bomAS,(
Quantile Function — Non-Invertible Case

 |f the CDF ‘F’ is not invertible, we define the quantile F! as:
~/ .
r (V\>‘ ’fhr{é/p(dZ%f

e “Smallest value ‘c’ such that F(c) is bigger than u.”

— See notes on max and argmax if you have not seen ‘inf’ before.
 |It’s a variant on ‘min’ that is defined in more cases.

* If ‘F'isinvertible at this ‘c’, this gives the usual inverse.

— But this more-general definition handles non-invertible points.

* For example, the CDF is not invertible for categorical variables at the “jumps” in CDF.
— Many values of ‘u’ are mapped to by the same ‘c’.



