CPSC 440/540: Advanced Machine Learning

Gaussians Winter 2023

- We discussed categorical density estimation.
 - Model the proportion of times different categories appear.
 - Categorical θ_c parameterization and unnormalized probabilities $\tilde{\theta}_c$.
 - Sampling using the cumulative distribution function (CDF).
- We discussed Monte Carlo for approximating expectations.
 - Generate samples from a model.
 - Compute the average function value on the samples.
- We discussed conjugate priors.
 - For a given likelihood, a prior that leads to posterior in "family" of prior.
 - Conjugate prior for categorical distribution is the Dirichlet distribution.
 - Dirichlet gives a "probability over discrete probabilities".

- We reviewed standard conditional independence assumptions:
 - Data is IID [given parameters].
 - Data is independent of hyper-parameters given parameters.
 - Discriminative models assume parameters are independent of features.
- We discussed Bayesian learning:
 - Instead of using a single parameter, sum/integrate over all parameters.
 - Prediction using the posterior predictive distribution.
 - And possibly a cost function for Bayesian decision theory.
 - Very-strong protection against overfitting.
- We discussed empirical Bayes:
 - Optimize hyper-parameters using the marginal likelihood.
 - Can optimize a large number of hyper-parameters, without a validation set.
- We discussed hierarchical Bayes:
 - Putting a prior on the prior, which we used to model non-IID grouped data.

- We discussed multi-class classification.
 - Categorical generalization of sigmoid function is the softmax function.
- We discussed multi-class neural networks.
 - Put softmax on the last layer.
 - Other layers can stay the same, and the same tricks are used/needed.
- We discussed "what have we learned".
 - Layers in CNNs seem to be doing something sensible.
 - But ML models are easily fooled in various ways.
 - And ML models can have harmful biases.

- We discussed recurrent neural networks (RNNs).
 - Use tied parameters across time to model sequences of different lengths.
 - Makes vanishing/exploding gradient and "forgetting" problems worse.
 - Sequence-to-sequence handles output sequences of unknown lengths.
 - Multi-modal learning considers input and output of different formats.
- We discussed long short term memory (LSTM) models.
 - Include memory cells that are read/written/cleared with gates.
 - Allows modeling longer-range dependencies than standard RNNs.
- We discussed attention.
 - Allows decoder to access information from all encoding steps.
- We discussed transformers.
 - "Fully-connected" attention that forms basis for many modern methods.

Next Topic: Gaussian Density Estimation

Motivating Problem: Cell Phone Battery Life

- Consider modeling battery life between charges:
 - It makes sense to view this as a continuous quantity.
 - Rather than a fixed set of values, the battery life could be any real number.
- Reviews/advertisements will often advertise estimates:

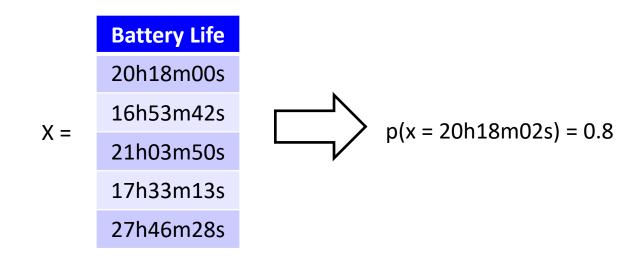
If you want the longest battery life, the iPhone 13 Pro Max is the one to get. In our battery test, the iPhone 13 Pro Max streamed a continuous video at full screen brightness for a whopping **20 hours and 18 minutes**. Nov 11, 2021

https://www.businessinsider.com > ... > Tech > Smartphones : iPhone 13 Pro Max Review: Longest Battery Life and Biggest ...

- We'd like to find the full distribution over charging times.
 - Lets us solve real-world problems like:
 - "If I haven't charged for 18 hours, what is the probability I will make it to 21 hours?"

General Problem: Continuous Density Estimation

- We can view this as density estimation with a continuous variable:
 - Input: *n* IID samples of continuous values x^1 , x^2 , x^3 ,..., x^n from a population.
 - Output: model of probability density for any real number X.
- Continuous density estimation as a picture:



- Watch out: we are estimating the **density** here, not the probability.
 - We could have p(x) > 1.
 - Obtain probabilities by integrating the density over an interval.

Other Applications

- Other applications where continuous density estimation is useful:
 - Modeling sizes (size of food grown in field, birthweight of babies).
 - Modeling times or control values in a manufacturing process.
 - Modeling stock variations or income distributions.
 - Modeling continuous medical measurements (blood pressure).
 - Modeling grades.
- Even with 1 variable there are many possible distributions.
 More complicated than binary/categorical.
- We'll start with the simple case where we assume data is Gaussian.
 Also called a "normal" distribution.

Univariate Gaussian

• The Gaussian probability density has the form

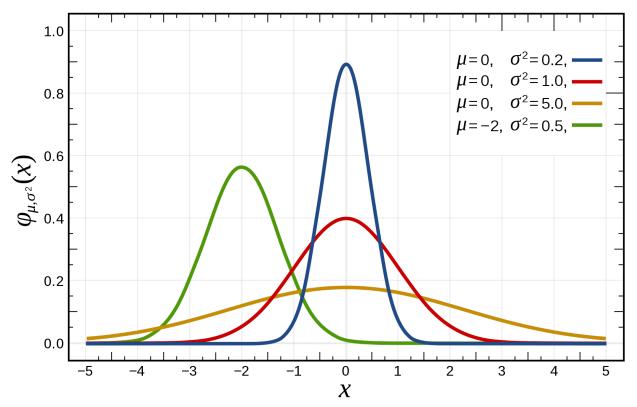
$$\rho(x'|\mu,\sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x'-\mu)^2}{2\sigma^2}\right)$$

- The mean parameter μ can be any real number.
- The standard deviation σ can be any positive number.
 - We call σ^2 the variance.
 - Gaussians are also known as normal distributions.
- If we assume xⁱ follows a Gaussian distribution, we often write:

$$x' \sim N(M_0 o^2)$$

"x' is generated from a normal distribution
with mean M and variance o^2 "

Univariate Gaussian



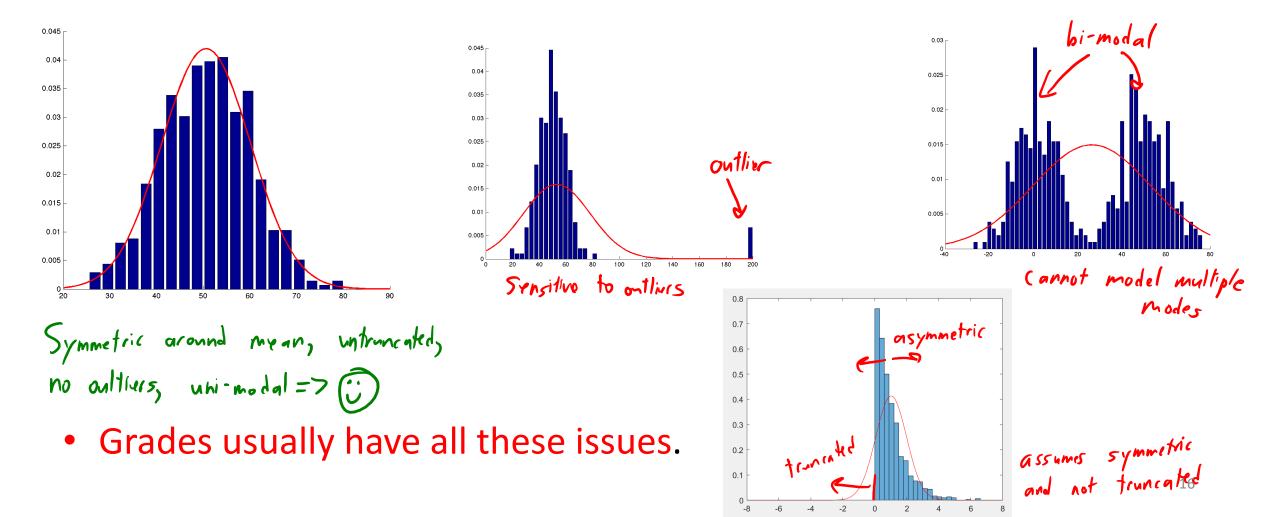
- Mean parameter μ controls location of center of density.
- Variance parameter σ^2 controls how spread out density is.
 - As $\sigma \to 0$ you get a "spike" at the mean, as $\sigma \to \infty$ you get uniform.

Motivation for Gaussian

- Why use the Gaussian distribution?
 - Data might actually follow a Gaussian.
 - Good justification if true, but usually false.
 - Central limit theorem: many sums of random variables converge* to Gaussian.
 - Often a bad justification: does not imply data distribution itself converges to a Gaussian.
 - You would have to argue that your data comes from an asymptotic process where CLT applies.
 - The distribution with maximum entropy that fits mean and variance of data.
 - "Makes the least assumptions" while matching the mean and variance of data.
 - We will discuss this later when we discuss the "exponential family".
 - But for complicated problems, just matching means and variances is not enough.
 - Makes many computations and doing theory much easier.
 - The same reason we use a lot of the common distributions.
 - Sometimes Gaussians are "good enough to be useful".
 - Gaussians are common "building blocks" in more advanced methods.

Motivations for not using Gaussians

• Histogram of xⁱ values with red line being MLE Gaussian density:



Next Topic: Gaussian Inference and Learning

Inference in Univariate Gaussians

- Decoding the mode: find x that maximizes the PDF p(x | μ, σ²).
 The mode is the mean μ.
- Computing likelihood of an IID dataset:

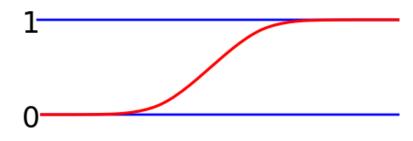
$$p(X|_{\mathcal{M}},\sigma^{2}) = \frac{\hat{\pi}}{\prod_{i=1}^{n}} p(x^{i}|_{\mathcal{M}},\sigma^{2}) = \frac{\hat{\pi}}{\prod_{i=1}^{n}} \frac{1}{\theta \sqrt{2}\eta} exp(-\frac{(x^{i}-m)^{2}}{2\sigma^{2}}) = \frac{1}{(\theta \sqrt{2}\pi)^{n}} \frac{\hat{\pi}}{\prod_{i=1}^{n}} exp(-\frac{(x^{i}-m)^{2}}{2\sigma^{2}})$$

$$= \frac{1}{(\theta \sqrt{2}\pi)^{n}} exp(-\frac{\hat{\pi}}{2\sigma^{2}}) \frac{(x^{i}-m)^{2}}{2\sigma^{2}})$$

- Note that the likelihood is a density, not a probability.
- - If a=b this is zero: any single x value has probability zero.

Cumulative Distribution Function (CDF)

- We often use F(c) = prob(x \leq c) = $\int_{-\infty}^{c} p(x)$ to denote the CDF.
 - F(c) is between 0 and 1, giving proportion of times X is below c.
 - F(c) monotonically increases with 'c'.



- The Gaussian CDF is given by: $F(c) = \frac{1}{2} \left[1 + erf(\frac{c-u}{\sqrt{2}}) \right]$
 - The "error function" erf is computed numerically and given by:

$$erf(z) = \frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-t^{2}} dt$$

Sampling with the Inverse CDF ("Quantile") Function

- How can we sample from a continuous density?
- We want to write a function that takes a uniform sample and:
 - 50% of the time it returns a sample in the region where F(c)= 50%.
 - -25% of the time it returns a sample in the region where F(c) = 25%.
 - -75% of the time it returns a sample in the region where F(c) = 75%.
 - -10% of the time it returns a sample in the region where F(c) = 10%.
 - And so on, so the CDF F(c) divides up the interval [0,1].
- The function we want is the inverse of the CDF F⁻¹ ("quantile" function):
 - $F^{-1}(u) = c$ for the unique 'c' where F(c) = u.
 - Allows sampling from Gaussians and using Monte Carlo with Gaussians.

Inverse Transform Method (Exact 1D Sampling)

- Inverse transform method for exact sampling of a continuous density in 1D:
 - 1. Sample *u* uniformly between 0 and 1.
 - 2. Return $F^{-1}(u)$.
- For Gaussians, we have $F^{-1}(u) = \mu + \sigma \sqrt{2} erf^{-1}(2u 1)$.
 - This formula converts uniform *u* values into samples from a Gaussian.
- Showing that CDF of samples has CDF we want to sample from (for invertible 'F'):

$$prob(sample \leq c) = prob(F'(u) \leq c) \qquad (sample is given by F'(u)) \\ = prob(F(F'(u)) \leq F(c)) \qquad (apply strictly - monotonic 'F' to inequality) \\ = prob(u \leq F(c)) \qquad (F and F'' are inverses) \\ = F(c) \qquad (prob(u \leq y) = y for uniform 'u') \end{cases}$$

- After the inverse transform, we have the CDF of the distribution we want.
- <u>Video</u> on pseudo-randomness and inverse-transform sampling.

MLE for Univariate Gaussian

• We showed that the likelihood for *n* IID examples is given by:

$$p(X|_{\mathcal{M}},\sigma^{2}) = \frac{1}{(0\sqrt{2\pi})} e^{x} p\left(-\frac{x}{(x'-u)^{2}}\right)$$

- To compute the MLE, minimize the NLL (which is convex): $-\log p(X | \mu, \sigma^{2}) = n \log \sigma + \frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (x^{i} - \mu)^{2} + constant$
- Setting derivative with respect to μ to 0 gives MLE of: $\lambda = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} x^{i}$ - So MLE for the mean is the mean of the samples.
- Plugging in $\hat{\mu}$ and setting derivative with respect to σ to 0 gives: $\hat{\sigma} = \frac{1}{2} \hat{c}_{\mu} (x' = \hat{\sigma})$ — So MLE for the variance is the variance of the samples.
 - Unless all xⁱ are equal (then NLL is not bounded below, and MLE does not exist).

Conjugate Prior and Posterior for Mean

• For fixed variance, conjugate prior for mean is Gaussian.

where
$$\tilde{m} = \frac{Vn}{Vn+o^2} \tilde{u}_{ME} + \frac{o^2}{Vn+o^2}m$$
 and $\tilde{v} = \left(\frac{n}{o^2} + \frac{1}{v}\right)^{-1}$

- "Self conjugacy" is a very special property (a key to usefulness of Gaussians).
 - Derived by using \propto and "completing the square" in exponent (see notes on webpage).
- Formulas look a bit weird, but consider \widetilde{m} and \widetilde{v} change as 'n' grows:
 - As *n* grows, posterior mean \widetilde{m} converges from prior mean *m* towards MLE.
 - As *n* grows, posterior variance \tilde{v} converges from prior variance v down to 0.
- MAP estimate is given by \widetilde{m} (it has the highest PDF of the posterior).
- Posterior predictive is also given by a Gaussian (not obvious, see notes linked on webpage).
 - With mean \widetilde{m} and variance $\widetilde{v} + \sigma^2$.
 - For complicated Bayeisan inference tasks, can use Monte Carlo by sampling from Gaussian posterior.
- We will come back to MAP/Bayes estimation for variance later.

Next Topic: Multivariate Gaussians

Motivation: Modeling Air Quality

- We want to model "air quality" in different rooms in a building.
- So we measure number of pollutant molecules (PM10, CO, O3, and so on):

Rm 1	Rm 2	Rm 3	Rm 4	Rm 5	Rm 6	Rm 7	Rm 8	Rm 9
0.1	1.4	0.2	1.8	1.0	1.0	0.1	0.1	1.1
0.2	1.3	0.1	1.9	1.1	0.9	0.1	0.1	1.1
0.1	0.3	1.4	2.0	0.7	0.3	0.1	0.2	0.4
0.1	1.1	0.2	2.1	1.1	1.1	0.1	0.3	0.5
2.7	2.6	2.5	5.1	2.4	2.8	3.2	2.5	3.1
0.1	0.4	0.2	1.8	1.3	0.4	0.1	0.4	1.0
0.1	1.2	0.2	1.8	1.4	1.1	0.7	0.7	0.5

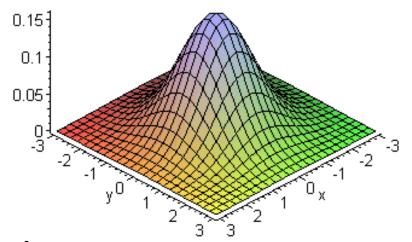
- We want to build a model of this data, to identify patterns/problems.
 - Some rooms usually bad air quality, some usually have good air quality.
 - The quality of some rooms may be correlated (rooms are adjacent or share air supply).
 - There are also temporal correlations (we will come back to temporal correlations later).

To Start: Product of Gaussians

- As usual, we could choose to make different dimensions independent
- $X_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$ • Then the joint density would be $p(X|\mathcal{M}_{i:d}, \sigma_{i:d}) = \prod_{j=1}^{d} p(X_j|\mathcal{M}_j, \sigma_j) \propto \prod_{j=1}^{d} \exp\left(-\frac{(X_j - \mathcal{M}_j)^2}{2\sigma_j^2}\right)$ General multivariate Gaussian: allow non-diagonal Σ

Multivariate Gaussians

- Many of the nice properties of univariates
 - Closed-form, intuitive MLE / conjugate priors / etc
 - Many nice analytic properties
 - Multivariate central limit theorem



Non-diagonal covariance matrix models correlations

- "Adjacent rooms have similar air qualities"

Multivariate Gaussian Distribution

$$|f X \sim N(n, \mathcal{E}), \quad p(x|n, \mathcal{E}) = \frac{1}{(2\pi)^2} |det(\mathcal{E})|^n \exp(-\frac{1}{2}(x-n)^T \mathcal{E}^T(x-n))$$

- $\mu \in \mathbb{R}^d$, $\Sigma \in \mathbb{R}^{d \times d}$ has $\Sigma > 0$, det is the determinant
 - $-\Sigma > 0$ means that Σ is (strictly) positive definite
 - All eigenvalues are positive
 - Diagonals entries must be positive, but off-diagonal entries can be negative
 - Equivalently, $v^{\top} \Sigma v > 0$ for all vectors $v \neq 0$
 - Implies there's an A such that $\Sigma = A A^{\top}$
- Can derive from $X = A Z + \mu$, where $Z_i \sim \mathcal{N}(0,1)$ iid

Using change of variables formula
$$p(x) = |det(\frac{\partial z}{\partial x_{T}})|p(z)$$

 $Z = A^{-1}(x-M), \quad \frac{\partial Z}{\partial x} = A^{-1}, \quad p(x | M, A) = (\frac{1}{2\pi})^{4/4} exp(\frac{1}{2}(A^{-1}(x-M), A^{-1}(x-M))) |det A^{-1}|$
 $= (\frac{1}{(2\pi)^{4/4}} |det x|^{4} exp(\frac{1}{2}(x-M)^{T} A^{-1}(x-M))$
 $= (\frac{1}{(2\pi)^{4/4}} |det x|^{4} exp(\frac{1}{2}(x-M)^{T} E^{-1}(x-M))$
 $= (2\pi)^{4/4} |det x|^{4} exp(\frac{1}{2}(x-M)^{T} E^{-1}(x-M))$

bonusl

Kinds of covariances

- If $\Sigma = \alpha I$, level curves of the density are circles - Each $X_i \sim \mathcal{N}(0, \alpha)$ is independent; 1 parameter
- If $\Sigma = \text{diag}(\sigma_1^2, ..., \sigma_d^2)$ is a general diagonal: axis-aligned ellipses - Each $X_j \sim \mathcal{N}(0, \sigma_j^2)$ is independent; product of normals; *d* parameters
- If Σ is general, might not be axis-aligned
 - d(d + 1)/2 parameters (not d^2 : the matrix is symmetric)

30

Degenerate Gaussians

Degenente

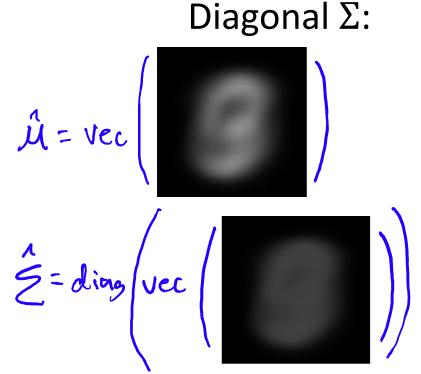
- If det(Σ) = 0 (but still have Σ ≥ 0, positive semi-definite), we call it a degenerate Gaussian
 - Standard density function doesn't exist (divide by 0)
- In 1d, degenerate Gaussians have $\sigma^2 = 0$, a point mass
- In 2d, non-zero probability is along a line (or a point)

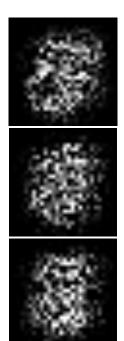
Independence structure in Gaussians

- In multivariate Gaussians, $X_j \perp X_j$, iff $\Sigma_{jj'} = 0$
 - If Σ is diagonal, all off-diagonals are 0 and the X_j are all mutually independent
- If Σ_{jj} , $\neq 0$, then X_j and X_j , are correlated — Can be positive or negative
- This means we can model dependencies between all pairs
 Unlike all the previous "product of [...]" distributions we've used
- But no "higher-order" interactions

Example: Multivariate Gaussians on MNIST

• Let's try continuous density estimation on handwritten digits





General Σ :

 $\hat{\mu}$ is the same (!) $\hat{\Sigma}$ is big (784 by 784)

Next Topic: Multivariate Gaussian Inference

Inference with Multivariate Gaussians

- How do we use this model?
 - Compute likelihoods with the formula we saw
 - Like 1d Gaussians (and Betas, and any other continuous dist.), likelihood now a density
 - Decode the mode: it's again just the mean μ
 - What about marginal distributions, $p(x_j)$?
 - Or conditionals, $p(x_j | x_{j'})$?
 - Or sampling from the distribution?
- Gaussians have many nice properties that make computations easy

- We'll mostly introduce them as we go

Affine Transformations

- If $X \sim \mathcal{N}(\mu, \Sigma)$, then $X + b \sim \mathcal{N}(\mu + b, \Sigma)$
- If $X \sim \mathcal{N}(\mu, \Sigma)$, then $A X + b \sim \mathcal{N}(A \mu + b, A \Sigma A^{\dagger})$ - $A \Sigma A^{\dagger}$ might be singular, in which case A X + b is degenerate!
 - e.g. A = 0, or if X is 1d and A is 5×1 ...
- This gives us a nice sampling algorithm:
 - Sample *d* independent standard normals, $Z_i \sim \mathcal{N}(0, 1)$
 - Return $A Z + \mu \sim \mathcal{N}(\mu, AA^{\mathsf{T}})$
 - Find an A so that $AA^{\top} = \Sigma$, e.g. Cholesky factorization (np.linalg.cholesky)

Marginalizing Gaussians

• If we have a joint on $(X_1, X_2, ..., X_d)$, might want just X_j

•
$$p(x_j) = \int dx_1 \cdots \int dx_{j-1} \int dx_{j+1} \cdots \int dx_d p(x \mid \mu, \Sigma)$$

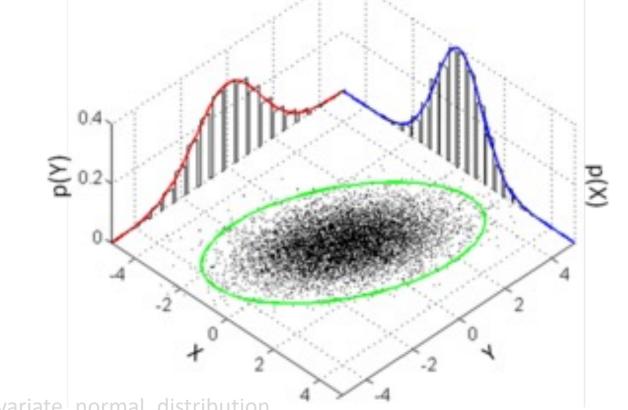
– …but we can skip the integration by thinking a bit!

- Let's partition our variables, $\begin{bmatrix} X \\ Z \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} \mu_X \\ \mu_Z \end{bmatrix}, \begin{bmatrix} \Sigma_{XX} & \Sigma_{XZ} \\ \Sigma_{ZX} & \Sigma_{ZZ} \end{bmatrix}\right)$
- Now notice that $X = \begin{bmatrix} I & 0 \end{bmatrix} \begin{bmatrix} X \\ Z \end{bmatrix}$ • and so $X \sim \mathcal{N} \left(\begin{bmatrix} I & 0 \end{bmatrix} \begin{bmatrix} \mu_X \\ \mu_Z \end{bmatrix}, \begin{bmatrix} I & 0 \end{bmatrix} \begin{bmatrix} \Sigma_{XX} & \Sigma_{XZ} \\ \mu_Z \end{bmatrix}, \begin{bmatrix} I & 0 \end{bmatrix} \begin{bmatrix} \Sigma_{XX} & \Sigma_{XZ} \\ \Sigma_{ZX} & \Sigma_{ZZ} \end{bmatrix} \begin{bmatrix} I & 0 \end{bmatrix}^{\top} \right)^{\mathcal{E}_{2X} = \mathcal{E}_{XZ}} \mathcal{E}_{ZX} \mathcal{E}_{ZX} \mathcal{E}_{ZZ}$ $X \sim \mathcal{N} (\mu_X, \Sigma_{XX})$

Marginalizing Gaussians

• If
$$\begin{bmatrix} X \\ Z \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} \mu_X \\ \mu_Z \end{bmatrix}, \begin{bmatrix} \Sigma_{XX} & \Sigma_{XZ} \\ \Sigma_{ZX} & \Sigma_{ZZ} \end{bmatrix} \right)$$
 then $X \sim \mathcal{N}(\mu_X, \Sigma_{XX})$

• i.e. we can just ignore a subset of the variables



https://en.wikipedia.org/wiki/Multivariate_normal_distribution

Conditioning in Gaussians

• If
$$\begin{bmatrix} X \\ Z \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} \mu_X \\ \mu_Z \end{bmatrix}, \begin{bmatrix} \Sigma_{XX} & \Sigma_{XZ} \\ \Sigma_{ZX} & \Sigma_{ZZ} \end{bmatrix} \right)$$
, what's $X \mid Z$?

• By doing a bunch of linear algebra (see PML1 7.3.5), you get

$$X \mid Z \sim \mathcal{N}(\mu_{X|Z}, \Sigma_{X|Z})$$
$$\mu_{X|Z} = \mu_X + \Sigma_{XZ} \Sigma_{ZZ}^{-1} (Z - \mu_Z)$$
$$\Sigma_{X|Z} = \Sigma_{XX} - \Sigma_{XZ} \Sigma_{ZZ}^{-1} \Sigma_{ZX}$$

- If you know Z = z, distribution of X is still (a different) Gaussian
- If $\Sigma_{XZ} = 0$, get $X \mid Z \sim \mathcal{N}(\mu_X, \Sigma_X)$, and so then $X \perp Z$
- Notice that $\Sigma_{X|Z}$ doesn't depend on the particular value of Z!

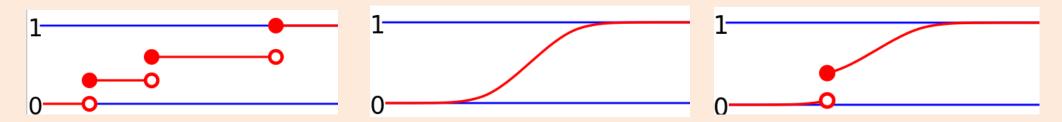
Summary

- Gaussian density estimation:
 - Modeling continuous variable samples, assuming it follows a Gaussian.
 - We use Gaussians because they have lots of nice properties.
 - But Gaussians assume symmetric, no outliers, no truncation, uni-modal.
- Mean and variance parameterization of Gaussians:
 - Mean specifies center of distribution.
 - Variance specifies spread of distribution.
- Inverse transform method for sampling:
 - Apply the "inverse" of the CDF to uniform samples to generate samples.
- MLE and MAP for Gaussians:
 - MLE is given by mean and variance of samples.

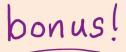
- Conjugate prior for mean is another Gaussian.
 - MAP moves between mean of samples and prior mean.
 - Posterior predictive is also Gaussian in this case.
- Multivariate Gaussian for vectors.
 - Mean vector and positive-definite covariance.
 - Diagonal covariance ⇔ product of independent Gaussians.
 - Correlations with off-diagonal entries.
- Inference with multivariate Gaussians
 - Affine transforms of Gaussians are Gaussian.
 - Can use that to sample.
 - Marginals, conditionals are also Gaussians.
- Next time: learning about how to learn multivariate Gaussians.

Cumulative Distribution Function (CDF)

• CDF can be used for discrete and continuous variables (and mixed).



• We can generalize the quantile function to non-invertible case.



Quantile Function – Non-Invertible Case

• If the CDF 'F' is not invertible, we define the quantile F⁻¹ as:

$$F'(u) = infic | F(c) = u f$$

- "Smallest value 'c' such that F(c) is bigger than u."
 - See notes on max and argmax if you have not seen 'inf' before.
 - It's a variant on 'min' that is defined in more cases.
- If 'F' is invertible at this 'c', this gives the usual inverse.
 - But this more-general definition handles non-invertible points.
 - For example, the CDF is not invertible for categorical variables at the "jumps" in CDF.
 - Many values of 'u' are mapped to by the same 'c'.