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End of Part 2 (“Categorical Variables”): Key Concepts

• We discussed categorical density estimation.
– Model the proportion of times different categories appear.
– Categorical 𝜃! parameterization and unnormalized probabilities "𝜃!.
– Sampling using the cumulative distribution function (CDF).

• We discussed Monte Carlo for approximating expectations.
– Generate samples from a model.
– Compute the average function value on the samples.

• We discussed conjugate priors.
– For a given likelihood, a prior that leads to posterior in “family” of prior.
– Conjugate prior for categorical distribution is the Dirichlet distribution.

• Dirichlet gives a “probability over discrete probabilities”.
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End of Part 2 (“Categorical Variables”): Key Concepts
• We reviewed standard conditional independence assumptions:

– Data is IID [given parameters].
– Data is independent of hyper-parameters given parameters.
– Discriminative models assume parameters are independent of features.

• We discussed Bayesian learning:
– Instead of using a single parameter, sum/integrate over all parameters.
– Prediction using the posterior predictive distribution.

• And possibly a cost function for Bayesian decision theory.
– Very-strong protection against overfitting.

• We discussed empirical Bayes:
– Optimize hyper-parameters using the marginal likelihood.
– Can optimize a large number of hyper-parameters, without a validation set.

• We discussed hierarchical Bayes:
– Putting a prior on the prior, which we used to model non-IID grouped data.
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End of Part 2 (“Categorical Variables”): Key Concepts

• We discussed multi-class classification.
– Categorical generalization of sigmoid function is the softmax function.

• We discussed multi-class neural networks.
– Put softmax on the last layer.
– Other layers can stay the same, and the same tricks are used/needed.

• We discussed “what have we learned”.
– Layers in CNNs seem to be doing something sensible.
– But ML models are easily fooled in various ways.
– And ML models can have harmful biases.
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End of Part 2 (“Categorical Variables”): Key Concepts
• We discussed recurrent neural networks (RNNs).
– Use tied parameters across time to model sequences of different lengths.

• Makes vanishing/exploding gradient and “forgetting” problems worse.
– Sequence-to-sequence handles output sequences of unknown lengths.
– Multi-modal learning considers input and output of different formats.

• We discussed long short term memory (LSTM) models.
– Include memory cells that are read/written/cleared with gates.
– Allows modeling longer-range dependencies than standard RNNs.

• We discussed attention.
– Allows decoder to access information from all encoding steps.

• We discussed transformers.
– “Fully-connected” attention that forms basis for many modern methods.
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Next Topic: Gaussian Density Estimation
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Motivating Problem: Cell Phone Battery Life
• Consider modeling battery life between charges:
– It makes sense to view this as a continuous quantity.

• Rather than a fixed set of values, the battery life could be any real number.

• Reviews/advertisements will often advertise estimates:

• We’d like to find the full distribution over charging times.
– Lets us solve real-world problems like:

• “If I haven’t charged for 18 hours, what is the probability I will make it to 21 hours?”
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General Problem: Continuous Density Estimation
• We can view this as density estimation with a continuous variable:
– Input: n IID samples of continuous values x1, x2, x3,…, xn from a population.
– Output: model of probability density for any real number X.

• Continuous density estimation as a picture:

• Watch out: we are estimating the density here, not the probability.
– We could have p(x) > 1.
– Obtain probabilities by integrating the density over an interval.

Battery Life

20h18m00s

16h53m42s

21h03m50s

17h33m13s

27h46m28s

p(x = 20h18m02s) = 0.8X = 
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Other Applications
• Other applications where continuous density estimation is useful:
– Modeling sizes (size of food grown in field, birthweight of babies).
– Modeling times or control values in a manufacturing process.
– Modeling stock variations or income distributions.
– Modeling continuous medical measurements (blood pressure).
– Modeling grades.

• Even with 1 variable there are many possible distributions.
– More complicated than binary/categorical.

• We’ll start with the simple case where we assume data is Gaussian.
– Also called a “normal” distribution.
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Univariate Gaussian
• The Gaussian probability density has the form

– The mean parameter 𝜇 can be any real number.
– The standard deviation 𝜎 can be any positive number.

• We call 𝜎! the variance.
• Gaussians are also known as normal distributions.

• If we assume xi follows a Gaussian distribution, we often write:
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Univariate Gaussian

• Mean parameter 𝜇 controls location of center of density.
• Variance parameter 𝜎! controls how spread out density is.
– As 𝜎 → 0 you get a “spike” at the mean, as 𝜎 → ∞ you get uniform.

https://en.wikipedia.org/wiki/Normal_distribution
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Motivation for Gaussian
• Why use the Gaussian distribution?
– Data might actually follow a Gaussian.

• Good justification if true, but usually false.
– Central limit theorem: many sums of random variables converge* to Gaussian.

• Often a bad justification: does not imply data distribution itself converges to a Gaussian.
– You would have to argue that your data comes from an asymptotic process where CLT applies.

– The distribution with maximum entropy that fits mean and variance of data.
• “Makes the least assumptions” while matching the mean and variance of data.

– We will discuss this later when we discuss the “exponential family”.
• But for complicated problems, just matching means and variances is not enough.

– Makes many computations and doing theory much easier.
• The same reason we use a lot of the common distributions.
• Sometimes Gaussians are “good enough to be useful”.
• Gaussians are common “building blocks” in more advanced methods.
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Motivations for not using Gaussians
• Histogram of xi values with red line being MLE Gaussian density:

• Grades usually have all these issues.
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Next Topic: Gaussian Inference and Learning
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Inference in Univariate Gaussians
• Decoding the mode: find x that maximizes the PDF p(x | 𝜇, 𝜎").
– The mode is the mean 𝜇.

• Computing likelihood of an IID dataset:

– Note that the likelihood is a density, not a probability.
• Computing probability that an X lies in an interval:

– If a=b this is zero: any single x value has probability zero. 18



Cumulative Distribution Function (CDF)

• We often use F(c) = prob(x ≤ c) = ∫#$
% 𝑝 𝑥 to denote the CDF.

– F(c) is between 0 and 1, giving proportion of times X is below c.
– F(c) monotonically increases with ‘c’.

• The Gaussian CDF is given by:
– The “error function” erf is computed numerically and given by:

https://en.wikipedia.org/wiki/Cumulative_distribution_function
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Sampling with the Inverse CDF (“Quantile”) Function
• How can we sample from a continuous density?

• We want to write a function that takes a uniform sample and:
– 50% of the time it returns a sample in the region where F(c)= 50%. 
– 25% of the time it returns a sample in the region where F(c) = 25%.
– 75% of the time it returns a sample in the region where F(c) = 75%.
– 10% of the time it returns a sample in the region where F(c) = 10%.
– And so on, so the CDF F(c) divides up the interval [0,1].

• The function we want is the inverse of the CDF F-1 (“quantile” function): 
– F-1(u) = c for the unique ‘c’ where F(c) = u.
– Allows sampling from Gaussians and using Monte Carlo with Gaussians.
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Inverse Transform Method (Exact 1D Sampling)
• Inverse transform method for exact sampling of a continuous density in 1D:

1. Sample u uniformly between 0 and 1.
2. Return F-1(u).

• For Gaussians, we have F-1(u) = 𝜇 + 𝜎 2erf-1(2u – 1).
– This formula converts uniform u values into samples from a Gaussian.

• Showing that CDF of samples has CDF we want to sample from (for invertible ‘F’):

– After the inverse transform, we have the CDF of the distribution we want.
• Video on pseudo-randomness and inverse-transform sampling. 21

https://www.youtube.com/watch?v=C82JyCmtKWg


MLE for Univariate Gaussian
• We showed that the likelihood for n IID examples is given by:

• To compute the MLE, minimize the NLL (which is convex):

• Setting derivative with respect to 𝜇 to 0 gives MLE of:
– So MLE for the mean is the mean of the samples.

• Plugging in (𝜇 and setting derivative with respect to 𝜎 to 0 gives:
– So MLE for the variance is the variance of the samples.

• Unless all xi are equal (then NLL is not bounded below, and MLE does not exist).
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Conjugate Prior and Posterior for Mean
• For fixed variance, conjugate prior for mean is Gaussian.

– “Self conjugacy” is a very special property (a key to usefulness of Gaussians).
• Derived by using ∝ and “completing the square” in exponent (see notes on webpage).

– Formulas look a bit weird, but consider "𝑚 and $𝑣 change as ‘n’ grows:
• As n grows, posterior mean "𝑚 converges from prior mean 𝑚 towards MLE.
• As n grows, posterior variance $𝑣 converges from prior variance 𝑣 down to 0.

– MAP estimate is given by "𝑚 (it has the highest PDF of the posterior).
– Posterior predictive is also given by a Gaussian (not obvious, see notes linked on webpage).

• With mean "𝑚 and variance $𝑣 + 𝜎!.
• For complicated Bayeisan inference tasks, can use Monte Carlo by sampling from Gaussian posterior.

• We will come back to MAP/Bayes estimation for variance later.
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Next Topic: Multivariate Gaussians
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Motivation: Modeling Air Quality
• We want to model “air quality” in different rooms in a building.
• So we measure number of pollutant molecules (PM10, CO, O3, and so on):

• We want to build a model of this data, to identify patterns/problems.
– Some rooms usually bad air quality, some usually have good air quality.
– The quality of some rooms may be correlated (rooms are adjacent or share air supply).
– There are also temporal correlations (we will come back to temporal correlations later).

Rm 1 Rm 2 Rm 3 Rm 4 Rm 5 Rm 6 Rm 7 Rm 8 Rm 9

0.1 1.4 0.2 1.8 1.0 1.0 0.1 0.1 1.1

0.2 1.3 0.1 1.9 1.1 0.9 0.1 0.1 1.1

0.1 0.3 1.4 2.0 0.7 0.3 0.1 0.2 0.4

0.1 1.1 0.2 2.1 1.1 1.1 0.1 0.3 0.5

2.7 2.6 2.5 5.1 2.4 2.8 3.2 2.5 3.1

0.1 0.4 0.2 1.8 1.3 0.4 0.1 0.4 1.0

0.1 1.2 0.2 1.8 1.4 1.1 0.7 0.7 0.5
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To Start: Product of Gaussians
• As usual, we could choose to make different dimensions independent

• Then the joint density would be

• General multivariate Gaussian: allow non-diagonal Σ 26



Multivariate Gaussians
• Many of the nice properties of univariates
– Closed-form, intuitive MLE / conjugate priors / etc
– Many nice analytic properties
– Multivariate central limit theorem
– …

• Non-diagonal covariance matrix models correlations
– “Adjacent rooms have similar air qualities”

http://personal.kenyon.edu/hartlaub/MellonProject/Bivariate2.html 
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Multivariate Gaussian Distribution

• 𝜇 ∈ ℝ&, Σ ∈ ℝ&×& has Σ ≻ 0, det is the determinant
– Σ ≻ 0 means that Σ is (strictly) positive definite

• All eigenvalues are positive
– Diagonals entries must be positive, but off-diagonal entries can be negative

• Equivalently, 𝑣" Σ 𝑣 > 0 for all vectors 𝑣 ≠ 0
• Implies there’s an 𝐴 such that Σ = 𝐴 𝐴"

• Can derive from 𝑋 = 𝐴 𝑍 + 𝜇, where 𝑍/ ∼ 𝒩(0,1) iid
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Kinds of covariances
• If Σ = 𝛼 𝐼, level curves of the density are circles
– Each 𝑋" ∼ 𝒩(0, 𝛼) is independent; 1 parameter

• If Σ = diag(𝜎0", … , 𝜎&") is a general diagonal: axis-aligned ellipses
– Each 𝑋" ∼ 𝒩(0, 𝜎"#) is independent; product of normals; d parameters

• If Σ is general, might not be axis-aligned
– 𝑑(𝑑 + 1)/2 parameters

(not 𝑑#: the matrix is symmetric)
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Degenerate Gaussians
• If det(Σ) = 0 (but still have Σ ≽ 0, positive semi-definite),

we call it a degenerate Gaussian
– Standard density function doesn’t exist (divide by 0)

• In 1d, degenerate Gaussians have 𝜎" = 0, a point mass
• In 2d, non-zero probability is along a line (or a point)
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Independence structure in Gaussians
• In multivariate Gaussians, 𝑋/ ⫫ 𝑋/1 iff Σ//1 = 0
– If Σ is diagonal, all off-diagonals are 0 and the 𝑋" are all mutually independent

• If Σ//1 ≠ 0, then 𝑋/ and 𝑋/1 are correlated
– Can be positive or negative

• This means we can model dependencies between all pairs
– Unlike all the previous “product of […]” distributions we’ve used

• But no “higher-order” interactions
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Example: Multivariate Gaussians on MNIST
• Let’s try continuous density estimation on handwritten digits

Diagonal Σ: General Σ:

(𝜇 is the 
same (!)
DΣ is big
(784 by 784)
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Next Topic: Multivariate Gaussian Inference
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Inference with Multivariate Gaussians
• How do we use this model?
– Compute likelihoods with the formula we saw

• Like 1d Gaussians (and Betas, and any other continuous dist.), likelihood now a density

– Decode the mode: it’s again just the mean 𝜇
– What about marginal distributions, 𝑝(𝑥")?
– Or conditionals, 𝑝(𝑥" ∣ 𝑥"#)?
– Or sampling from the distribution?

• Gaussians have many nice properties that make computations easy
– We’ll mostly introduce them as we go
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Affine Transformations
• If 𝑋 ∼ 𝒩(𝜇, Σ), then 𝑋 + 𝑏 ∼ 𝒩 𝜇 + 𝑏, Σ

• If 𝑋 ∼ 𝒩(𝜇, Σ), then A 𝑋 + 𝑏 ∼ 𝒩(𝐴 𝜇 + 𝑏, 𝐴 Σ A2)
– 𝐴 Σ A$ might be singular, in which case A 𝑋 + 𝑏 is degenerate!

• e.g. A = 0, or if X is 1d and A is 5×1…

• This gives us a nice sampling algorithm:
– Sample d independent standard normals, 𝑍" ∼ 𝒩(0, 1)
– Return 𝐴 𝑍 + 𝜇 ∼ 𝒩(𝜇, 𝐴𝐴$)

• Find an 𝐴 so that 𝐴𝐴" = Σ, e.g. Cholesky factorization (np.linalg.cholesky)
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Marginalizing Gaussians
• If we have a joint on (𝑋0, 𝑋", … , 𝑋&), might want just 𝑋/
• 𝑝 𝑥/ = ∫ d𝑥0⋯∫ d𝑥/#0∫ d𝑥/50⋯∫ d𝑥& 𝑝 𝑥 𝜇, Σ
– …but we can skip the integration by thinking a bit!

• Let’s partition our variables, 𝑋𝑍 ∼ 𝒩
𝜇6
𝜇7 , Σ66 Σ67

Σ76 Σ77
• Now notice that 

𝑋 = 𝐼 0 𝑋
𝑍

• and so

𝑋 ∼ 𝒩 𝐼 0
𝜇6
𝜇7 , 𝐼 0

Σ66 Σ67
Σ76 Σ77

𝐼 0 2

𝑋 ∼ 𝒩 𝜇6, Σ66 36



Marginalizing Gaussians

• If 𝑋𝑍 ∼ 𝒩
𝜇6
𝜇7 , Σ66 Σ67

Σ76 Σ77
then 𝑋 ∼ 𝒩 𝜇6, Σ66

• i.e. we can just ignore a subset of the variables

https://en.wikipedia.org/wiki/Multivariate_normal_distribution
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Conditioning in Gaussians

• If 𝑋𝑍 ∼ 𝒩
𝜇6
𝜇7 , Σ66 Σ67

Σ76 Σ77
, what’s 𝑋 ∣ 𝑍?

• By doing a bunch of linear algebra (see PML1 7.3.5), you get
𝑋 ∣ 𝑍 ∼ 𝒩 𝜇6∣7, Σ6∣7
𝜇6∣7 = 𝜇6 + Σ67Σ77#0 𝑍 − 𝜇7
Σ6∣7 = Σ66 − Σ67Σ77#0Σ76

• If you know 𝑍 = 𝑧, distribution of 𝑋 is still (a different) Gaussian
• If Σ67 = 0, get 𝑋 ∣ 𝑍 ∼ 𝒩 𝜇6, Σ6 , and so then 𝑋 ⫫ Z
• Notice that Σ6∣7 doesn’t depend on the particular value of Z!
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Summary
• Gaussian density estimation:

– Modeling continuous variable samples, 
assuming it follows a Gaussian.

– We use Gaussians because they have lots of 
nice properties.

– But Gaussians assume symmetric, no 
outliers, no truncation, uni-modal.

• Mean and variance parameterization of 
Gaussians:
– Mean specifies center of distribution.
– Variance specifies spread of distribution.

• Inverse transform method for sampling:
– Apply the “inverse” of the CDF to uniform 

samples to generate samples.
• MLE and MAP for Gaussians:

– MLE is given by mean and variance of 
samples.

– Conjugate prior for mean is another 
Gaussian.
• MAP moves between mean of samples and 

prior mean.
• Posterior predictive is also Gaussian in this  case.

• Multivariate Gaussian for vectors.
– Mean vector and positive-definite 

covariance.
– Diagonal covariance ó product of 

independent Gaussians.
– Correlations with off-diagonal entries.

• Inference with multivariate Gaussians
– Affine transforms of Gaussians are Gaussian.
– Can use that to sample.
– Marginals, conditionals are also Gaussians.

• Next time: learning about how to learn 
multivariate Gaussians.
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Cumulative Distribution Function (CDF)
• CDF can be used for discrete and continuous variables (and mixed).

• We can generalize the quantile function to non-invertible case.

https://en.wikipedia.org/wiki/Cumulative_distribution_function
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Quantile Function – Non-Invertible Case
• If the CDF ‘F’ is not invertible, we define the quantile F-1 as:

• “Smallest value ‘c’ such that F(c) is bigger than u.”
– See notes on max and argmax if you have not seen ‘inf’ before.

• It’s a variant on ‘min’ that is defined in more cases.

• If ‘F’ is invertible at this ‘c’, this gives the usual inverse.
– But this more-general definition handles non-invertible points.

• For example, the CDF is not invertible for categorical variables at the “jumps” in CDF.
– Many values of ‘u’ are mapped to by the same ‘c’.
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