
CPSC 440: Machine Learning

Attention and Transformers
Winter 2022

Last Time: LSTMs and Multi-Modal Learning
• We discussed long short term memory (LSTM) models:
– RNNs with memory cells designed to remember information longer.

• We discussed using encoders and decoders of different data types:
– Encoder takes an image and decoder outputs a sequence.
– Image captioning, video annotation, lip reading, poetry about images.

Last Time: Sequence-to-Sequence RNNs
• Sequence-to-sequence:
– Recurrent neural network for sequences of different lengths.

• Problem:
– All “encoding” information must be summarized by last state (z3 above).
– Might “forget” earlier parts of sentence.

• Or middle of sentence if using bi-directional RNN.
– Might want to “re-focus” on parts of input, depending on decoder state.

x1

z1

x2

z2

x3

z3 z4 z5z0

y1 y2

Attention
• Many recent systems use “attention” to focus on parts of input.
– Including GPT, Google Translate, ….

• Many variations on attention, but usually include the following:
– Each decoding can use hidden state from each encoding step.

• Used to re-weight during decoding to emphasize important parts.
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

RNN vs. RNN with Attention Videos

Not-Very-Practical Attention
• A naïve “attention” method (no one uses this, but idea is similar):

– At each decoding step, weight decoder state (as usual) and weight all encoder states.

– Another variation on the “residual connection” or “denseNet” trick.
– But this variant is not practical since number of decoding weights depends on input size.

• Practical variations try to summarize encoder information through a “context vector”.

x1

z1

x2

z2

x3

z3 z4 z5z0

y1 y2

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

Context Vectors
• A common way to generate the context vector:
– Take current decoder state.
– Compute inner product with each encoder state.

• Gives a scalar for each encoding “time”.
– Pass these scalars through the softmax function.

• Gives a normalized weight for each time (what was previously shown in pairwise tables).
– Multiply each encoder state by probability, add them up.

• Gives fixed-length “context vector”.

• Alternate notation (like a hash function):
– Input is “queries” and “keys”.
– Output is “values”.

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

Context Vectors
• A common way to generate the context vector:
– Take current decoder state.
– Compute inner product with each encoder state.

• Gives a scalar for each encoding “time”.
– Pass these scalars through the softmax function.

• Gives a normalized weight for each time (can be shown in pairwise tables).
– Multiply each encoder state by probability, add them up.

• Gives fixed-length “context vector”.

• Alternate notation (like a hash function):
– Input is “queries” and “keys”.
– Output is “values”.

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

Using Context Vectors for Attention
• Context vector is usually appended to decoder’s state when going to next layer.

– Output could be generated directly from this, or passed through a neural net.
– Common variation is “multi-headed attention”: can get scores from different aspects.

• One context vector for semantics, one for grammar, one for tense, and so on.
• Each is appended to decoder state when going to next layer.
• Context vectors are usually not included when updating the decoder state temporally.

• Remember that we train the encoder and decoder at the same time.
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

Using Context Vectors for Attention
• Context vector is usually appended to decoder’s state when going to next layer.

– Output could be generated directly from this, or passed through a neural net.
– Common variation is “multi-headed attention”: can get scores from different aspects.

• One context vector for semantics, one for grammar, one for tense, and so on.
• Each is appended to decoder state when going to next layer.
• Context vectors are usually not included when updating the decoder state temporally.

• Remember that we train the encoder and decoder at the same time.
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

Multi-Modal Attention
• Attention for image captioning:

https://arxiv.org/pdf/1502.03044.pdf

Biological Motivation for Attention
• Gaze tracking:
– https://www.youtube.com/watch?v=QUbiHKucljw

• Selective attention test:
– https://www.youtube.com/watch?v=vJG698U2Mvo

• Change blindness:
– https://www.youtube.com/watch?v=EARtANyz98Q

• Door study:
– https://www.youtube.com/watch?v=FWSxSQsspiQ

https://www.youtube.com/watch?v=QUbiHKucljw
https://www.youtube.com/watch?v=vJG698U2Mvo
https://www.youtube.com/watch?v=EARtANyz98Q
https://www.youtube.com/watch?v=FWSxSQsspiQ

Neural Turing/Programmers
• Many interesting variations on memory/attention.
– A getting-out-of-date survey: https://distill.pub/2016/augmented-rnns

– We will focus next on a wildly-popular variant called “transformers”.
https://www.facebook.com/FBAIResearch/posts/362517620591864

https://distill.pub/2016/augmented-rnns

Next Topic: Transformers

Convolutions for Sequences?
• Should we really be going through a sequence sequentially?
– What if stuff in the middle is really important, and changes meaning?

• Recent works have explored using convolutions for sequences.

https://medium.com/@TalPerry/convolutional-methods-for-text-d5260fd5675f

Digression: Dilated Convolutions (“a trous”)
• Best CNN systems have gradually reduced convolutions sizes.
– Many modern architectures use 3x3 convolutions, far fewer parameters.

• Sequences of convolutions take into account larger neighbourhood.
– 3x3 convolution followed by another gives a 5x5 neighbourhood.
– But need many layers to cover a large area.

• Alternative recent strategy is dilated convolutions (“a trous”).

• Not the same as “stride” in a CNN:
– Doing a 3x3 convolution at all locations, but using pixels that are not adjacent.

https://medium.com/@TalPerry/convolutional-methods-for-text-d5260fd5675f
https://github.com/vdumoulin/conv_arithmetic

Dilated Convolutions (“a trous”)
• Modeling music and language and with dilated convolutions:

https://arxiv.org/pdf/1610.10099.pdf
https://arxiv.org/pdf/1609.03499.pdf

RNNs/CNNs/Attention for Music and Dance
• Music generation:
– https://www.youtube.com/watch?v=RaO4HpM07hE

• Text to speech and music waveform generation:
– https://deepmind.com/blog/wavenet-generative-model-raw-audio

• Dance choreography:
– http://theluluartgroup.com/work/generative-choreography-using-deep-learning

• Music composition:
– https://www.facebook.com/yann.lecun/videos/10154941390687143

https://www.youtube.com/watch?v=RaO4HpM07hE
https://deepmind.com/blog/wavenet-generative-model-raw-audio
http://theluluartgroup.com/work/generative-choreography-using-deep-learning
https://www.facebook.com/yann.lecun/videos/10154941390687143

Transformer Networks
• CNNs are less sequential, but take multiple steps to combine distant information.

• “Attention is all you need”: keep the attention, ditch the RNN/CNN.
– Constant time to transfer across positions.
– Uses “self-attention” layers to model relationship between all words in input.

• Queries/keys/values all come from input in these steps.

• Sequence of representations of words, each depending on all other words.

http://web.stanford.edu/class/cs224n/slides/cs224n-2021-lecture09-transformers.pdf

Transformer Networks
• CNNs are less sequential, but take multiple steps to combine distant information.
• “Attention is all you need”: keep the attention, ditch the RNN/CNN.

– Constant time to transfer across positions.
– Uses “self-attention” layers to model relationship between all words in input.

• Take weighted combinations of each input to generate a “key”, a “value”, and a “query”.
• Compute inner product between “query” from word with “key” for each word to give scalar “score”.
• Compute softmax of “scores”, multiplied by word’s “value”, add these across words to get context vector.

• Many variations exist.

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Transformer Networks
• Multiple “self-attention” layers in transformers replacing RNN/CNN.
– Has improved on state of the art results in many tasks.

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

Position encodings
• RNNs see sequences in order; CNNs have order built-in
• Attention mechanisms “look everywhere” (at everything, all at once)

– Big advantage, except they don’t get to see the order of the sentence!
– Add position encodings to tell where a word is in the sequence

• Original transformers use trig features of the position

• Later work learns them
– Feature vector for word 1, word 2, … that you learn as a parameter

Transformer Networks: Practical Issues
• “Self-attention” layers are basis for transformer networks.
– Simple idea, but practical systems have a lot of moving pieces.

• Problem: information about the future can be visible in the past.
– During training, prevent decoder from looking ahead.

• Further “standard” tricks to make it work better:
– Multi-headed attention, skip/residual connections, and layer normalization.
– Between layers, pass each embedding through a feedforward neural network.

http://web.stanford.edu/class/cs224n/slides/cs224n-2021-lecture09-transformers.pdf

Transformer Architecture (from paper)

https://arxiv.org/pdf/1706.03762.pdf

Input representation for text
• Word-level: vocab gets really big to be multilingual, handle typos, …
• Character-level: more flexible!
– Sequences really really long
– 74,000+ Chinese characters, 3,000+ emoji

• Byte-level for UTF-8: can handle anything in 256 characters!
• Usual in-between these days using Byte-Pair Encoding:

• Start with the 256 single bytes as tokens
• Repeat: for the most commonly co-occurring pair (A, B), make a new token AB
• Stop when you get to target size (usually a few tens of thousands)
• Usually disallow merging “outside words”: don’t want “dog.” “dog?” “dog!” tokens

– Can assign probability to any Unicode string

Computational cost
• Each of T units attends to each T inputs: O(T2) cost per layer
• Various approaches to improving scalability
– Sparse attention: just don’t do all the connections, e.g. BigBird

– Reformer approximates dot product with locality-sensitive hashing
– Performer approximates better, based on fancy kernel methods

https://arxiv.org/abs/2007.14062
https://arxiv.org/abs/2001.04451
https://arxiv.org/abs/2009.14794

Bidirectional Encoder Representations from Transformers
• BERT: incredibly popular model in natural language processing.
– Transformer model trained on masked sentences to predict masked words.
– Then fine-tune the architecture on specific applications.

https://arxiv.org/pdf/1810.04805.pdf

GPT: Generative Pre-trained Transformer

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf

GPT-2 and GPT-3

https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf; https://arxiv.org/abs/2005.14165

Bigger and bigger

https://huggingface.co/blog/large-language-models

Vision Transformers

https://arxiv.org/abs/2010.11929

Vision Transformers
• Usually outperform CNNs if you have enough data

https://arxiv.org/abs/2010.11929

MLPs on patches might be enough

https://arxiv.org/abs/2105.01601

Dropping Attention

https://arxiv.org/abs/2201.09792

Combining convolutions with attention
• Conformer: basis for recent top

speech recognition systems
• Convolution might be better at

“very local” features

• Can also do these kinds of
combinations in other domains

https://arxiv.org/abs/2005.08100

Summary
• Attention:
– Allow decoder to look at previous states.

• Context vectors:
– Combine previous states into a fixed-length vector.

• [Dilated] convolutions for sequences.
– Alternative to sequential architectures like RNNs.

• Transformer networks:
– Layers of “self-attention” to build context.

• “Everything depends on everything”, and you learn how.
• Lots of implementation details, but excellent performance on many tasks.
• Basis for modern enormous/impressive language models and applications.

• Next time: everyone’s favourite distribution.

