
CPSC 440/540: Machine Learning

Recurrent Neural Networks
Winter 2023

Last Time: Multi-Class Neural Networks
• We discussed multi-class classification with neural networks:

• We use the softmax function to convert the !𝑦! to probabilities:
– We use this for inference.
– Likelihood is softmax for true label.
– Last layer is all that changes.

• We train by minimizing the sum of negative log-likelihoods over ‘i’.
– We can add multiple layers, convolution layers, max pooling, ReLu, and so on.

Review: Word Representations
• How do we represent words with features?

• Lexical features:
– Represent words using a “1 of k” encoding.

• Where k is the number of words in training data.
– Or “words that appear at least 5 times in the training data”.
– Set all these features to 0 for other words.

• Latent-factor models like word2vec or GloVe:
– Unsupervised learning of a set of continuous features for each word.

• Distances in this space may approximate semantic meaning.
• May do sensible things for words not seen during training.

http://sebastianruder.com/secret-word2vec

Motivation: Part of Speech (POS) Tagging
• Consider predicting part of speech for each word in a sentence:

• Input is a sequence of words.
– Could be represented as “1 of k” or using continuous vectors like word2vec.

• Output is a categorical label for each word.
– In English there are more than 40 reasonable categories.

• And there are some dependencies in labels (like “only 1 verb in the sentence”).

• General problem: sequence labeling.
– Biological sequences, various language tasks, sound processing.

https://medium.com/analytics-vidhya/pos-tagging-using-conditional-random-fields-92077e5eaa31

Individual-Word Neural Network Classifier

• We could train a neural network to predict label of a given word.
– Above we have 1 input feature for each time.

• But each time might have multiple features (if we use something like word2vec).
– We are also not showing the non-linear transform or bias variables.

• But this type of model would not capture dependencies.
– Information from earlier in sentence does influence prediction.

• The word “desert” could be a noun or a verb depending on context.

Recurrent Neural Network for Sequence Labeling

• Recurrent neural networks (RNNs):
– Add connections between adjacent different times to model dependencies.
– Add an initial hidden state.
– Use the same parameters across time.

• Repeating parameters in different places is called parameter tying.
– We previously saw convolutions, which use parameter tying across space.
– By tying parameters across time, RNNs can label sequences of different lengths.

Recurrent Neural Network for Sequence Labeling

Recurrent Neural Network Inference

– Assume we have:
• k different classes that each !𝑦t can take.
• m hidden units at each time.
• T times (length of sequence).

– Cost to compute all !𝑦! if each time has m units and we have T times:
• We need to do an O(md) operations T times to compute Wxt for all t.
• We need to do an O(km) operation T times to compute !𝑦! for all t.
• We need to do a O(m2) operation T times to compute each zt.
• Total cost: O(tmd + tkm + tm2).

– For the likelihood, we could use an independent softmax for each time.
• p(y1:T | x1:T, W, V, U) = p(y1 | x1, W, V, U) p(y2 | x1:2, W, V, U)⋯ p(yT | x1:T, W, V, U).

– Each p(yt | x1:T, W, V, U) is given by softmax over !𝑦! values.
– Conditioned on features and parameters, this assumes a “product of categoricals” model.

RNN Learning
• The objective function we use to train RNNs is the NLL:

– Sequence i has length Ti (might vary).
• Computing gradient is called “backpropagation through time” (BTT).
– Equations are the same as usual backpropagation/chain-rule.

• If you do it by hand, make sure to add all terms for tied parameters.
• Automatic differentiation will handle this automatically.

• Usually trained with SGD.
– Sample an example i on each iteration, do BTT, update all parameters.
– This has the usual challenges.

RNN Learning – Extra Challenges
• Computing gradient requires a lot of memory for long sequences.
– There are a lot intermediate calculations.
– Make sure AD package handles matrix multiplication.

• Parameter tying often leads to vanishing/exploding gradient problems.
– Consider a linear RNN and just consider the temporal ‘U’ updates:

• zL = U*U*U*⋯*U*z0 = ULz0.
• For typical z0, the quantity zL either diverges exponentially or converges to zero exponentially.

– If largest singular value of ‘U’ is > 1, ||zL|| increases exponentially with ‘L’.
– If largest singular value of ‘U’ is < 1, ||zL|| converges to zero exponentially with ‘L’.

• Usual SGD methods tend not to work well.
– Often need to use optimizers like Adam or use gradient clipping:

• If norm of gradient is larger than some threshold, “shrink” norm to threshold:
– People are trying to explore initialization/keeping ‘U’ orthogonal.

• So that all singular values are 1 (some positive and negative results on this).
https://towardsdatascience.com/neural-network-optimization-7ca72d4db3e0

Deep RNNs
• Instead of drawing this:

• We often use diagrams like this:
– Up to some notation changes.
– We connect everything in blocks

connected by arrows.

• Deep RNNs add multiple hidden layers at each time:

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

Bi-Directional RNNs
• Sometimes later information later changes meaning:
– "I've had a perfectly wonderful evening, but this wasn't it."

• “Paraprosdokian”.

• Bi-directional RNNs have hidden layers running in both directions:
– Use different parameters for the

forward and backward directions.

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

Next Topic: Sequence to Sequence RNNs

Motivating Problem: Machine Translation
• Consider the problem of machine translation:
– Input is text from one language.
– Output is text from another language with the same meaning.

• A key difference with pixel labeling:
– Input and output sequences may have different lengths.

• We do not just “find the French word corresponding to the English word”.

– We may not know the output length.

Sequence-to-Sequence RNNs
• Sequence-to-sequence RNNs encode and decode sequences:
– Each encoding step has one word as input and no output.
– Each decoding step outputs one word and has no input.

• Encoding and decoding steps use different tied parameters.

– Special “BOS” at end of input (says when encoding is done).
– Speical “EOS” at end of output (says when decoding is done).

x1

z1

x2

z2

x3

z3 z4 z5z0

y1 y2

Discussion: Sequence-to-Sequence Models
• Representing input and outputs:
– Could use lexicographic of word2vec representations.
– Could just have a single character at each time.

• Could make more sense for some languages.
• May be able to better handle slang or typos.

• Loss function assuming independent labels given hidden states:

– Not that this is just trying to get the label right at each “time”.
• It is not explicitly “trying to get the full sequence right”.

Digression/Preview: Dependent Predictions
• Standard RNNs assume conditional independence of !𝑦# values.
– We assume they are independent given the zt values (make inference easy).
– This makes inference easy, but !𝑦! “forgets” what was used for !𝑦!"#.

• In many applications, you want to model dependencies in the !𝑦#.
– A common way to do this is to add edges like this:

– This does not complicate training (where we know the yt values).
– But it makes inference and decoding challenging since the yt are dependent.

• We will discuss variants like this after we have discussed Markov chains.

z4 z5 z6 z7 z8z3z2z1z0

x1 x2 x3

y1 y2 y3 y4 y5

Next Topic: LSTMs

Exponential “Forgetting” in RNNs
• Sequence-to-sequence RNNs:
– Elegant way to handle inputs/outputs

of different/unknown sizes.
– Final “encoding” is the hidden states

once the last input has been entered.
• We hope this captures the semantics of the sentence.

– The “decoding” steps try use the hidden states to output translation,
and also updates the hidden states.

• Using tied parameters allows using the model for any sequence lengths.
• But with tied parameters, we “forget” information exponentially fast.
– If you want to “remember” something about x1, it has to go through U*U*U*⋯.

• “Initial conditions” for before the multiplication are forgotten at an exponential speed.
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

Adding a “Memory”
• One possible way to help RNNs remember is with skip connections:

– We will come back to several variations on this idea later.
• Another idea is to add a memory where you can “save” and “load”:

• Relevant information can be saved to the memory,
then accessed at a much later time.

Long Short Term Memory (LSTM)
• Long short term memory (LSTM) models are variant of RNNs:
– Modification to try to remember short-term and long-term dependencies.

• In addition to usual hidden values z, LSTMs have memory cells c:
– Purpose of memory cells is to remember things for a long time.

• LSTMs are been the practical analogy of convolutions for RNNs:
– “The first trick that made them work in many applications.”

• LSTMs have been used in a huge variety of settings:
– Cursive handwriting recognition:

• https://www.youtube.com/watch?v=mLxsbWAYIpw
– Generating “Game of Thrones” text:

• https://pjreddie.com/darknet/rnns-in-darknet
– Fake positive/negative Amazon reviews:

• https://blog.openai.com/unsupervised-sentiment-neuron

https://www.youtube.com/watch?v=mLxsbWAYIpw
https://pjreddie.com/darknet/rnns-in-darknet
https://blog.openai.com/unsupervised-sentiment-neuron

Long Short Term Memory – Ugly Equations
• Computing activations at time t in an RNN:

• Computing activations at time t in an LSTM:

Long Short Term Memory – Equation Intuition
• Conceptually, we think of LSTMs as having a “memory” ct:
• We update and access this memory with a set of “gates”:

– Gates take weighted combination of input and previous activation,
and output a value between 0 and 1 (differentiable approximation to binary values).
• In a computer these gates would be exactly 0 or 1, but we use sigmoids so “gate” can have values like 0.7.

• “Forget gate” ft:
– If element ‘j’ of ft is 0, then we clear element ctj from the memory (set it to 0).

• If it is 1, then we keep the old value.
– “Given the input and previous activation, are the elements in memory still relevant?”

• “Input gate” it:
– If element ‘j’ of it is 0, then we do not add any new information to ctj (no input).

• If it is 1, then we “value” to the memory (where “value” is also a function of input and previous at).
– “Given the input and previous activation, should I write something new to memory?”

• “Output gate” ot:
– If element ‘j’ of ot is 0, then we do not read value ctj from the memory (no output).

• If it is 1, then we load from the memory.
– “Given the input and previous activation, should I read what is in memory?”

ct
0.3

-3.5

-0.2

0

0.4

0.3

-0.2

LSTM Equations (same slide as 2 slides ago)
• Computing activations at time ‘t’ in an RNN:

• Computing activations at time ‘t’ in an LSTM:

LSTM Activation Calculation as a Picture
• We often see pictures like this to represent the different operations:

• I find these pictures confusing unless you have gone through equations.
– For example, where are the weights?

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Gated Recurrent Units (GRUs)
• Many variations on LSTMs exist.
– A popular one is gated recurrent units (GRUs).

• A bit simpler (merges “forget”+”input”, and “activation”+”memory”).
• Similar performance.

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Deep LSTM Models
• LSTM model with one hidden layer (pixel labeling version):

• LSTM model with two hidden layers:
– As with regular RNNs,

activations feed into
next layer and next time.

– Each layer has own memory.
• Parameter tieing only within layers.

– Might have residual connections.
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Next Topic: Multi-Modal Models

Encoding-Decoding For Different Data Types
• Consider the encoding and decoding phase as separate “models”:

– Encoder takes a sequence and returns a set of numbers.
– Decoding takes a set of numbers and outputs a sequence.

• We have also seen encoding and decoding of images:

– Encoder takes an image and returns a set of numbers.
– Decoder takes a set of numbers and outputs an image (or a class or set of labels).

z4 z5 z6 z7 z8

z3z2z1z0

x1 x2 x3

y1 y2 y3 y4 y5

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Noh_Learning_Deconvolution_Network_ICCV_2015_paper.pdf

LSTMs for Image Captioning
• Use a CNN to do the encoding and an RNN to do the decoding.

• To train this model, we need images and corresponding captions.
– So the image encoder and sequence decoder are trained together.

https://arxiv.org/pdf/1411.4555.pdf

“What do we learn?”
• Sometimes it looks like RNNs are smarter than they actually are.
– We have specifically picked on CNNs/RNNs, but applies to all ML methods.
– You should “try to break it”, not just “try to get it to work”.

https://mathwithbaddrawings.com/2017/10/18/5-ways-to-troll-your-neural-network/

Image Captioning Application: PDF to LaTeX
• Use CNN to encode an image, use RNN to decode LaTeX.

• Unlike generic image captioning, there is a “correct” label.
https://arxiv.org/pdf/1609.04938v1.pdf

LSTMs for Video Captioning

http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf

LSTMs for Video Captioning

http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf

Video Captioning Application: Lip Reading

• Unlike generic video captioning, there is a “correct” label.
https://www.youtube.com/watch?v=5aogzAUPilE

RNNs/CNNs for Poetry
• Generating poetry:

• Image-to-poetry:

• Movie script:
– https://www.youtube.com/watch?v=LY7x2Ihqjmc

https://medium.com/artists-and-machine-intelligence/adventures-in-narrated-reality-6516ff395ba3

https://www.youtube.com/watch?v=LY7x2Ihqjmc

Summary
• Recurrent neural networks (RNNs):

– Neural networks for sequence prediction.
– Have connections between hidden units at

adjacent times.
– Use parameter tying across time.

• Allows sequences of different lengths.
• Leads to vanishing and exploding gradients.

• Sequence-to-Sequence RNNs:
– Encoding phase takes in one input at a time until

we reach “BOS”.
– Decoding phase outputs one output at a time

until we output “EOS”.
– Allows input and output sequences whose

lengths differ.
– But: standard RNNs lead to exponential

forgetting of information.

• Long short term memory:
– The trick that made RNNs start working.
– Gating functions which update “memory cells”

for long-range interactions.

• Multi-modal learning:
– Encoder and decoder may work with different

types of data.
– For example, CNN as encoder and RNN as

decoder for image-to-text.

• Next time: generating music and dance
moves.

