CPSC 440: Machine Learning

Binary Density Estimation Winter 2023

Motivation: COVID-19 Prevalence

- Want to know prevalence of COVID-19 in a population.
 - For example, what percentage of UBC students have it right now?
- "Brute force" approach:
 - Grab and test every single student, compute proportion that tests positive.
- Statistical approach:
 - Grab an "independent and identically distributed" (IID) sample of students.
 - Estimate the proportion that have it based on the sample.

General Problem: Binary Density Estimation

- This is a special case of binary density estimation:
 - Input: *n* IID samples of binary values $x_1, x_2, x_3, ..., x_n$ from population.
 - Output: a probability model for a random X: here, just Pr(X = 1).
- Binary density estimation as a picture:

- We'll spend several lectures discussing big concepts in this simple case.
 - And we will slowly build to more-complicated cases.
 - Going beyond binary, more than one variable, conditional versions, deep versions, and so on.

Other Applications of Binary Density Estimation

- Other applications where binary density estimation is useful:
 - 1. What is the probability that this medical treatment works?
 - Does it work 60% of the time? Does it work 99% of the time?
 - 2. What is the probability of at least one "success" after 10 tries?
 - For example, if you plant 10 seeds will at least one germinate?
 - 3. What is the expected number of "tries" before the first success?
 - For example, how many lottery tickets do you expect to buy before you win?
- Item 1 we use the model to compute Pr(X = 1), as in COVID-19 example.
- Items 2 and 3 use Pr(X = 1) to compute some other quantity.
 - In ML, we call all three cases "inference" with the model.
 - Inference is a broad term; it basically means "doing calculations with a model".

Model Definition: Bernoulli Distribution

- Models for binary density estimation need a parameterization.
 - A probability model based on some "parameters."
- For binary variables, we usually use the Bernoulli distribution:
 - We say that X follows a Bernoulli with parameter θ , X ~ Bern(θ), if Pr(X = 1 | θ) = θ .
 - So if θ = 0.12 in the COVID-19 example, we think 12% of population has COVID-19.

- To define a valid probability, we require that θ is between 0 and 1 (inclusive).

Digression: "Inference" in Statistics vs. ML

bonusl

- In machine learning, people often use this terminology:
 - "Learning" is the task of going from data **X** to parameter(s) θ .
 - "Inference" is the task of using the parameter(s) to infer/predict something.
- In statistics, people sometimes use a "reverse" terminology:
 - "Inference" is the task of going from data **X** to parameter(s) θ .
 - "Prediction" is the task of using the parameters to infer/predict something.
- This partially reflects historical views of both fields:
 - Statisticians often focused on finding the parameters.
 - ML hackers often focused on making predictions.
- And some people also use "inference" to refer to both tasks!
 - But, this course will use the machine learning terminology.

Inference Task: Computing Probabilities

- Inference task: given θ , compute $Pr(X = 0 | \theta)$.
- We'll also write this as $P(0 | \theta)$
 - Be careful you know what we're abbreviating! ("Explicit is better than implicit")
- Recall that probabilities add up to 1: $Pr(x=1 | \Theta) + Pr(x=0 | \Theta) = 1$ $Pr(x=1 | \Theta) + Pr(x=0 | \Theta) = 1$
- Using the "sum to one" property to solve the above inference task:

$$Pr(x = 0 | 0) = | - Pr(x = 1 | 0) = | - 0$$

- So for the Bernoulli distribution we have $Pr(X = 0 | \theta) = 1 \theta$.
 - If θ = 0.12 in the COVID-19 case, we think 1 0.12 = 0.88 does not have disease.

Bernoulli Distribution Notation

• We can write both cases, $Pr(X = 1 | \theta) = \theta$ and $Pr(X = 0 | \theta) = 1 - \theta$, as

• Another notation you might see uses an "indicator function":

$$P(x \mid \theta) = \Theta^{\mathbb{I}[x=1]} (1-\theta)^{\mathbb{I}[x=\theta]}$$

-1(condition) is a function that is 1 if "something" is true, and 0 otherwise.

Inference Task: Computing Dataset Probabilities

- Inference task: given θ and IID data, compute P(x₁, x₂,..., x_n | θ).
 - This is called the "likelihood": $Pr(X_1 = x_1, X_2 = x_2, ..., X_n = x_n | \theta)$
 - Many ways to estimate θ require us to compute this, e.g. "maximum likelihood estimation".
 - We may want to compute this on validation/test data to compare models.
- Assuming "independence of IID data given parameters", we have

$$p(x',x',...,x''|0) = \hat{\pi}p(x'|0)$$

- Technically, this is a "conditional independence" assumption.
 - We will discuss later why the x_i being IID implies this conditional independence holds.

bonus

Inference Task: Computing Dataset Probabilities

• Let's use the independence property to compute P(1, 0, 1, 1, 0 | θ):

$$P(x'_{y}x'_{y},y'_{y},y''_{y}) = \frac{1}{||e|}P(x'|0)$$

= $P(x'|0)P(x'|0)P(x'|0)P(x'|0)P(x'|0)P(x'|0)P(x'|0)$
= $Q(1-Q)Q(1-Q)$
= $Q^{3}(1-Q)^{2}$

• Abstract ways to write this for a generic dataset of *n* examples:

$$P(\mathbf{X}|\boldsymbol{\theta}) = \Theta^{\frac{2}{5},x_{c}}(1-\boldsymbol{\theta})^{\frac{2}{5},(1-x_{c})} \qquad \begin{array}{c} n_{i}: \text{"number} \\ \boldsymbol{\theta} \in \mathbf{X} \\ \boldsymbol{\theta} = \mathbf{\theta}^{\frac{2}{5},x_{c}}(1-\boldsymbol{\theta})^{\frac{2}{5},(1-x_{c})} \\ \text{use 'X' for} \\ \text{the whole dataset} \end{array} \qquad P(\mathbf{X}|\boldsymbol{\theta}) = \Theta^{\frac{2}{5},(1-x_{c})} \\ P(\mathbf{X}|\boldsymbol{\theta}) = \Theta^{\frac{2}{5},(1-x_{c})} \\ P(\mathbf{X}|\boldsymbol{\theta}) = \Theta^{\frac{2}{5},(1-x_{c})} \\ \text{with indicator} \\ \text{functions} \end{array}$$

Inference Task: Computing Dataset Probabilities

- So given θ , we can compute probability of dataset X as:
 - P(X / 6) = 6'' (1 6)''

• Implementing this in code:

First
$$try$$
: $nI=0$
 $n0=0$
for i in 1:n
if $XLij == 1$
 $n_1 += 1$
 end
 $p=(theta = n1) * (1-theta) = 0$
 $nI = sun(X)$
 $nO = n - n1$
 $log_p = n1 * log(theta) + nO* log(1-theta)$

- Computational complexity: *O*(*n*).
 - You do a simple addition for each of the *n* elements, then do some simple operations to get final value.
- Notice that the "nicer version" returns the logarithm, $\log(P(X | \theta))$.
 - If *n* is large and/or θ is close to 0 or 1, the probability will be very small.
 - Calculation might underflow and return 0 due to truncation in floating point arithmetic.
 - With logarithm, you will still be able to compare different θ values.

Inference Task: Finding the mode ("decoding")

- Inference task: given θ , find x that maximizes $P(x \mid \theta)$.
 - "What's most likely to happen?" It's finding the mode; also called decoding
- For Bernoulli models:
 - If θ < 0.5, the mode is x= 0.
 - If θ = 0.12, it is more likely that a random person **does not** have COVID-19.
 - If θ > 0.5, the mode is x = 1.
 - If θ = 0.6, it is more likely that a random person **does** have COVID-19.
 - If θ = 0.5, both x=1 and x=0 are both valid decodings.
- Decoding is not very exciting for Bernoulli models.
 - It is more-difficult for more-complicated models, and it will be important later.
 - In supervised learning, you sometimes want to make predictions using the mode.

Inference Task: Most Likely Dataset

- Inference task: given θ , find **X** that maximizes P(x₁, x₂,..., x_n | θ).
 - "What set of training examples are we most likely to observe"?
- Recall that we showed: $P(X | \theta) = \theta'' (1 \theta)''$
- If $\theta < 0.5$, then the decoding is $x_1=0$, $x_2=0$, $x_3=0$, $x_4=0$, $x_5=0$, $x_6=0$,...
 - We maximize $P(X \mid \theta)$ by making n_0 as big as possible and n_1 as small as possible.
 - In the "most likely" set of sample with θ =0.12, nobody has COVID-19!
- The dataset mode usually does not represent "typical" behavior.
 - For example, if θ =0.12 we should expect 12% of samples to be 1, not 0%!
 - Decoding has the "highest" probability, but that probability might be really low.
 - There are many datasets with 1 values, but each has a lower probability than "all zeros".

Inference Task: Sampling

- Inference task: given θ , generate samples of X distributed according to $p(X | \theta)$.
 - This is called sampling from the distribution.
- Sampling is the "opposite" of density estimation:

- You are given the model, and your job is to generate IID examples.
 - Often write code to generate one IID sample, then call it many times.

Digression: Motivation for Sampling

- Sampling is not especially interesting for Bernoulli distributions.
 - Because knowing θ tells you everything about the distribution.
- But sampling will let us do neat things in more-complicated density models:
 - thispersondoesnotexist.com, DALLE, ChatGPT, ...

- Sampling often gives indications about whether the model is reasonable.
 - If samples look nothing like the data, then model is not very good.

Inference Task: Sampling

- Basic ingredient of all sampling methods:
 - We assume we can sample uniformly on the interval between 0 and 1.
 - In practice, we use a "pseudo-random" number generator.
 - rng = np.random.default_rng(); rng.random()
 - We won't talk about how this works
- Consider sampling from a Bernoulli with θ = 0.9.
 - 90% of the time our sampler should produce a 1.
 - 10% of the time our sampler should produce a 0.
- How to generate a 1 in 90% of samples based on uniform sampling?
 - 1. Generate a uniform sample (between 0 and 1).
 - 2. If the sample is less than 0.9, return 1.
 - Otherwise, return 0.

Inference Task: Sampling

- Sampling from a Bernoulli with generic θ value:
 - Generate a sample uniformly on the interval between 0 and 1.
 - If the sample is less than θ , return 1.
 - Otherwise, return 0.
- In code:

$$u = rng.random()$$

if $u < =$ theta
 $x = 1$
else
 $x = 0$

$$X = 1$$
 if rng.random() \leq theta $else 0$

 $X = (rng.random(t) \leq the ta).asype(int)$

Cost is O(1), assuming that random number generator costs O(1).
 To generate t samples, call the function t times. Cost in this case is O(t).

Next Topic: Maximum Likelihood Estimation

MLE: Binary Density Estimation

- We have discussed how to use a Bernoulli model ("inference").
- Now we will consider how to train a Bernoulli model ("learning").
 - Goal is to go from samples to an estimate of parameter θ :

- Classic way to find parameters (used in the picture above):
 - Maximum likelihood estimation (MLE).

The Likelihood Function

- The likelihood function is the probability of the data given parameters.
 - In the Bernoulli model, we showed earlier that our likelihood is: $P(X | \theta) = \theta'' (1 \theta)''$
 - The probability of seeing the data **X** if our Bernoulli parameter is θ .
- Here is a plot of the likelihood if our IID data is $x_1=1$, $x_2=1$, $x_3=0$.

- For θ = 0.5, the likelihood is P(1, 1, 0 | θ = 0.5) = (1/2)(1/2)(1/2) = 0.125.
- If θ = 0.75, then P(1, 1, 0 | θ = 0.75) = (3/4)(3/4)(1/4) ≈ 0.14 (dataset is more likely for θ = 0.75 than 0.5).
- If $\theta = 0$ ("always 0"), then P(1, 1, 0 | $\theta = 0$) = 0 (dataset is not possible for $\theta = 0$).
 - Data has probability 0 if θ =0 or θ =1 (since we have a 1 and a 0 in the data).
- Data doesn't have highest probability at 0.5 (because we have more 1s than 0s).
- Note that this is a probability distribution over **X**, not θ (area under the curve is not 1).

Maximum Likelihood Estimation (MLE)

- Maximum likelihood estimation (MLE):
 - Choose the parameters that have the highest likelihood, $P(X | \theta)$.
 - "Find the parameter(s) θ under which the data **X** was most likely to be seen."
- The likelihood from the previous slide with $x_1=1$, $x_2=1$, $x_3=0$:

– In this example, MLE is θ = 2/3.

- The MLE for general Bernoulli is $\theta = n_1/(n_1 + n_0)$.
 - "If you flip a coin 50 times and it lands heads 23 times,
 I'll guess that prob('head') is 23/50."

Derivation of MLE for Bernoulli

- Let's derive the MLE for Bernoulli.
 - This will seem overly-complicated for such a simple result.
 - But the same steps can be used in more-complicated situations.
- MLE "finds the argument" maximizing the likelihood function:

Digression: Maximizing the Log-Likelihood

• Instead of finding an element maximizing the likelihood:

• We usually find an element maximizing the log of the likelihood:

- People often say "log-likelihood" as a short version of "log of the likelihood".
- Both approaches give the same solution.
 - Because logarithm is "strictly monotonic" over positive values.
 - If $\alpha > \beta$, then $\log(\alpha) > \log(\beta)$.
 - See notes on course webpage about "Max and Argmax" for details.
 - And logarithm is nicer numerically since likelihood is usually really close to 0.

Derivation MLE for Bernoulli

• MLE for Bernoulli by maximizing the likelihood:

$$\hat{\Theta} \in \operatorname{argmax} \{ \{ \Theta^{n} (1-6)^{n} \} \}$$

• MLE for Bernoulli by maximizing the log-likelihood:

$$\begin{aligned} & \widehat{\Theta} \in \operatorname{argmax} \underbrace{\{ \log(\Theta^{n}(1-\theta)^{n_{0}}) \}}_{ \widehat{\Theta}} \\ & = \operatorname{argmax} \underbrace{\{ \log(\Theta^{n}) + \log((1-\theta)^{n_{0}}) \}}_{ \operatorname{equivalent}} \\ & = \operatorname{argmax} \underbrace{\{ \log(\Theta^{n}) + \log((1-\theta)^{n_{0}}) \}}_{ \widehat{\Theta}} \\ & = \operatorname{argmax} \underbrace{\{ \log(\Theta^{n}) + \log((1-\theta)^{n_{0}}) \}}_{ \widehat{\Theta}} \\ & = \operatorname{argmax} \underbrace{\{ \log(\Theta^{n}) + \log((1-\theta)^{n_{0}}) \}}_{ \operatorname{OSIM}} \\ & = \operatorname{OSIM} \left[\log(\alpha^{n_{0}}) + \log(\alpha^{n_{0}}) + \log((1-\theta)^{n_{0}}) \right] \\ & = \operatorname{OSIM} \left[\log(\alpha^{n_{0}}) + \log(\alpha^{n_{0}}) + \log((1-\theta)^{n_{0}}) \right] \\ & = \operatorname{OSIM} \left[\log(\alpha^{n_{0}}) + \log(\alpha^{n_{0}}) + \log(\alpha^{n_{0}}) \right] \\ & = \operatorname{OSIM} \left[\log(\alpha^{n_{0}}) + \log(\alpha^{n_{0}}) + \log(\alpha^{n_{0}}) \right] \\ & = \operatorname{OSIM} \left[\log(\alpha^{n_{0}}) + \log(\alpha^{n_{0}}) + \log(\alpha^{n_{0}}) \right] \\ & = \operatorname{OSIM} \left[\log(\alpha^{n_{0}}) + \log(\alpha^{n_{0}}) \right] \\ & = \operatorname{OSIM} \left[\log(\alpha^{n_{0}}) + \log(\alpha^{n_{0}}) \right] \\ & = \operatorname{OSIM} \left[\log(\alpha^{n_{0}}) + \log(\alpha^{n_{0}}) \right] \\ & = \operatorname{OSIM} \left[\log(\alpha^{n_{0}}) + \log(\alpha^{n_{0}}) \right] \\ & = \operatorname{OSIM} \left[\log(\alpha^{n_{0}}) + \log(\alpha^{n_{0}}) \right] \\ & = \operatorname{OSIM} \left[\log(\alpha^{n_{0}}) + \log(\alpha^{n_{0}}) \right] \\ & = \operatorname{OSIM} \left[\log(\alpha^{n_{0}}) + \log(\alpha^{n_{0}}) \right] \\ & = \operatorname{OSIM} \left[\log(\alpha^{n_{0}}) + \log(\alpha^{n_{0}}) \right] \\ & = \operatorname{OSIM} \left[\log(\alpha^{n_{0}}) + \log(\alpha^{n_{0}}) \right] \\ & = \operatorname{OSIM} \left[\log(\alpha^{n_{0}}) + \log(\alpha^{n_{0}}) \right] \\ & = \operatorname{OSIM} \left[\log(\alpha^{n_{0}}) + \log(\alpha^{n_{0}}) \right] \\ & = \operatorname{OSIM} \left[\log(\alpha^{n_{0}}) + \log(\alpha^{n_{0}}) \right] \\ & = \operatorname{OSIM} \left[\log(\alpha^{n_{0}}) + \log(\alpha^{n_{0}}) \right] \\ & = \operatorname{OSIM} \left[\log(\alpha^{n_{0}}) + \log(\alpha^{n_{0}}) \right] \\ & = \operatorname{OSIM} \left[\log(\alpha^{n_{0}}) + \log(\alpha^{n_{0}}) \right] \\ & = \operatorname{OSIM} \left[\log(\alpha^{n_{0}}) + \log(\alpha^{n_{0}}) \right] \\ & = \operatorname{OSIM} \left[\log(\alpha^{n_{0}}) + \log(\alpha^{n_{0}}) \right] \\ & = \operatorname{OSIM} \left[\log(\alpha^{n_{0}}) + \log(\alpha^{n_{0}}) \right] \\ & = \operatorname{OSIM} \left[\log(\alpha^{n_{0}}) + \log(\alpha^{n_{0}}) \right] \\ & = \operatorname{OSIM} \left[\log(\alpha^{n_{0}}) + \log(\alpha^{n_{0}}) \right] \\ & = \operatorname{OSIM} \left[\log(\alpha^{n_{0}}) + \log(\alpha^{n_{0}}) \right] \\ & = \operatorname{OSIM} \left[\log(\alpha^{n_{0}}) + \log(\alpha^{n_{0}}) \right] \\ & = \operatorname{OSIM} \left[\log(\alpha^{n_{0}}) + \log(\alpha^{n_{0}}) \right] \\ & = \operatorname{OSIM} \left[\log(\alpha^{n_{0}}) + \log(\alpha^{n_{0}}) \right] \\ & = \operatorname{OSIM} \left[\log(\alpha^{n_{0}}) + \log(\alpha^{n_{0}}) \right] \\ & = \operatorname{OSIM} \left[\log(\alpha^{n_{0}}) + \log(\alpha^{n_{0}}) \right] \\ & = \operatorname{OSIM} \left[\log(\alpha^{n_{0}}) + \log(\alpha^{n_{0}}) \right] \\ & = \operatorname{OSIM} \left[\log(\alpha^{n_{0}}) + \log(\alpha^{n_{0}}) \right] \\ & = \operatorname{OSIM} \left[\log(\alpha^{n_{0}}) + \log(\alpha^{n_{0}}) \right] \\ & = \operatorname{OSIM} \left[\log(\alpha^{$$

Derivation MLE for Bernoulli

• From the last slide we want to find:

$$\hat{\Theta} \in argmar \leq n_1 \log(\Theta) + n_0 \log(1-\Theta)$$

- Recall that a maximum must have derivative equal to zero.
 - Equating the derivative of the log-likelihood with zero:

$$\begin{aligned}
\begin{pmatrix}
\int = \frac{n_{1}}{\Theta} - \frac{n_{0}}{1-\Theta} \\
& \int_{durivally of} \int_{durivally o$$

Summary

- Binary density estimation:
 - Modeling Pr(X = 1) given IID samples $x_1, x_2, ..., x_n$.
- Bernoulli distribution:
 - Probability distribution over a binary variable.
 - Parameterized by a number θ such that $Pr(X=1 | \theta) = \theta$.
- Inference:
 - Computing a quantity based on a model.
 - Examples include computing probabilities, decoding, and sampling.
- Maximum likelihood estimation (MLE):
 - Estimate parameters by maximizing probability of data given parameters.
 - For Bernoulli, sets θ = (number of 1s)/(number of examples).
- Next time: more boring definitions.