CPSC 440: Machine Learning

Binary Density Estimation
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Motivation: COVID-19 Prevalence

 Want to know prevalence of COVID-19 in a population.

— For example, what percentage of UBC students have it right now?

e “Brute force” approach:

— Grab and test every single student, compute proportion that tests positive.

 Statistical approach:

— Grab an “independent and identically distributed” (I1ID) sample of students.
— Estimate the proportion that have it based on the sample.



General Problem: Binary Density Estimation

* This is a special case of binary density estimation:

— Input: n IID samples of binary values x;, x,, x3,..., x, from population.
— Output: a probability model for a random X: here, just Pr(X =1).

* Binary density estimation as a picture: e
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 We'll spend several lectures discussing big concepts in this simple case.

— And we will slowly build to more-complicated cases.
* Going beyond binary, more than one variable, conditional versions, deep versions, and so on.
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Other Applications of Binary Density Estimation

 Other applications where binary density estimation is useful:
1. What is the probability that this medical treatment works?
* Does it work 60% of the time? Does it work 99% of the time?

2. What is the probability of at least one “success” after 10 tries?
* For example, if you plant 10 seeds will at least one germinate?

3. What s the expected number of “tries” before the first success?
* For example, how many lottery tickets do you expect to buy before you win?

* Item 1 we use the model to compute Pr(X = 1), as in COVID-19 example.

* Items 2 and 3 use Pr(X =1) to compute some other quantity.
— In ML, we call all three cases “inference” with the model.

* Inference is a broad term; it basically means “doing calculations with a model”.



Model Definition: Bernoulli Distribution

 Models for binary density estimation need a parameterization.
— A probability model based on some “parameters.”

* For binary variables, we usually use the Bernoulli distribution:

— We say that X follows a Bernoulli with parameter 8, X ~ Bern(8), if Pr(X=1 | 8) = 6.
— So if 6 =0.12 in the COVID-19 example, we think 12% of population has COVID-19.
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— To define a valid probability, we require that 8 is between 0 and 1 (inclusive).
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In Statistics vs. ML ~—

In machine learning, people often use this terminology:
— “Learning” is the task of going from data X to parameter(s) 6.
— “Inference” is the task of using the parameter(s) to infer/predict something.

Digression: “Inference”

In statistics, people sometimes use a “reverse” terminology:
— “Inference” is the task of going from data X to parameter(s) 6.
— “Prediction” is the task of using the parameters to infer/predict something.

This partially reflects historical views of both fields:
— Statisticians often focused on finding the parameters.
— ML hackers often focused on making predictions.

And some people also use “inference” to refer to both tasks!
— But, this course will use the machine learning terminology.



Inference Task: Computing Probabilities
. : given 8, compute Pr(X=0 | ).
 We’'ll also write this as P(0 | 0)
— Be careful you know what we’re abbreviating! (“Explicit is better than implicit”)

* Recall that probabilities add up to 1:
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e Using the “sum to one” property to solve the above inference task:
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* So for the Bernoulli distribution we have Pr(X=0| 8)=1-0.
* [f0=0.12 in the COVID-19 case, we think 1 - 0.12 = 0.88 does not have disease.




Bernoulli Distribution Notation

 We can write both cases, Pr(X=1| 68)=08 andPr(X=0| 8)=1-6, as
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* Another notation you might see uses an “indicator function”:
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— T(condition) is a function that is 1 if “something” is true, and 0 otherwise.



Inference Task: Computing Dataset Probabilities

. : given 6 and IID data, compute P(x,, X,,..., X,, | 8).
— This is called the “likelihood”: Pr(X; = x,, X5 = X%5,..., X, = x, | 0)

* Many ways to estimate 0 require us to compute this, e.g. “maximum likelihood estimation”.
* We may want to compute this on validation/test data to compare models.

* Assuming “independence of IID data given parameters”, we have

l:(x’)x‘),\.)x"l@): ﬁ_P(X; [6)

— Technically, this is a “conditional independence” assumption. bonus!

* We will discuss later why the x. being IID implies this conditional independence holds.



Inference Task: Computing Dataset Probabilities

* Let’s use the independence property to compute P(1,0,1,1,0 | 6):
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Inference Task: Computing Dataset Probabilities

* Sogiven 8, we can compute probability of dataset X as: P(){ /6): 6?/l, (|- 6)%

* Implementing this in code:
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 Computational complexity: O(n).
— You do a simple addition for each of the n elements, then do some simple operations to get final value.
* Notice that the “nicer version” returns the logarithm, log(P(X | 8)).

— If nislarge and/or O is close to 0 or 1, the probability will be very small.
* Calculation might underflow and return 0 due to truncation in floating point arithmetic.

— With logarithm, you will still be able to compare different 6 values.



Inference Task: Finding the mode (“decoding”)

. . given 0, find x that maximizes P(x | 8).
— “What’s most likely to happen?” It’s finding the mode; also called decoding

* For Bernoulli models:

— If 8 < 0.5, the mode is x=0.
e If 8 =0.12, it is more likely that a random person does not have COVID-19.

— If 8 >0.5, the mode is x = 1.
 If @ =0.6, it is more likely that a random person does have COVID-19.

— If 8 = 0.5, both x=1 and x=0 are both valid decodings.

* Decoding is not very exciting for Bernoulli models.
— It is more-difficult for more-complicated models, and it will be important later.
— In supervised learning, you sometimes want to make predictions using the mode.



Inference Task: Most Likely Dataset

: given 0, find X that maximizes P(x4, X5,..., X, | 8).
— “What set of training examples are we most likely to observe”?

Recall that we showed: p(y /)= @"'(,,e>ﬂo

If 6 < 0.5, then the decoding is x;=0, x,=0, x3=0, x,=0, xs=0, x¢=0,...
— We maximize P(X | 8) by making ng as big as possible and n; as small as possible.
— In the “most likely” set of sample with 6=0.12, nobody has COVID-19!

The dataset mode usually does not represent “typical” behavior.

— For example, if 8=0.12 we should expect 12% of samples to be 1, not 0%!

— Decoding has the “highest” probability, but that probability might be really low.
* There are many datasets with 1 values, but each has a lower probability than “all zeros”.



Inference Task: Sampling

. . given 0,
generate samples of X distributed according to p(X | 6).
— This is called sampling from the distribution.

 Sampling is the “opposite” of density estimation:

p(x=1)=0.4 Smmp\>

1

o —»r O O

* You are given the model, and your job is to generate IID examples.
— Often write code to generate one IID sample, then call it many times.
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Digression: Motivation for Sampling

 Sampling is not especially interesting for Bernoulli distributions.
— Because knowing 6 tells you everything about the distribution.

e But sampling will let us do neat things in more-complicated density models:

— thispersondoesnotexist.com, DALLE, ChatGPT, ...
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— Sampling often gives indications about whether the model is reasonable.
* If samples look nothing like the data, then model is not very good.



Inference Task: Sampling

e Basic ingredient of all sampling methods:
— We assume we can sample uniformly on the interval between 0 and 1.

— In practice, we use a “pseudo-random” number generator.
* rng = np.random.default rng(); rng.random()
* We won’t talk about how this works

e Consider sampling from a Bernoulli with 8 = 0.9.
— 90% of the time our sampler should produce a 1.
— 10% of the time our sampler should produce a 0.

* How to generate a 1in 90% of samples based on uniform sampling?
1. Generate a uniform sample (between 0 and 1).

2. If the sampleis less than 0.9, return 1. a Y et 0
* Otherwise, return 0.




Inference Task: Sampling

 Sampling from a Bernoulli with generic 6 value:
— Generate a sample uniformly on the interval between 0 and 1.

— If the sample is less than 8, return 1.
e Otherwise, return 0.
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* |In code:

e Costis O(1), assuming that random number generator costs O(1).
— To generate t samples, call the function t times. Cost in this case is O(t).



Next Topic: Maximum Likelihood Estimation



MLE: Binary Density Estimation

* We have discussed how to use a Bernoulli model (“inference”).
 Now we will consider how to train a Bernoulli model (“learning”).

— Goal is to go from samples to an estimate of parameter 0:

COVID-19?
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* Classic way to find parameters (used in the picture above):

— Maximum likelihood estimation (MLE).



The Likelihood Function

The likelihood function is the probability of the data given parameters.
— In the Bernoulli model, we showed earlier that our likelihood is: P/)f /6): @ﬂ, (- 6)00

* The probability of seeing the data X if our Bernoulli parameter is 6.
Here is a plot of the likelihood if our IID data is x;=1, x,=1, x3=0.
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— For 6 =0.5, the likelihood is P(1, 1, 0 | 6 = 0.5) = (1/2)(1/2)(1/2) = 0.125.

— If6=0.75,then P(1,1,0 | 8 =0.75) =(3/4)(3/4)(1/4) = 0.14 (dataset is more likely for & = 0.75 than 0.5).
— If 8 =0 (“always 0”), then P(1, 1,0 | & = 0) = 0 (dataset is not possible for 8 = 0).

* Data has probability 0 if 8=0 or 6=1 (since we have a 1 and a 0 in the data).
— Data doesn’t have highest probability at 0.5 (because we have more 1s than 0s).

— Note that this is a probability distribution over X, not € (area under the curve is not 1).



Maximum Likelihood Estimation (MLE)

 Maximum likelihood estimation (MLE):

— Choose the parameters that have the highest likelihood, P(X | 8).
* “Find the parameter(s) @ under which the data X was most likely to be seen.”

* The likelihood from the previous slide with x;=1, x,=1, x3=0:
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— In this example, MLE is 8 = 2/3.

* The MLE for general Bernoulliis 8 = n,/(n; + ng).

— “If you flip a coin 50 times and it lands heads 23 times,
I’ll guess that prob(‘head’) is 23/50.”



Derivation of MLE for Bernoulli

e Let’s derive the MLE for Bernoulli.

— This will seem overly-complicated for such a simple result.
— But the same steps can be used in more-complicated situations.

 MLE “finds the argument” maximizing the likelihood function:
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Digression: Maximizing the Log-Likelihood

* Instead of finding an element maximizing the likelihood:
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 We usually find an element maximizing the log of the likelihood:
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— People often say “log-likelihood” as a short version of “log of the likelihood”.

 Both approaches give the same solution.

— Because logarithm is “strictly monotonic” over positive values.
« Ifa > B, thenlog(a) > log(B).
* See notes on course webpage about “Max and Argmax” for details.
— And logarithm is nicer numerically since likelihood is usually really close to O.



Derivation MLE for Bernoulli

* MLE for Bernoulli by maximizing the likelihood:
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* MLE for Bernoulli by maximizing the log-likelihood:
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Derivation MLE for Bernoulli

* From the last slide we want to find:
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e Recall that a maximum must have derivative equal to zero.

— Equating the derivative of the log-likelihood with zero:
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Summary

Binary density estimation:

— Modeling Pr(X =1) given IID samples x4, X5,..., X,,.

Bernoulli distribution:

— Probability distribution over a binary variable.

— Parameterized by a number 6 such that Pr(X=1 | 8) = 6.
Inference:

— Computing a quantity based on a model.

— Examples include computing probabilities, decoding, and sampling.
Maximum likelihood estimation (MLE):

— Estimate parameters by maximizing probability of data given parameters.
— For Bernoulli, sets 8 = (number of 1s)/(number of examples).

Next time: more boring definitions.



