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Motivation: COVID-19 Prevalence
• Want to know prevalence of COVID-19 in a population.
– For example, what percentage of UBC students have it right now?

• “Brute force” approach:
– Grab and test every single student, compute proportion that tests positive.

• Statistical approach:
– Grab an “independent and identically distributed” (IID) sample of students.
– Estimate the proportion that have it based on the sample.

https://en.wikipedia.org/wiki/COVID-19



• This is a special case of binary density estimation:
– Input: n IID samples of binary values x1, x2, x3,…, xn from population.
– Output: a probability model for a random X: here, just Pr(X = 1).

• Binary density estimation as a picture:

• We’ll spend several lectures discussing big concepts in this simple case.
– And we will slowly build to more-complicated cases.

• Going beyond binary, more than one variable, conditional versions, deep versions, and so on.

General Problem: Binary Density Estimation
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Other Applications of Binary Density Estimation
• Other applications where binary density estimation is useful:

1. What is the probability that this medical treatment works?
• Does it work 60% of the time? Does it work 99% of the time?

2. What is the probability of at least one “success” after 10 tries?
• For example, if you plant 10 seeds will at least one germinate?

3. What is the expected number of “tries” before the first success?
• For example, how many lottery tickets do you expect to buy before you win?

• Item 1 we use the model to compute Pr(X = 1), as in COVID-19 example.
• Items 2 and 3 use Pr(X = 1) to compute some other quantity.
– In ML, we call all three cases “inference” with the model.

• Inference is a broad term; it basically means “doing calculations with a model”.



Model Definition: Bernoulli Distribution
• Models for binary density estimation need a parameterization.

– A probability model based on some “parameters.”

• For binary variables, we usually use the Bernoulli distribution:
– We say that X follows a Bernoulli with parameter 𝜃, X ∼ Bern(𝜃), if Pr(X = 1 | 𝜃) = 𝜃.
– So if 𝜃 = 0.12 in the COVID-19 example, we think 12% of population has COVID-19. 

– To define a valid probability, we require that 𝜃 is between 0 and 1 (inclusive).



Digression: “Inference” in Statistics vs. ML
• In machine learning, people often use this terminology:

– “Learning” is the task of going from data X to parameter(s) 𝜃.
– “Inference” is the task of using the parameter(s) to infer/predict something.

• In statistics, people sometimes use a “reverse” terminology:
– “Inference” is the task of going from data X to parameter(s) 𝜃.
– “Prediction” is the task of using the parameters to infer/predict something.

• This partially reflects historical views of both fields:
– Statisticians often focused on finding the parameters.
– ML hackers often focused on making predictions.

• And some people also use “inference” to refer to both tasks!
– But, this course will use the machine learning terminology.



Inference Task: Computing Probabilities
• Inference task: given 𝜃, compute Pr(X = 0 | 𝜃).
• We’ll also write this as P(0 | 𝜃)
– Be careful you know what we’re abbreviating! (“Explicit is better than implicit”)

• Recall that probabilities add up to 1:

• Using the “sum to one” property to solve the above inference task:

• So for the Bernoulli distribution we have Pr(X = 0 | 𝜃) = 1 - 𝜃.
• If 𝜃 = 0.12 in the COVID-19 case, we think 1 - 0.12 = 0.88 does not have disease.



• We can write both cases, Pr(X = 1 | 𝜃) = 𝜃 and Pr(X = 0 | 𝜃)=1 - 𝜃, as

• Another notation you might see uses an “indicator function”:

– 𝟙(condition) is a function that is 1 if “something” is true, and 0 otherwise.

Bernoulli Distribution Notation



• Inference task: given 𝜃 and IID data, compute P(x1, x2,..., xn | 𝜃).
– This is called the “likelihood”: Pr(X1 = x1, X2 = x2,..., Xn = xn | 𝜃)

• Many ways to estimate 𝜃 require us to compute this, e.g. “maximum likelihood estimation”.
• We may want to compute this on validation/test data to compare models.

• Assuming “independence of IID data given parameters”, we have

– Technically, this is a “conditional independence” assumption.
• We will discuss later why the xi being IID implies this conditional independence holds.

Inference Task: Computing Dataset Probabilities 



Inference Task: Computing Dataset Probabilities 

• Let’s use the independence property to compute P(1, 0, 1, 1, 0 | 𝜃):

• Abstract ways to write this for a generic dataset of n examples:



Inference Task: Computing Dataset Probabilities 
• So given 𝜃, we can compute probability of dataset X as:

• Implementing this in code:

• Computational complexity: O(n).
– You do a simple addition for each of the n elements, then do some simple operations to get final value.

• Notice that the “nicer version” returns the logarithm, log(P(X | 𝜃)).
– If n is large and/or 𝜃 is close to 0 or 1, the probability will be very small.

• Calculation might underflow and return 0 due to truncation in floating point arithmetic. 
– With logarithm, you will still be able to compare different 𝜃 values.



Inference Task: Finding the mode (“decoding”)
• Inference task: given 𝜃, find x that maximizes P(x | 𝜃).
– “What’s most likely to happen?” It’s finding the mode; also called decoding

• For Bernoulli models:
– If 𝜃 < 0.5, the mode is x= 0.

• If 𝜃 = 0.12, it is more likely that a random person does not have COVID-19.
– If 𝜃 > 0.5, the mode is x = 1.

• If 𝜃 = 0.6, it is more likely that a random person does have COVID-19.
– If 𝜃 = 0.5, both x=1 and x=0 are both valid decodings.

• Decoding is not very exciting for Bernoulli models.
– It is more-difficult for more-complicated models, and it will be important later.
– In supervised learning, you sometimes want to make predictions using the mode.



Inference Task: Most Likely Dataset
• Inference task: given 𝜃, find X that maximizes P(x1, x2,..., xn | 𝜃).
– “What set of training examples are we most likely to observe”?

• Recall that we showed:

• If 𝜃 < 0.5, then the decoding is x1=0, x2=0, x3=0, x4=0, x5=0, x6=0,… 
– We maximize P(X | 𝜃) by making n0 as big as possible and n1 as small as possible.
– In the “most likely” set of sample with 𝜃=0.12, nobody has COVID-19!

• The dataset mode usually does not represent “typical” behavior.
– For example, if 𝜃=0.12 we should expect 12% of samples to be 1, not 0%!
– Decoding has the “highest” probability, but that probability might be really low.

• There are many datasets with 1 values, but each has a lower probability than “all zeros”. 



Inference Task: Sampling
• Inference task: given 𝜃, 

generate samples of X distributed according to p(X | 𝜃).
– This is called sampling from the distribution.

• Sampling is the “opposite” of density estimation:

• You are given the model, and your job is to generate IID examples.
– Often write code to generate one IID sample, then call it many times.
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Digression: Motivation for Sampling
• Sampling is not especially interesting for Bernoulli distributions.

– Because knowing 𝜃 tells you everything about the distribution.

• But sampling will let us do neat things in more-complicated density models:
– thispersondoesnotexist.com, DALLE, ChatGPT, …

– Sampling often gives indications about whether the model is reasonable.
• If samples look nothing like the data, then model is not very good.

https://thispersondoesnotexist.com/



• Basic ingredient of all sampling methods:
– We assume we can sample uniformly on the interval between 0 and 1.
– In practice, we use a “pseudo-random” number generator.

• rng = np.random.default_rng(); rng.random()
• We won’t talk about how this works

• Consider sampling from a Bernoulli with 𝜃 = 0.9.
– 90% of the time our sampler should produce a 1.
– 10% of the time our sampler should produce a 0.

• How to generate a 1 in 90% of samples based on uniform sampling?
1. Generate a uniform sample (between 0 and 1).
2. If the sample is less than 0.9, return 1.

• Otherwise, return 0.

Inference Task: Sampling



Inference Task: Sampling
• Sampling from a Bernoulli with generic 𝜃 value:
– Generate a sample uniformly on the interval between 0 and 1.
– If the sample is less than 𝜃, return 1.

• Otherwise, return 0.

• In code:

• Cost is O(1), assuming that random number generator costs O(1).
– To generate t samples, call the function t times. Cost in this case is O(t).



Next Topic: Maximum Likelihood Estimation



MLE: Binary Density Estimation
• We have discussed how to use a Bernoulli model (“inference”).
• Now we will consider how to train a Bernoulli model (“learning”).
– Goal is to go from samples to an estimate of parameter 𝜃:

• Classic way to find parameters (used in the picture above):
– Maximum likelihood estimation (MLE).
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The Likelihood Function
• The likelihood function is the probability of the data given parameters.

– In the Bernoulli model, we showed earlier that our likelihood is:

• The probability of seeing the data X if our Bernoulli parameter is 𝜃.
• Here is a plot of the likelihood if our IID data is x1=1, x2=1, x3=0.

– For 𝜃 = 0.5, the likelihood is P(1, 1, 0 | 𝜃 = 0.5) = (1/2)(1/2)(1/2) = 0.125.
– If 𝜃 = 0.75, then P(1, 1, 0 | 𝜃 = 0.75) = (3/4)(3/4)(1/4) ≈ 0.14 (dataset is more likely for 𝜃 = 0.75 than 0.5).
– If 𝜃 = 0 (“always 0”), then P(1, 1, 0 | 𝜃 = 0) = 0 (dataset is not possible for 𝜃 = 0).

• Data has probability 0 if 𝜃=0 or 𝜃=1 (since we have a 1 and a 0 in the data).
– Data doesn’t have highest probability at 0.5 (because we have more 1s than 0s).
– Note that this is a probability distribution over X, not 𝜃 (area under the curve is not 1).



Maximum Likelihood Estimation (MLE)
• Maximum likelihood estimation (MLE):
– Choose the parameters that have the highest likelihood, P(X | 𝜃).

• “Find the parameter(s) 𝜃 under which the data X was most likely to be seen.”

• The likelihood from the previous slide with x1=1, x2=1, x3=0:

– In this example, MLE is 𝜃 = 2/3.

• The MLE for general Bernoulli is 𝜃 = n1/(n1 + n0).
– “If you flip a coin 50 times and it lands heads 23 times, 

I’ll guess that prob(‘head’) is 23/50.”



Derivation of MLE for Bernoulli
• Let’s derive the MLE for Bernoulli.
– This will seem overly-complicated for such a simple result.
– But the same steps can be used in more-complicated situations.

• MLE “finds the argument” maximizing the likelihood function:



Digression: Maximizing the Log-Likelihood
• Instead of finding an element maximizing the likelihood:

• We usually find an element maximizing the log of the likelihood:

– People often say “log-likelihood” as a short version of “log of the likelihood”.

• Both approaches give the same solution.
– Because logarithm is “strictly monotonic” over positive values.

• If 𝛼 > 𝛽, then log 𝛼 > log 𝛽 .
• See notes on course webpage about “Max and Argmax” for details.

– And logarithm is nicer numerically since likelihood is usually really close to 0.



Derivation MLE for Bernoulli
• MLE for Bernoulli by maximizing the likelihood:

• MLE for Bernoulli by maximizing the log-likelihood:



Derivation MLE for Bernoulli
• From the last slide we want to find:

• Recall that a maximum must have derivative equal to zero.
– Equating the derivative of the log-likelihood with zero:

– Using HS math:



Summary
• Binary density estimation:
– Modeling Pr(X =1) given IID samples x1, x2,…, xn.

• Bernoulli distribution:
– Probability distribution over a binary variable.
– Parameterized by a number 𝜃 such that Pr(X=1 | 𝜃) = 𝜃.

• Inference:
– Computing a quantity based on a model.
– Examples include computing probabilities, decoding, and sampling.

• Maximum likelihood estimation (MLE):
– Estimate parameters by maximizing probability of data given parameters.
– For Bernoulli, sets 𝜃 = (number of 1s)/(number of examples).

• Next time: more boring definitions.


