
CPSC 440/540 Machine Learning (Jan-Apr 2023)
Assignment 4 – due Thursday April 13th at 11:59pm

The assignment instructions are the same as for the previous assignments. If you do the assignment with a
partner, please only hand in one copy for the group (using the appropriate Gradescope feature).

1 Generative Classifiers with Gaussian Assumption [20 points]

Consider the 3-class classification dataset in this image:

In this dataset, we have 2 features and each colour represents one of the classes. Note that the classes are
highly structured: the colours each roughly follow a Gausian distribution plus some noisy samples.

Since we have an idea of what the features look like for each class, we might consider classifying inputs x
using a generative classifier. In particular, we are going to use Bayes rule to write

p(yi = c | xi,Θ) =
p(xi | yi = c,Θ) · p(yi = c | Θ)

p(xi | Θ)
,

where Θ represents the parameters of our model. To classify a new example x̃i, generative classifiers would
use

ŷi = argmax
y∈{1,2,...,k}

p(yi = c | xi,Θ) = argmax
y∈{1,2,...,k}

p(x̃i | yi = c,Θ)p(yi = c | Θ)

where in our case the total number of classes k is 3. Modeling p(yi = c | Θ) is easy: we can just use a k-state
categorical distribution,

p(yi = c | Θ) = θc,

where θc is a single parameter for class c. The maximum likelihood estimate of θc is given by nc/n, the
number of times we have yi = c (which we’ve called nc) divided by the total number of data points n.

Modeling p(xi | yi = c,Θ) is the hard part: we need to know the probability of seeing the feature vector
xi given that we are in class c. This corresponds to solving a density estimation problem for each of the k
possible classes. To make the density estimation problem tractable, we’ll assume that the distribution of xi

given that yi = c is given by a N (µc,Σc) Gaussian distribution for a class-specific µc and Σc,

p(xi | yi = c,Θ) =
1

(2π)
d
2 |Σc|

1
2

exp

(
−1

2
(xi − µc)

TΣ−1
c (xi − µc)

)
.

1

Since we are distinguishing between the probability under k different Gaussians to make our classification,
this is called Gaussian discriminant analysis (GDA). In the special case where we have a constant Σc = Σ
across all classes it is known as linear discriminant analysis (LDA) since it leads to a linear classifier between
any two classes (while the region of space assigned to each class forms a convex polyhedron, as in k-means
clustering and softmax classification). Another common restriction on the Σc is that they are diagonal
matrices, since this only requires O(d) parameters instead of O(d2) (corresponding to assuming that the
features are independent univariate Gaussians given the class label). Given a dataset D = {(xi, yi)}ni=1,
where xi ∈ Rd and yi ∈ {1, . . . , k}, the maximum likelihood estimate (MLE) for the µc and Σc in the GDA
model is the solution to

argmax
µ1,µ2,...,µk,Σ1,Σ2,...,Σk

n∏
i=1

p(xi | yi, µyi ,Σyi).

This means that the negative log-likelihood will be equal to

− log p(X | y,Θ) = −
n∑

i=1

log p(xi | yi, µyi ,Σyi)

=

n∑
i=1

1

2
(xi − µyi)TΣ−1

yi (x
i − µyi) +

1

2

n∑
i=1

log |Σyi |+ const.

In class we stated the MLE for this model under the assumption that we use full covariance matrices and
that each class has its own covariance.

(1.1) [5 points] Derive the MLE for the GDA model under the assumption of common diagonal covariance
matrices, Σc = D. Note that this means there are d total parameters for the model’s covariances (plus
kd parameters in each class’s separate mean, µc).

Hint: You might be able to significantly simply notation if you write something like
∑

i:yi=c, or define
some shortcut notation like

∑
i∈yc

to mean the same thing; just make sure it’s clear. You also might

want to use nc =
∑

i∈yc
1 to be the number of cases where yi = c.

Hint: The determinant of a diagonal matrix is the product of its diagonal entries. The inverse is the
diagonal matrix where each diagonal entry is inverted.

Answer: TODO

(1.2) [5 points] Derive the MLE for the GDA model under the assumption of individual scaled-identity
matrices, Σc = σ2

cI; here there are k total covariance parameters, one per class.

Answer: TODO

(1.3) [5 points] When you run main.py gda it loads a variant of the dataset in the figure that has 12
features and 10 classes. This data has been split up into a training and test set, and the code fits a
k-nearest neighbour classifier to the training set then reports the accuracy on the test data (around
∼ 63% test error). The k-nearest neighbour model does poorly here since it doesn’t take into account
the Gaussian-like structure in feature space for each class label.

Fill in the class GDA to fit a GDA model to this dataset, using the MLE with individual full covariance
matrices. Hand in your code, and report the test set accuracy.

Hint: You can use the result from class about the MLE for this model.

Hint: You probably want to handle everything “in log space” for your computation.

Answer: TODO

(1.4) [5 points] The data here has some outliers. Let’s try to replace the Gaussian distribution of the previous
solution with a more robust multivariate t distribution. Unfortunately this distribution doesn’t have

2

a closed-form MLE, but student t.MultivariateT implements numerical optimization. Fill in the
class generative classifiers.TDA, called by main.py tda, to fit a generative model based on the
multivariate t distribution. Report your test accuracy and hand in your code.

Hint: These take a little longer to fit; you might want to print some kind of status update as you go
to make sure it’s happening. The tqdm package would be a very nice, fancy version of that. . . .

Answer: TODO

3

2 Discrete Markov Chain Inference [25 points]

The function example markov.jl loads the initial state probabilities and transition probabilities for a Markov
chain model,

p(x1, x2, . . . , xd) = p(x1)

d∏
j=2

p(xj | xj−1),

corresponding to the “grad student Markov chain” from class.

Note that we’re assuming the Markov chain starts at time 1; since Python indexing starts from time 0, be
careful.

(2.1) [3 points] Write a function, MarkovChain.sample, that uses ancestral sampling to sample sequences x
from this Markov chain of length d. Hand in this code, and report the univariate marginal probabilities
for time 50 using a Monte Carlo estimate based on 10,000 samples (from main.py mc-sample).

Hint: rng.choice might be helpful.

Answer: TODO

(2.2) [3 points] Write a function, MarkovChain.marginals, that uses the CK equations to compute the exact
univariate marginals up to a given time d. Use main.py mc-marginals to find the exact marginals
at time 50. Hand in this code, report the exact univariate marginals at time 50 (to three decimal
places), and report how this differs from the marginals in the previous question.

Answer: TODO

(2.3) [2 points] What is the state c with highest marginal probability, p(xj = c), for each time j?

Answer: TODO

(2.4) [5 points] Write a function, MarkovChain.mode, that uses the Viterbi decoding algorithm for Markov
chains to find the optimal decoding up to a time d. Hand in this code and report the optimal decoding
of the Markov chain up to time 50, and up to 100.

Answer: TODO

(2.5) [2 points] Report all the univariate conditional probabilities at time 50 if the student starts in grad
school, p(x50 = c | x1 = 2), for all c.

Hint: you can do this by changing the input to the CK equations.

Answer: TODO

(2.6) [3 points] Report for all c the univariate conditional probabilities p(x3 = c | x6 = 5) (“where you were
likely to be 3 years after graduation, if you ended up in academia after 6 years”) obtained using a
Monte Carlo estimate based on 10,000 samples and rejection sampling. Also report the number of
samples accepted from the 10,000 samples.

Answer: TODO

(2.7) [5 points] Give code implementing a dynamic programming approach to exactly compute p(x3 = c |
x6 = 5), and report the exact values for all c.

Answer: TODO

(2.8) [2 points] Why is p(xj = 6 | x20 = 5) equal to zero for all j less than 20?

Answer: TODO

4

https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.choice.html

3 Markov Chain Monte Carlo for Bayesian Logistic Regression
[10 points]

main.py mcmc-blogreg loads a set of images of ‘2’ and ‘3’ digits. It then runs the Metropolis MCMC
algorithm to try to generate samples from the posterior over w, in a logistic regression model with a Gaussian
prior. Once the samples are generated, it makes a histogram of the samples for several of the variables.1

(3.1) [3 points] Why might the samples coming from the Metropolis algorithm as run here not give a good
approximation to the posterior?

Answer: TODO

(3.2) [4 points] Modify the proposal used by the demo to ŵ ∼ N (w, (1/100)I) instead of ŵ ∼ N (w, I).
Hand in your code and the updated histogram plot.

Answer: TODO

(3.3) [3 points] Modify the proposal to use ŵ ∼ N (w, (1/10000)I). Do you think this performs better or
worse than the previous choice? (Briefly explain.)

Answer: TODO

1The “positive” variables are some of the positive weights when you fit an L2-regularized logistic regression model to the
this data. The “negative” variables are some of the negative regression weights in that model, and the “neutral” ones are set
to 0 in that model.

5

4 D-Separation [15 points]

Consider the DAG model below, for distinguishing between different causes of shortness-of-breath (dyspnoea)
and the causes of an abnormal lung x-ray, while modelling potential causes of these diseases too (whether
the person is a smoker or had a ‘visit’ to a country with a high degree to tuberculosis).

We’ll assume that the distribution over the variables is “faithful” to the graph, meaning that variables
are conditionally independent if and only if the graph structure implies their independence. Under this
assumption, say why each of the following conditional independence statements is true or false, along with
a very brief justification:

Each of these is worth [1.5 points].

(4.1) (Smoking) ⊥⊥ (Bronchitis).

Answer: TODO

(4.2) (Smoking) ⊥⊥ (Dyspnoea).

Answer: TODO

(4.3) (Tuberculosis) ⊥⊥ (Lung Cancer).

Answer: TODO

(4.4) (Abnormal X-Ray) ⊥⊥ (Visit) | (Tuberculosis).

Answer: TODO

(4.5) (Bronchitis) ⊥⊥ (Lung Cancer) | (Smoking).

Answer: TODO

6

(4.6) (Abnormal X-Ray) ⊥⊥ (Dyspnoea).

Answer: TODO

(4.7) (Tuberculosis) ⊥⊥ (Lung Cancer) | (Dyspnoea).

Answer: TODO

(4.8) (Visit,Smoking) ⊥⊥ (Abnormal X-Ray, Dyspnoea) | (Tuberculosis, Lung Cancer, Bronchitis)

Answer: TODO

(4.9) (Tuberculosis) ⊥⊥ (Bronchitis) | (Abnormal X-Ray).

Answer: TODO

(4.10) (Smoking) ⊥⊥ (Visit) | (Dyspnoea).

Answer: TODO

7

5 Very-Short Answer Questions [30 points]

Each of these is worth [2 points].

(5.1) How does the affine property allow us to sample from multivariate Gaussians?

Answer: TODO

(5.2) What is the relationship between using a product of Gaussians and using a multivariate Gaussian?

Answer: TODO

(5.3) With a Gaussian likelihood, a Gaussian prior for its mean, and a fixed covariance, how do we know
that the posterior predictive will also be a Gaussian?

Answer: TODO

(5.4) How do the sparsity patterns of the covariance and precision matrix in a multivariate Gaussian relate
to independence and conditional independence in the models?

Answer: TODO

(5.5) In linear discriminant analysis, why might we not assign a point to its closest mean?

Answer: TODO

(5.6) The maximum of the posterior predictive in Bayesian linear regression gives the same prediction as if
we used the MAP estimate. What is a reason we might use Bayesian linear regression anyways?

Answer: TODO

(5.7) What is the key difference between Monte Carlo approximations and variational approximations?

Answer: TODO

(5.8) What is a key advantage of “end-to-end” training of computer vision system?

Answer: TODO

(5.9) What is ∇θ logZ(θ) for an exponential family in canonical form? (Give an interpretable form in terms
of the sufficient statistics; no need to derive it, just the answer.)

Answer: TODO

(5.10) What is the difference between computing marginals and computing the stationary distribution of a
Markov chain.

Answer: TODO

(5.11) What is the cost of generating a sample from a Markov chain of length d with k possible states for
each time? What is the cost of decoding?

Answer: TODO

(5.12) In what setting is it unnecessary to include the q function in the Metropolis-Hastings acceptance
probability?

Answer: TODO

(5.13) What is “explaining away”?

Answer: TODO

8

(5.14) If two variables are not d-separated, are they necessarily dependent? If two variables are d-separated,
are they necessarily independent?

Answer: TODO

(5.15) Describe how we could use ancestral sampling to sample from the joint density over x and y defined
by a Gaussian discriminant analysis model.

Answer: TODO

9

	Generative Classifiers with Gaussian Assumption [20 points]
	Discrete Markov Chain Inference [25 points]
	Markov Chain Monte Carlo for Bayesian Logistic Regression [10 points]
	D-Separation [15 points]
	Very-Short Answer Questions [30 points]

