
CPSC 440/540 Machine Learning (Jan-Apr 2023)
Assignment 1 – due Friday January 20th at noon

IMPORTANT!!!!! Please carefully read the submission instructions that will be posted on
Piazza. We will deduct up to 50% on assignments that do not follow the instructions.

Most of the questions below are related to topics covered in CPSC 340, or other courses listed on the
prerequisite form. There are several notes available on the webpage which can help with some relevant
background.

If you find this assignment to be overly difficult, that is an early warning sign that you may not be prepared
to take CPSC 440 at this time. Future assignments may be longer and more difficult than this one.

We use blue to highlight the deliverables that you must answer/do/submit with the assignment.

Cite any sources outside of course materials that you refer to. Even if you’ve written code for some of these
questions before (e.g. in 340), do it again.
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1 Very-Short Answer Questions [24 points]

Give a short and concise 1-2 sentence answer to the below questions. All acronyms, symbols, and methods
are as used in CPSC 340, and should be fairly standard. Each part is worth [1.5 points].

(a) Suppose we want to solve the binary classification problem of determining whether 26 by 26 images
were images of digits or images of letters. What is an easy way to make our classifier roughly invariant
to small translations of the training images?

Answer: TODO

(b) Ensemble methods are models that combine the predictions of multiple individual models. Give a
reason why an ensemble method could do better than the best individual model in the ensemble.

Answer: TODO

(c) Suppose we are given two vectors of integers, x=(x1, x2, . . . , xn) and y=(y1, y2, . . . , yn), and we want
to find the longest sequence of numbers that appears consecutively in both x and y. Describe an O(n2)
algorithm to do this using dynamic programming, assuming comparing integers takes constant time.

Answer: TODO

(d) A common method for outlier detection is to collect a large number of outliers, and build a binary
classifier that distinguishes these outliers from standard “inlier” datapoints. What is an advantage and
a drawback of this approach to outlier detection, compared to unsupervised outlier detection methods?

Answer: TODO

(e) Why might we add a column of 1 values to X when fitting a linear model with predictions of the form
wTx?

Answer: TODO

(f) If a function is convex, what does that imply about stationary points of the function? Does convexity
imply that a stationary point exists?

Answer: TODO

(g) Consider fitting a neural network with one hidden layer. Would we call this a parametric or a non-
parametric model if the hidden layer had n units (where n is the number of training examples)? What
about one with d2 units (where d is the number of input features)?

Answer: TODO

(h) Suppose you are hired by company to look at a dataset, and they want to “find which features are
relevant” for their prediction task. What are two warnings you might give them regarding the features
found by feature selection methods?

Answer: TODO

(i) Given a vector of n positive integers (x1, x2, . . . , xn), give an O(n) time algorithm for computing, for
each position i, the sum of all numbers except xi. Next, describe how you could solve this problem in
O(n) even if you were not allowed to use subtraction or negation, just addition. Hint: you can start at
the beginning or the end of the list.

Answer: TODO

(j) If we fit a linear regression model with L1-regularization of the parameters, what is the effect of the
regularization parameter λ on the sparsity level of the solution? What is the effect of λ on the two parts
of the “fundamental trade-off” (the training error, and the amount of overfitting, aka the generalization
gap)?
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Answer: TODO

(k) Suppose we fit a one-feature linear regression model with a polynomial basis, and this leads to non-zero
regression weights. What would the prediction of this model be on a test point with value x going to
∞? How would this change if you used Gaussian RBFs as features?

Answer: TODO

(l) Suppose that a famous machine learning TikTok influencer is advertising their “extremely-deep con-
volutional fuzzy-genetic Hilbert-long-short adversarial-recurrent neural network” classifier, which has
5,000 hyper-parameters. They claim that if you take 10 different famous datasets, and tune the 5,000
hyper-parameters based on each dataset’s validation set, that you can beat the current best-known
validation set error on all 10 datasets. Explain whether or not this amazing claim is likely to be
meaningful.

Answer: TODO

(m) When searching for a good w for a linear classifier, why might we use the logistic loss instead of just
minimizing the number of classification errors?

Answer: TODO

(n) What is the computational cost, in O() notation, for fitting a linear regression model with n examples
and 1 feature using least squares (the normal equations)? Explain under what conditions it would make
sense to use gradient descent, instead of the normal equations for fitting a linear regression model with
1 feature.

Answer: TODO

(o) With stochastic gradient descent, the loss might go up or down each time the parameters are updated.
However, we don’t actually know which of these cases occurred. Explain why it doesn’t make sense to
check whether the loss went up/down after each update.

Answer: TODO

(p) Consider using a fully-connected neural network for 3-class classification on a problem with d = 10.
If the network has two hidden layers, of size k1 = 100 and k2 = 50, how many parameters (including
biases) does the network have?

Answer: TODO
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2 Machine Learning Model Memory and Time Complexities [18 points]

Answer the following questions using big-O notation, and a brief explanation. Your answers may involve n,
d, and perhaps additional quantities defined in the question. As an example, the (linear) least squares model
has O(d) parameters, requires O(d) time for prediction, and requires O(nd2 + d3) time to train.1

Each part is worth [2 points].

(a) What is the storage space required for the k-means clustering algorithm?

Answer: TODO

(b) What is the cost of clustering t examples using an already-trained k-means model?

Answer: TODO

(c) What is the training time for least squares (linear regression by solving the normal equations) with L2
regularization?

Answer: TODO

(d) What is the prediction cost for a trained linear model on t test examples?

Answer: TODO

(e) What is the storage space required to make predictions with a linear regression model using Gaussian
RBFs as features?

Answer: TODO

(f) What is the prediction time for linear regression with Gaussian RBFs as features on t test examples?
You can use σ2 as the variance of the Gaussian RBFs.

Answer: TODO

(g) What is the cost of evaluating the support vector regression objective function shown in Question 3
part (i)?

Answer: TODO

(h) What is the cost of trying to minimize the exponential loss shown in Question 3 part (h) by running t
iterations of gradient descent?

Answer: TODO

(i) What is the cost of trying to minimize the exponential loss by running t iterations of stochastic gradient
descent?

Answer: TODO

Many people got very low grades on this question in past years. If you’re not sure how to answer questions
like this, get help!

1In this course, we assume matrix operations have the “textbook” cost where the operations are implemented in a straight-
forward way with “for” loops. For example, we’ll assume that multiplying two n × n matrices or computing a matrix inverse
simply costs O(n3), rather than the O(nω) where ω is closer to 2.37 as discussed in CS algorithm courses; this is closer to the
behaviour observed for actual practical matrix sizes.
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3 Matrix Notation, Quadratics, Convexity, and Gradients [18 points]

This and the next question review some mathematical tools used in CPSC 340. You might find some of the
notes on the course webpage useful as refreshers. Each part is worth [2 points].

(a) Consider the function

f(x) =

n∑
i=1

n∑
j=1

aijxixj +

n∑
i=1

bixi + c,

where x is a vector of length n with elements xi, b is a vector of length n with elements bi, and A is an
n× n matrix with elements aij (not necessarily symmetric). Write this function in matrix notation so
that it uses A and b, and does not have summations or references to indices i.

Answer: TODO

(b) Write the gradient of f from the previous question, in matrix notation.

Answer: TODO

(c) Show that f is convex if A is a symmetric, positive semi-definite matrix.

Answer: TODO

(d) In that case, give a linear system whose solution minimizes f in terms of x.

Answer: TODO

(e) Consider weighted linear regression with an L2-regularizer with regularization strength 1/σ2,

f(w) =
1

2

n∑
i=1

vi(yi − wTxi)2 +
1

2σ2

d∑
j=1

w2
j ,

where σ > 0 and we have a vector v of length n containing the elements vi. The other symbols are our
standard regression notation. Write this function in matrix notation.

Note: you can use X as the matrix containing xi as the rows, y as the vector containing the elements
yi, and V as a diagonal matrix containing the vector v along the diagonal.

Answer: TODO

(f) Assuming that vi ≥ 0 for all i, show that f from the previous part is convex. (You can use part (c) or
not, as you prefer.)

Answer: TODO

(g) Assuming that we have vi ≥ 0 for all i, give a linear system whose solution gives a minimum value of
f in terms of w. (Again, use the previous result or not, your choice.)

Answer: TODO

(h) If we fit a linear classifier with the exponential loss (used in older boosting algorithms), it would take
the form

f(w) =

n∑
i=1

exp(−yiwTxi).

Derive the gradient of this loss function.

Answer: TODO
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(i) The support vector regression objective function is

f(w) =

n∑
i=1

max{0, |wTxi − yi| − ϵ}+ λ

2
∥w∥2 .

where ϵ is a non-negative hyper-parameter. It is similar to the L1 robust regression loss, but where
there is no penalty for being within ϵ of the prediction (which can reduce overfitting). Show that this
non-differentiable function is convex.

Answer: TODO
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4 MAP Estimation [9 points]

In 340, we showed that under the assumptions of a Gaussian likelihood and Gaussian prior,

yi ∼ N (w⊤xi, 1), wj ∼ N
(
0,

1

λ

)
,

that the MAP estimate is equivalent to solving the L2-regularized least squares problem

f(w) =
1

2

n∑
i=1

(w⊤xi − yi)2 +
λ

2

d∑
j=1

w2
j ,

in the “loss plus regularizer” framework. For each of the alternate assumptions below, write it in the “loss
plus regularizer” framework (simplifying as much as possible):

(a) [3 points] Gaussian likelihood with a separate variance σ2
i for each training example, and Laplace prior

with a separate variance 1/λj for each variable,

yi ∼ N (wTxi, σ2
i ), wj ∼ L

(
0,

1

λj

)
.

Answer: TODO

(b) [3 points] Robust student-t likelihood and Gaussian prior centered at u.

p(yi|xi, w) =
1

√
νB
(
1
2 ,

ν
2

) (1 + (wTxi − yi)2

ν

)− ν+1
2

, wj ∼ N
(
uj ,

1

λ

)
,

where u is d× 1, B is the “Beta” function, and the parameter ν is called the “degrees of freedom.”2

Answer: TODO

(c) [3 points] We use a Poisson-distributed likelihood (for the case where yi represents counts), and we use
a uniform prior for some constant κ,

p(yi|xi, w) =
exp(yiw⊤xi) exp(− exp(w⊤xi))

yi!
, p(wj) ∝ κ.

This prior is “improper,” since w ∈ Rd but it doesn’t integrate to 1 over this domain.

Answer: TODO

2This likelihood is more robust than the Laplace likelihood, but leads to a non-convex objective.
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5 K-Means Clustering [11 points]

This and following questions use code available from the course webpage; get it from a1.zip.

You’ll need Python 3 and the packages numpy, scipy, and matplotlib. If you don’t have them installed
already, install them with conda install, your system package manager, or pip install numpy scipy

matplotlib.

If you run main.py 5, it will load a dataset with two features and a very obvious clustering structure. It
will then apply the k-means algorithm with a random initialization. The result of applying the algorithm
will thus depend on the randomization, but a typical run might look like this:

(Note that the colours are arbitrary due to the label switching problem.) But the “correct” clustering (that
was used to make the data) is something more like this:

If you run the demo several times, it will find different clusterings. To select among clusterings for a fixed
value of k, one strategy is to minimize the sum of squared distances between examples xi and their means
wyi

,

f(w1, w2, . . . , wk, y
1, y2, . . . , yn) =

n∑
i=1

∥∥xi − wyi

∥∥2
2
=

n∑
i=1

d∑
j=1

(xi
j − wyi

j
)2.
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where yi ∈ argminc∈[n] ∥xi − wc∥ is the index of the closest mean to xi. This is a natural criterion because
the steps of k-means alternately optimize this objective function in terms of the wc and the yi values.

(a) [2 points] Complete the function KMeans.loss, inside k means.py, that takes in a dataset X, a set of
cluster assignments y, and a set of cluster means W , and computes this objective function. Hand in
your code.

Answer: TODO

(b) [1 points] Modify your code to, instead of/in addition to printing the number of labels that change on
each iteration, print the value of KMeans.loss after each iteration. What trend do you observe? (No
need to hand in code or specific loss values for this, just describe the trend.)

Answer: TODO

(c) [2 points] main.py 5c will call the function q_5c() in main.py, which calls the best_fit function to
rerun k-means 50 times and take the one with the lowest error. Complete the best_fit function, and
hand in the resulting plot.

Answer: TODO

(d) [2 points] Explain why KMeans.loss function should not be used to choose k – even if you evaluate it
on test data.

Answer: TODO

(e) [1 points] The data in clusterData2.pkl is exactly the same as clusterData.pkl, except that it has
four outliers that are far away from the data. main.py 5f will run your code from above to find the
best of 50 runs on this data and save it as figs/kmeans-outliers.png. Hand in this plot; are you
satisfied with it?

Answer: TODO

(f) [3 points] Implement the k-medians algorithm in kmedians.py, which assigns examples to the nearest
wc in the L1-norm and then updates the wc by setting them to the “median” of the points assigned
to the cluster (defining the d-dimensional median as the concatenation of the medians along each
dimension). For this algorithm it makes sense to use the L1-norm version of the error (where yi now
represents the closest median in the L1-norm),

f(w1, w2, . . . , wk, y
1, y2, . . . , yn) =

n∑
i=1

∥∥xi − wyi

∥∥
1
=

n∑
i=1

d∑
j=1

|xi
j − wyi,j |,

main.py 5g runs it for you, once you’ve finished the KMedians class. Hand in your code and plot
obtained by taking the clustering with the lowest L1-norm after using 50 random initializations for
k = 4. Is this better?

Answer: TODO
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6 Regularization and Hyper-Parameter Tuning [10 points]

If you run main.py 6, it will:

1. Load a one-dimensional regression dataset.

2. Fit a least-squares linear regression model.

3. Draw a figure showing the training/testing data and what the model looks like.

Unfortunately, this is not a great model of the data, and the figure shows that a linear model with a y
intercept of 0 is probably not suitable.

(a) [2 points] Implement the LeastSquaresBias class to include a y-intercept variable w0, and makes
predictions using the model

yi = wTxi + w0.

Hand in your new class and the updated plot.

Answer: TODO

(b) [3 points] Allowing a non-zero y-intercept improves the prediction substantially, but the model still
seems sub-optimal because there are obvious non-linear effects. Complete the model leastSquaresRBFL2
that implements least squares using Gaussian radial basis functions (RBFs) with L2-regularization.

Use lam for the L2 regularization parameter, and sigma for the lengthscale of the Gaussian features.
Note that your L2 regularization should correspond to minimizing the loss function ∥Xw − y∥2+λ ∥w∥2;
some versions instead correspond to putting a 1

n in front of the loss term.

Hand in your function and the plot generated with λ = 1 and σ = 1.

Hint: The function utils.euclidean dist squared, which was also used in our k-means implemen-
tation, efficiently computes the squared Euclidean distance between all pairs of rows in two matrices.

Answer: TODO

(c) [3 points] Modify the script, in the function q_6c, to split the training data into a “train” and “vali-
dation” set (you can use half the examples for training and half for validation), and use these to select
λ and σ from some reasonable set of candidate values. You’ll probably want to vary these by a few
orders of magnitude either smaller or larger from 1.

(Although in real work you’d probably use some pre-coded helpers for this, code it yourself here.)

Hand in your modified function, the selected λ and σ, and the plot you obtain by refitting on the full
dataset with the best values of λ and σ.

Answer: TODO

(d) [2 points] Consider a model combining the first two parts of this question,

yi = wTxi + w0 + vT zi,

where zi is the Gaussian RBFs and v is a vector of regression weights for those features. Suppose that
we first fit w and w0 assuming that v = 0 as in part (a), and then we fit v with w and w0 fixed (you
could use your code for (c) to do this by modifying the yi values). Why would someone want to do
this?

Hint: Think about how this model would behave with xi = 10.

Answer: TODO
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7 Multi-Class Logistic Regression [10 points]

Running main.py 7 loads a multi-class classification dataset and fits a “one-vs-all” logistic regression clas-
sifier using gradient descent as implemented in optimize.py, then reports the validation error and shows a
plot of the data/classifier. The performance on the validation set is okay, but could be much better. For
example, this classifier never predicts some of the classes.

Using a one-vs-all classifier hurts performance because the classifiers are fit independently, so there is no
attempt to calibrate the columns of the matrix W . An alternative to this independent model is to use the
softmax probability,

p(yi | W,xi) =
exp(w⊤

yixi)∑k
c=1 exp(w

⊤
c x

i)
.

Here c is a possible label and wc is column c of W . Similarly, yi is the training label, wyi is column yi of
W . The loss function corresponding to the negative logarithm of the softmax probability is given by

f(W ) =

n∑
i=1

[
−w⊤

yixi + log

(
k∑

c′=1

exp(w⊤
c′x

i)

)]
.

Moreover, I’ll be nice and remind you that the gradient of this function is given by

∂f(W )

∂Wjc
=

n∑
i=1

[
−xi

j1(y
i = c) + xi

jp(y
i = c | W,xi)

]
.

(Make sure you can see how to derive this!)

Implement the model in softmax_classifier.py, which fits W using the softmax loss from the previous
section instead of fitting k independent classifiers. Hand in your code, a plot produced by plot2Dclassifier,
and report the validation error.

Hint: Remember to add a bias variable somewhere, or else code it in explicitly.

Hint: You can pass check grad=True to find min to help you debug the gradient of the softmax loss. Also,
note that the find min function treats the parameters as a vector; you may want to use reshape when writing
the softmax objective.

Answer: TODO
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