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ABSTRACT

Utilitarian algorithm configuration is a general-purpose technique for automatically
searching the parameter space of a given algorithm to optimize its performance,
as measured by a given utility function, on a given set of inputs. Recently intro-
duced utilitarian configuration procedures offer optimality guarantees about the
returned parameterization while provably adapting to the hardness of the under-
lying problem. However, the applicability of these approaches is severely limited
by the fact that they only search a finite, relatively small set of parameters. They
cannot effectively search the configuration space of algorithms with continuous or
uncountable parameters. In this paper we introduce a new procedure, which we
dub COUP (Continuous, Optimistic Utilitarian Procrastination). COUP is designed
to search infinite parameter spaces efficiently to find good configurations quickly.
Furthermore, COUP maintains the theoretical benefits of previous utilitarian con-
figuration procedures when applied to finite parameter spaces but is significantly
faster, both provably and experimentally.

1 INTRODUCTION

Algorithm configuration is a general-purpose technique for optimizing the performance of algorithms
by automatically searching over the space of their input parameters. Given a set of possible parameter
assignments (i.e., a set of “configurations”) our objective is to find one that makes the algorithm
perform well on average, over a set of inputs of interest. Recently, attention has begun to shift
from procedures that define performance in terms of average runtime toward procedures that define
performance in terms of more general utility functions over runtime. Graham et al. (2023b) introduced
Utilitarian Procrastination (UP), the first non-trivial algorithm configuration procedure that maximizes
utility achieved instead of minimizing runtime. Unlike more naive approaches, UP can adapt to the
hardness of the problem it faces, requiring provably less time to guarantee optimality when many
of the configurations it considers are suboptimal. However, UP requires that this set of candidate
configurations be discrete and relatively small. This is a major limitation; e.g., many algorithms have
at least one continuous parameter. UP cannot effectively search over continuous spaces.

In this paper we present COUP (Continuous, Optimistic Utilitarian Procrastination), which is designed
to handle infinite (e.g., continuous) configuration spaces. Like UP, COUP is utilitarian and takes
inspiration from the world of multi-armed bandits. However, COUP is based on a different bandit
procedure that is guided by the principle of “optimism in the face of uncertainty” and is more readily
adapted to handle large configuration spaces, including those with continuous parameters. COUP
also offers significantly better performance than UP on finite sets of configurations because COUP
does not try to explicitly rule bad configurations out, but instead simply ignores them once they no
longer appear as promising as other alternative configurations.

Section 2 discusses relevant background material. Section 3 introduces the finite-configuration-space
version of COUP and shows that this version finds an approximately optimal configuration in strictly
less total time than UP. We simply call this version OUP since it, like UP, does not actually search
over a continuous parameter space. Section 4 introduces COUP, leveraging our understanding of
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the finite case into a general-purpose procedure. We discuss empirical evaluations in Section 5 and
conclude with Section 6.

2 BACKGROUND

Given a parameterizable algorithm and a set of possible parameter assignments, the goal of algorithm
configuration is to find a parameter assignment that makes the algorithm perform well across a set of
given inputs. If we also require that a procedure gives a guarantee about the near-optimality of its
returned configuration, algorithm configuration can be seen as a multi-armed bandit problem (see e.g.,
Lattimore & Szepesvári (2020)) called approximate best-arm identification: finding an arm whose
mean reward is close to the reward of the best arm available. In this case, it is not the regret of the
procedure that concerns us, but the number of samples needed to guarantee the near-optimality of the
returned arm. Even-Dar et al. (2002) observe that if we want to find an arm whose value is within ϵ of
the best with good probability, we could just take Õ(ϵ−2) samples of each arm and apply Hoeffding’s
inequality (Hoeffding, 1963) to obtain upper and lower confidence bounds on the mean reward of each
arm that are sufficient to identify an approximately optimal one (i.e., one within an ϵ additive factor
of optimal). However, this will be more samples than necessary in all but the worst case; any arm that
is significantly worse than the best arm can be ruled out using fewer samples than are required by
naively applying Hoeffding’s inequality. The Successive Elimination (SE) procedure (Even-Dar et al.,
2002) is able to identify an approximately optimal arm with only Õ(min{∆−2

i , ϵ−2}) samples of
each arm, where ∆i is the suboptimality gap for arm i. This can be a significant reduction when many
arms are far from optimal. SE achieves this improved, adaptive bound by being anytime: it does not
take an ϵ as input. It starts by taking only a few samples of each arm, guaranteeing a relatively large ϵ,
and then improves this over time. This allows it to stop sampling bad arms and rule them out before
it is finished. Up to logarithmic factors, taking m = min{∆−2

i , ϵ−2} samples of arm i is not only
sufficient, but also necessary for general inputs (Mannor & Tsitsiklis, 2004).

SE is a simple and intuitive procedure with approximately optimal sample complexity, but it can
tend to over-investigate bad arms, sampling them repeatedly until it can expressly rule them out. The
Upper Confidence Bound (UCB) procedure (Lai, 1987) is an alternative to SE that focuses on arms
that look promising and/or about which little is known. By repeatedly pulling the arm with largest
upper confidence bound, UCB attempts to maximize the information it gains with each pull. For
more discussion on the difference between SE and UCB and on their relative performance see the
survey by Jamieson & Nowak (2014).

There are two key differences between algorithm configuration and most other bandit problems. First,
each arm pull imposes a stochastic cost arising from the amount of time it takes for the algorithm run
to complete. Second, we have the option of bounding these costs by “capping” algorithm runs at any
fixed time of our choice, but when we do so we obtain only censored information about the arm pull
(we learn that the run would have taken more than the captime but not how much more). Overall, it is
not the total number of samples that we want to control, but the total amount of time spent searching.

Most existing algorithm configuration procedures that offer theoretical guarantees aim to minimize
average runtime. These can broadly be seen as implementing either SE or UCB. These procedures
either run all existing configurations simultaneously (i.e., round-robin or in parallel), ruling out the
ones that can be proved to be suboptimal after each step (Weisz et al., 2018; 2019; 2020; Brandt et al.,
2023), or they iteratively select a particular configuration according to a confidence-bound index,
and run only this configuration (Kleinberg et al., 2017; 2019). In either case, these procedures are
significantly complicated by the fact that runtimes are potentially unbounded, and even the notion of
optimality that they target requires adjustment to compensate for this. Other theoretically-motivated
approaches offer performance guarantees based on measures of complexity and guarantee notions
of PAC optimality akin to those we present here (Gupta & Roughgarden, 2017; Balcan et al., 2017;
2021). The focus there is not on the time consumed by the configuration process, but on the number
of samples required to find a sufficiently good configuration.

Utilitarian algorithm configuration procedures do not try to minimize expected runtime, but instead try
to maximize expected utility, as measured by a user-specified utility function that captures the value
associated with solving an input instance as a (weakly decreasing, but not necessarily linear) function
of the amount of time spent solving it. For example, if we face daily scheduling problems, then getting
a solution after waiting 200 days is not 100 times worse than getting it after two days; both are too

2



Published as a conference paper at ICLR 2025

long to wait. If one algorithm solves most inputs very quickly but occasionally takes an astronomical
amount of time, while another algorithm takes a moderate amount of time on every input, determining
which algorithm is “better” will likewise depend on our particular setting: How much time do we
have? How much better is it to get an answer quickly? In Graham et al. (2023a) we generalized
such intuitions, offering a detailed argument from first principles that utility maximization is a more
appropriate objective (e.g., for algorithm configuration) than runtime minimization and showing that
such utility functions are guaranteed to exist if our preferences for algorithm runtime distributions
follow a certain reasonable structure based on the axioms of Von Neumann & Morgenstern (1947).

UP (Graham et al., 2023b) is a utilitarian configuration procedure that can be seen as SE coupled with
a doubling mechanism for discovering sufficiently large captimes. UP has several desirable qualities
that we would like to incorporate into our own configuration procedure. First, UP maximizes utility
instead of minimizing runtime. Second, unlike many runtime-optimizing procedures UP can make
simple theoretical guarantees about the near-optimality of the configuration it returns. Third, UP
is anytime, meaning that it provides a better guarantee the longer it is run, and so requires minimal
initial input from the user, who can simply observe the procedure’s execution and terminate it when
they are satisfied with the guarantee being made. Finally, UP’s guaranteed performance is adaptive
to the inputs it receives; it provably performs better on non-worst-case inputs (i.e., the associated
theoretical guarantees are input-dependent).

However, UP can only be applied to a finite (and relatively small) set of configurations since it cycles
through these one by one and runs each of them in turn. This is a prohibitive limitation we would like
to overcome. A natural idea would be to sample a finite set from the infinite configuration space and
simply run UP on this set. The optimality guarantee offered by UP would then be made with respect
to the best configuration in this subset, and if enough configurations are sampled, we can guarantee
that our subset will be likely to contain at least one of the top, say, γ-fraction of all configurations.
This strategy will work, but since the choice of γ potentially limits the quality of the configuration
we are likely to find, we would like to make our procedure anytime in γ as well; we would like our
procedure to start with a relatively small set of configurations (i.e., a relatively large γ) and grow
this set as time goes on, shrinking the γ it can guarantee. Of course we still wish to be anytime with
respect to the accuracy parameter ϵ, and here we run into a problem with UP. Since UP loops over all
remaining configurations, at any point during its execution it will have run all of these configurations
on effectively the same number of instances (at most the difference is one). What should we do when
we want to expand the set of configurations we are considering? Any newly added configuration will
have a large upper confidence bound, since we will know little or nothing about it. This will severely
limit the anytime ϵ we can guarantee because it remains possible that the new configuration is much
better than all the existing ones. So new configurations would need to be “caught up” when they are
added. How should we do this?

One extreme strategy is to completely “catch up” new configurations by running them on all existing
instances. This is unnecessarily costly because it fails to leverage what has already been learned about
promising configurations. At the other extreme, we could simply refrain from “catching up” new
configurations at all, just adding them to the existing pool, forever estimating them with fewer samples
and thus lower accuracy. This would effectively limit the ϵ we could guarantee to the lower accuracy
of these newly introduced configurations. Is there a way to balance these two extremes and integrate
new configurations into the estimation process smoothly? This leads us to the UCB procedure. In
terms of the runtime cost we incur, we would prefer to take the second extreme approach above and
not do anything special with new configurations. However, this would lead to configurations with
relatively large upper confidence bounds, which would limit the optimality guarantee we could make.
If we choose instead to focus on configurations that have large upper bounds, as UCB does, we will
explore new configurations just up to the point where something else looks better, and then stop.

Thus, whereas UP was built around the SE procedure, COUP is built around the UCB procedure.
Like UP, COUP is utilitarian, adaptive, and anytime with respect to the optimality parameter ϵ. At the
same time, COUP can also be applied to infinitely-large sets of configurations, and is also anytime
with respect to γ, the fraction of unexplored configurations. COUP initially makes guarantees for
a small set of configurations, then expands this set while simultaneously improving the optimality
guarantee that it can make with respect to this (growing) set. What’s more, COUP also beats UP at
its own game: COUP is significantly faster than UP when the input actually is a fixed, finite set of
configurations. Because it is built on the SE algorithm, UP runs all suboptimal configurations until
they can explicitly be eliminated. For some sets of inputs this can be necessary but in many cases it is
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more efficient to rule out poor-performing configurations by learning more about (i.e., by narrowing
the confidence bounds of) other, better-performing configurations. COUP provably stops running
sub-optimal configurations well before they would be eliminated by UP. Additionally, we re-evaluate
a key component of UP—the condition it checks before doubling a configuration’s captime—and
propose an improvement. UP attempts to balance the estimation error due to sampling with the error
due to capping. We argue that this is better achieved with a different doubling condition that emerges
from a more careful analysis of the confidence bounds.

3 THE CASE OF FEW CONFIGURATIONS: OUP

We begin by presenting and analyzing the finite-configuration-space version of COUP, which we call
OUP (Algorithm 1) to indicate that it does not search over continuous spaces like COUP does. OUP
can most easily be understood as a UCB procedure for finding configurations with good capped mean
utility, along with a periodic doubling scheme that allows larger and larger captimes to be considered.
Like UP, it is adaptive and anytime in the optimality parameter ϵ.

We are given a set of configurations, indexed by i, and a set of instances, indexed by j. We will use
tij to denote the true uncapped runtime of configuration i on input j, and tij(κ) :=min(tij , κ) to be
the κ-capped runtime of i on j. When we do a run, we observe tij(κ) rather than tij ; these coincide
for any run that completes. The instance distribution DJ , along with any randomness of the algorithm
or execution environment will together induce a runtime distribution for each configuration i. We
will use Di to denote this runtime distribution, and Fi to denote its CDF. For each configuration i,
the true uncapped expected utility is Ui :=Et∼Di

[
u(t)

]
. The cumulative distribution function is

Fi(κ) :=Prt∼Di

(
t ≤ κ

)
. The capped expected utility is Ui(κ) :=Et∼Di

[
u
(
min(t, κ)

)]
. Finally,

the optimality gaps ∆i :=maxi′ Ui′ − Ui partially determine the hardness of the problem; if a
configuration i has large optimality gap ∆i, then it will be easier to rule out. The notion of optimality
that we target is given by the following definition.
Definition 1 (ϵ-optimal). A configuration i is ϵ-optimal if ∆i ≤ ϵ.

The error associated with m runtime samples at captime κ is α(m,κ) :=
√

ln(11nm2(log κ+1)2/δ)
2m ,

chosen to satisfy Hoeffding’s inequality and the necessary union bounds. An execution of OUP
will be called clean if at all times during its execution we have

∣∣F̂i − Fi(κi)
∣∣ ≤ α(mi, κi) and∣∣Ûi − Ui(κi)

∣∣ ≤ (
1 − u(κi)

)
· α(mi, κi) for all configurations i. So during a clean execution,

empirical capped average utilities are close to true capped average utilities and empirical CDF values
are close to true CDF values at the captime κi.
Lemma 1. An execution of OUP is clean with probability at least 1− δ.

All proofs are deferred to the appendices. The idea behind Lemma 1 is that the bounds that define a
clean run hold initially, they do not change in any round where i is not selected, and by Hoeffding’s
inequality they hold with high probability in any round where i is selected. The next lemma shows
that during a clean execution, the confidence bounds will be valid, and also not too far apart.
Lemma 2. For all i at all points during a clean execution of OUP we have LCBi ≤ Ui ≤ UCBi

and UCBi − LCBi ≤ 2α(mi, κi) + u(κi)
(
1− Fi(κi)

)
.

The upper and lower bounds are defined in Algorithm 1. Each iteration of OUP’s main loop
corresponds to an iteration of the UCB procedure, with an additional check to see if the captime needs
to be doubled. In each iteration the configuration with largest upper bound is selected (Line 7). The
doubling condition is then checked (Line 9) and, if necessary, instances that had previously capped
are rerun at the newly doubled captime (Line 11). A new runtime sample is drawn, and the sample
mean and confidence bounds are recomputed. Finally, we attempt to eliminate provably suboptimal
configurations (Lines 20-24). This loop repeats until terminated by the user, at which point it returns
the configuration with largest lower confidence bound, which is the configuration we can prove the
smallest suboptimality for. We can now state the main theorem of this section.
Theorem 1. With probability at least 1 − δ, OUP eventually returns an optimal configuration
and it returns an ϵ-optimal configuration if it is run until 2αiopt + u(κiopt)

(
1− Fiopt(κiopt)

)
≤ ϵ.

Furthermore, for any suboptimal configuration i, if mi and κi ever become large enough that
2α(mi, κi) + u(κi)

(
1− Fi(κi)

)
< ∆i (1)
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Algorithm 1 OUP

1: Input: configurations i = 1, ..., n; instances j = 1, 2, ...; utility function u; failure probability δ.
2: I ← {1, ..., n} ▷ candidate configurations
3: for i ∈ I do
4: LCBi ← 0; UCBi ← 1; Ûi ← 0; F̂i ← 0; mi ← 0; κi ← 1 ▷ initializations
5: end for
6: for r = 1, 2, 3, .... do
7: i← argmaxi′∈I UCBi′

8: mi ← mi + 1
9: if 2α(mi, κi) ≤ u(κi)(1− F̂i) then ▷ captime doubling condition

10: κi ← 2κi

11: ti1(κi), ..., timi(κi)← runtime of configuration i on instances 1, ...,mi with timeout κi

12: else
13: timi(κi)← runtime of configuration i on instance mi with timeout κi

14: end if
15: F̂i ← |{j∈[mi] : tij(κi)<κi}|

mi
▷ fraction of runs that completed

16: Ûi ← 1
mi

∑mi

j=1 u
(
tij(κi)

)
▷ empirical average utility

17: UCBi ← Ûi +
(
1− u(κi)

)
· α(mi, κi)

18: LCBi ← Ûi − α(mi, κi)− u(κi)(1− F̂i)
19: i∗ ← argmaxi′∈I LCBi′

20: for i′ ∈ I do
21: if UCBi′ < LCBi∗ then ▷ if i′ is suboptimal
22: I ← I \ {i′} ▷ remove i′ from consideration
23: end if
24: end for
25: if execution is terminated or |I| = 1 then
26: return i∗

27: end if
28: end for

then i will never be run again, and i will be outright eliminated once mi, κi,miopt and κiopt are
large enough that

2α(mi, κi) + 2α(miopt , κiopt) + u(κi)
(
1− Fi(κi)

)
+ u(κiopt)

(
1− Fiopt(κiopt)

)
< ∆i. (2)

If OUP keeps selecting and running i, then the term 2α(mi, κi) + u(κi)
(
1− Fi(κi)

)
will continue

to shrink. So we will eventually have 2α(mi, κi) + u(κi)
(
1− Fi(κi)

)
< ∆i as long as we keep

running i. In either case, we will eventually stop running any suboptimal i. This puts a hard limit
on the amount of time we will ever dedicate to any suboptimal configuration, and this limit is better
than the corresponding guarantee made by UP: compare our Theorem 1 to Theorem 4 in Graham
et al. (2023b). UP guarantees that i will be eliminated once the bound in Equation (2) is satisfied.
The bound in Equation (1) guaranteed by OUP is a necessary condition for this. OUP does not keep
running suboptimal configurations until they can be eliminated, as UP does. Instead, it simply stops
running them, while continuing to tighten the bounds of better configurations instead.

Algorithm 1 is stated using the old doubling condition introduced in UP. We propose an alternative
based on examining the confidence width UCBi − LCBi = 2

(
1− u(κi)

)
· α(mi, κi) + u(κi)

(
1−

F̂i + α(mi, κi)
)
. The first term is the error from runs below κi and the second term is the error

from runs above κi. Our new doubling condition attempts to balance these two terms. Due to space
constraints we discuss this more in Appendix B, but ultimately Line 9 of Algorithm 1 becomes

9′: if 2
(
1− u(κi)

)
· α(mi, κi) ≤ u(κi)

(
1− F̂i + α(mi, κi)

)
then ▷ captime doubling condition

The change to the continuous-space version COUP is analogous (Line 18 of Algorithm 2). Imple-
menting this refined doubling condition improves the performance of both UP and (C)OUP.
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4 THE CASE OF MANY CONFIGURATIONS: COUP

We now assume we have a very large, possibly uncountably infinite, set of configurations A, along
with an associated distribution DA over configurations a ∈ A from which we sample. It is no longer
feasible to target the configuration with maximum utility OPT = maxa∈A Ua. It may be arbitrarily
unlikely that we ever sample this configuration and, in fact, such a maximum may not even exist. So
we must relax our objective. For any γ ∈ (0, 1), let OPT γ = sup

{
µ : Pra∼DA [Ua ≤ µ] ≤ 1−γ

}
.

The quantity OPT γ marks the top ⌊1/γ⌋-quantile of expected utilities. That is, OPT γ is the utility
of the best configuration that remains after we have excluded the top γ-fraction of configurations.
The notion of optimality that we will target is given by the following definition.
Definition 2 ((ϵ, γ)-optimal). A configuration a ∈ A is (ϵ, γ)-optimal if Ua ≥ OPT γ − ϵ.

We present the general version of COUP in Algorithm 2. The procedure runs in successive phases.
Each phase is an execution of the few-configuration version, OUP, with the bounds being chosen
carefully so that runs can be shared across phases. Each phase p of COUP is characterized by two
parameters: γp ∈ (0, 1) determines the tail quantile being targeted in this phase, and ϵp ∈ (0, 1)
determines the level of optimality being targeted. At the start of each phase p, COUP samples enough
new configurations to ensure that it has a total of np = 1

γp
ln π2p2

3δ configurations, where δ is the
failure probability and π is the mathematical constant (Lines 5 and 6). COUP then essentially runs
the finite-space version OUP on this set of np configurations until it can prove ϵp-optimality (Lines
15–28). However, COUP “maintains state” between phases so that it can build on what it has already
learned. Confidence bounds in phase p incorporate any runs performed in previous phases (Lines
12 and 13), with the error terms being set carefully so that the total failure probability is controlled
across all phases.

If γp is relatively small and ϵp is relatively large, then COUP will sample a large number of con-
figurations in phase p, but not work too hard to prove that any of them is approximately optimal.
On the other hand, if γp is relatively large and ϵp is relatively small, then COUP will sample only a
few configurations and work very hard to prove one of them is nearly optimal (with respect to this
set). Since we are interested in procedures that are anytime in both ϵ and γ, we will be interested in
sequences of parameters for which ϵp → 0 and γp → 0 as p→∞. We can think of ϵp as controlling
the rate at which we explore new instances, and γp as controlling the rate at which we explore new
configurations. They are dissimilar in what they quantify though: ϵp is in “units” of utility, while γp
is in “units” of probability.

COUP never eliminates configurations because it needs them in later phases to make statistical
guarantees about relative optimality, but we know it will stop running them well before we will

be able to consider them for elimination anyway. Define αp(m,κ) :=
√

ln(36p2npm2(log κ+1)2/δ)
2m to

be the confidence width, chosen to satisfy Hoeffding’s inequality and the necessary union bounds.
The p-th phase of an execution of COUP will be called clean if

∣∣F̂i − Fi(κi)
∣∣ ≤ αp(mi, κi) and∣∣Ûi − Ui(κi)

∣∣ ≤ (1− u(κi)) · αp(mi, κi) for all mi and κi for all configurations i ∈ Ap.

Lemma 3. An execution of COUP is clean for all phases with probability at least 1− δ
2 .

Lemma 4. During a clean execution of COUP we have LCBi ≤ Ui ≤ UCBi and UCBi−LCBi ≤
2αp(mi, κi) + u(κi)

(
1− Fi(κi)

)
for all configurations i ∈ Ap in all phases p.

The p-th phase of an execution of COUP will be called characteristic if there exists some ip ∈ Ap

with Uip ≥ OPT γp .

Lemma 5. An execution of COUP is characteristic for all phases with probability at least 1− δ
2 .

Finally, we can state our main theorem about COUP’s performance.
Theorem 2. If COUP is run with parameters (ϵ1, ϵ2, ...) and (γ1, γ2, ...) then with with probability
at least 1− δ it returns an (ϵp, γp)-optimal configuration at the end of every phase p = 1, 2, ....

5 EMPIRICAL EVALUATION

We first compare the performance of OUP with the performance of UP (Section 5.1), and with
a naive procedure also considered in our previous work (Graham et al., 2023b) that simply takes
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Algorithm 2 COUP

1: Input: distribution over configurations DA; instances j = 1, 2, ...; utility function u; failure
parameter δ; phase parameters {ϵp, γp}p=1,2,3,....

2: n0 ← 0
3: A0 ← ∅
4: for p = 1, 2, 3, ... until terminated do

5: np ←
⌈

ln π2p2

3δ

γp

⌉
6: Np ← sample np − |Ap−1| new configurations from DA
7: Ap ← Ap−1 ∪Np ▷ all configurations for this phase
8: for i ∈ Np do ▷ initializations for new configurations
9: LCBi ← 0, UCBi ← 1; Ûi ← 0; F̂i ← 0; mi ← 0; κi ← 1

10: end for
11: for i ∈ Ap−1 do ▷ update bounds for existing configurations
12: UCBi ← Ûi +

(
1− u(κi)

)
· αp(mi, κi)

13: LCBi ← Ûi − αp(mi, κi)− u(κi)(1− F̂i)
14: end for
15: while maxi∈Ap

UCBi −maxi∈Ap
LCBi ≥ ϵp do ▷ phase termination condition

16: i← argmaxi′∈Ap
UCBi′

17: mi ← mi + 1
18: if 2αp(mi, κi) ≤ u(κi)(1− F̂i) then ▷ captime doubling condition
19: κi ← 2κi

20: ti1(κi), ..., timi
(κi)← runtime of i on instances 1, ...,mi with timeout κi

21: else
22: timi

(κi)← runtime of i on instance mi with timeout κi

23: end if
24: F̂i ← |{j∈[mi] : tij(κi)<κi}|

mi
▷ fraction of runs that completed

25: Ûi ← 1
mi

∑mi

j=1 u
(
tij(κi)

)
▷ empirical average utility

26: UCBi ← Ûi +
(
1− u(κi)

)
· αp(mi, κi)

27: LCBi ← Ûi − αp(mi, κi)− u(κi)(1− F̂i)
28: end while
29: end for
30: return argmaxi∈Ap

LCBi

enough runtime samples to satisfy Hoeffding’s inequality for each configuration, and takes them
at a high enough captime that it can still make its guarantee whether they complete or not. We
then explore the effects on performance when we expand our search to an infinitely-large set of
configurations (Section 5.2). We show that the search of the configuration space does not cost COUP
too much in terms of runtime, and we demonstrate COUP’s flexibility in the way it performs its
search. We perform our experiments on three existing datasets from the algorithm configuration
literature. The minisat dataset represents the measured execution times of the SAT solver by
that name on a generated set of instances (see Weisz et al. (2018) for details). The cplex rcw
and cplex region datasets represent the predicted solve times of the CPLEX integer program
solver on wildlife conservation and combinatorial auction problems, respectively (see Weisz et al.
(2020) for details). In Section 5.3 we compare COUP and OUP to a variety of other procedures
that do not make utilitarian optimality guarantees. We focus on the two utility functions considered
in our previous work (Graham et al., 2023b). The “log-Laplace” utility function is defined as
uLL(t) = 1− 1

2

(
t
κ0

)α
if t < κ0 and uLL(t) =

1
2

(
κ0

t

)α
otherwise. The “uniform” utility function is

defined as uunif (t) = 1− t
κ0

if t < κ0 and uunif (t) = 0 otherwise. The parameter κ0 is set to 60 in
both cases, and the parameter α is set to 1. To facilitate the comparison with UP we use the original
doubling condition when recreating our previous experiments (Graham et al., 2023b, Figures 1 and 2).
For other experiments we use the improved doubling condition. We perform all experiments in an
environment where restarting runs is not possible. Code to reproduce all experiments can be found at
https://github.com/drgrhm/coup.
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Figure 1: The ϵ guaranteed by each procedure as a function of total runtime using the log-Laplace utility
function (top row) and uniform utility function (bottom row). OUP consistently outperforms both UP and the
naive procedure for reasonable values of ϵ, often by an order of magnitude and even when the the parameter of
the naive procedure has been well-chosen.
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Figure 2: Total time spent by OUP on each configuration (log-Laplace utility function). Configurations are
sorted according to average utility. OUP spends less time on all but the very best configurations.

5.1 THE CASE OF FEW CONFIGURATIONS

We first compare the performance of OUP with that of UP by recreating our previously published
experiments (Graham et al., 2023b). Figure 1 shows that OUP consistently proves a meaningful ϵ in
much less time than UP. OUP is faster by an order of magnitude or more (compare the top row of
Figure 1 to Figure 2 in Graham et al. (2023b)). Furthermore, a very simple naive approach based on
Hoeffding’s inequality can be faster than UP in some scenarios (i.e. for relatively small values of ϵ)
when the captime parameter is chosen appropriately for the given utility function. However, OUP is
consistently faster than both UP and this naive approach, regardless of the chosen captime parameter.
In Section 3 we argued that OUP will spend less time running bad configurations than UP because it
can stop devoting attention to them and focus on more promising ones instead. UP, on the other hand,
continues to run suboptimal configurations until they are eliminated. Figure 2 shows that OUP does
indeed spend considerably less time on suboptimal configurations.

5.2 THE CASE OF MANY CONFIGURATIONS

We now compare the performance of COUP with that of OUP to show that COUP’s exploration of
the configuration space does not cost too much. The results for the log-Laplace utility function are
shown in Figure 3. We set δ = 0.01 throughout. For each phase p we set ϵp = e−p/6 and γp = e−p/3.
This schedule allows COUP to sample a large fraction of the configurations and the instances in the
datasets we consider. When it is finished each phase, it can make an ϵp-optimality guarantee with
respect to the set Ap of np configurations. We compare the total configuration time of COUP at

8
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Figure 3: Performance of COUP compared to OUP, using the log-Laplace utility function. COUP is anytime,
but takes only a small factor more time than OUP. The bottom row shows the final times. OUP backtracks on the
cplex region dataset because COUP sampled a relatively good configuration in phase 5, which OUP is able
to capitalize on, proving optimality in less total time than in phase 4.
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Figure 4: Different schedules for exploring new configurations (refining γ) vs. exploring existing configurations
(refining ϵ) when running COUP. Results are for the log-Laplace utility function and the cplex rcw dataset.

the end of each phase to the time OUP takes to prove ϵp-optimality when applied directly to this
set of np configurations. Figure 3 shows that the total configuration time required by COUP is not
much different from the time required by OUP, indicating that COUP was efficient at exploring the
configuration space.

COUP is extremely flexible in the way it explores new configurations relative to exploring new
instances. The parameter sequences γ1, γ2, ... and ϵ1, ϵ2, ... control the relative rates at which this
exploration takes place. We demonstrate this flexibility in Figure 4, presenting various different
exploration strategies. The “γ focus” strategy sets ϵp = e−p/30 and γp = e−p/3, and so works to
explore many configurations, making relatively weak guarantees about their optimality. The “ϵ focus”
strategy sets ϵp = e−p/3 and γp = e−p/30, and so explores relatively few configurations, but makes
strong optimality guarantees with respect to these. The “balanced” strategy sets ϵp = γp = e−p/5. In
general, it is not wise to focus on ϵ too intently until later in the search process. Once we have found a
good configuration (i.e., one with a relatively large upper confidence bound), new configurations can
be ruled out relatively cheaply, because they quickly look worse than the good one. So it is helpful
to find a good configuration quickly, and then later work on proving that it is good. The “γ then ϵ”
strategy achieves this by setting ϵp = e−p3/300 and γp = e−p2/30.

5.3 COMPARISON TO PROCEDURES WITH DIFFERENT GUARANTEES

Finally, while we see the main contribution of COUP as being its ability to search infinite parameter
spaces and make utilitarian near-optimality guarantees with respect to them, which other configu-
ration procedures have not been able to do, some other procedures do make different but related
guarantees. Comparing the performance of these various methods is not always easy since they

9
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Figure 5: Average configurator performance as measured by the percentage gap to best configuration in the
dataset. Top row shows procedures optimizing the log-Laplace utility function. Bottom row shows procedures
optimizing an expected runtime. Error regions show maximum and minimum observations.

optimize different metrics and offer different guarantees. We compare COUP and OUP to Successive
Halving (Jamieson & Talwalkar, 2016), Hyperband (Li et al., 2018), AC-Band (Brandt et al., 2023),
ImpatientCapsAndRuns (ICAR) (Weisz et al., 2020) and Structured Procrastination with Confidence
(SPC) (Kleinberg et al., 2019). We describe each of these procedures and their parameter settings
in more detail in the appendices. Figure 5 shows the percentage gap to best configuration for each
procedure at various amounts of runtime. The top row shows utilitarian procedures optimized for
the log-Laplace utility function, while the bottom row shows procedures that optimize runtime. In
the latter case, we optimized OUP and COUP on a uniform utility function, which is equivalent
to optimizing κ0-capped runtime. For the minisat dataset we set κ0 = 100 and for the CPLEX
datasets we set κ0 = 3000. These values are similar to the per-configuration captimes used by
ICAR and SPC, which both optimize an expected quantile-capped runtime. Figure 5 shows the
results for a quantile parameter of δ = .1. The results for δ = .2 are essentially the same (see
Appendix C). To avoid an unfair comparison we report the performance of OUP and COUP with
respect to this quantile-capped runtime metric. We observed that AC-Band performed poorly with
log-Laplace utility functions, so we additionally report its performance gap with respect to its default
metric. We plot the averages and error regions over five seeds. OUP, COUP and SPC are anytime
so they make recommendations throughout their execution, while the other procedures make point
recommendations. Overall, COUP and OUP performed better than many runs of the other procedures
and eventually narrowed in on the optimal configuration for every seed. Hyperband also worked
well by this percentage-gap metric in some settings on some seeds. For the RCW dataset it found
a good configuration more quickly than COUP but still left a gap to the best, whereas COUP and
OUP continually improved. COUP and OUP avoided the “luck of the draw” that other non-anytime
methods faced in the choice of their budget parameters; our investigation of varying parameterizations
for these procedures shows that these hard-to-set parameters substantially impacted performance.

6 CONCLUSION

We have presented COUP, an improved method for utilitarian algorithm configuration. COUP shares
the positive qualities of its predecessors, but is truly general purpose, in that it can search over
infinite configuration spaces effectively. COUP is also shown to be superior when applied to finite
configuration spaces. For the sake of continuity with previous work we have made comparisons on
the datasets and utility functions that have been used before. However, this comparison is somewhat
limited; a more comprehensive investigation would be a valuable direction for future work. Moreover,
while we are convinced that optimizing utility functions is better than optimizing runtime, we
recognize that coming up with the right utility function is not always easy for end users; establishing
a tool or guide for doing this is another important future direction.
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A DEFERRED PROOFS

Lemma 1: An execution of OUP is clean with probability at least 1− δ.

Proof. For any configuration i and any round r, let mi(r) and κi(r) be the number of samples taken
by i and the captime they were taken with, respectively, in round r. Let F̂i(mi, κi) and Ûi(mi, κi)

be OUP’s internal variables F̂i and Ûi after taking mi samples at captime κi. Define the good events:

G(F )
i,mi,κi

=
{∣∣F̂i(mi, κi)− Fi(κi)

∣∣ ≤ α(mi, κi)
}

G(U)
i,mi,κi

=
{∣∣Ûi(mi, κi)− Ui(κi)

∣∣ ≤ (1− u(κi))α(mi, κi)
}

Gi,mi,κi
= G(F )

i,mi,κi
∩ G(U)

i,mi,κi

Gi,r = Gi,mi(r),κi(r)

Gi =
∞⋂
r=1

Gi,r

G = G1 ∩ · · · ∩ Gn.

By definition, an execution is clean if and only if G holds. Due to the captime doubling condition,
and because i might eventually be eliminated (though it might not be), if Ri is the set of rounds in
which i was selected, we have

∞⋂
mi=1

∞⋂
li=1

Gi,mi,2li−1 ⊆
⋂

r∈Ri

Gi,mi(r),κi(r). (3)

For any round r, let ρi(r) ≤ r be the last round in which configuration i was selected (i.e., up to and
including round r). Since i was not selected in any rounds between ρi(r) and r, the values of i’s
internal variables in round r are the same as they were in round ρi(r). So the clean bounds hold in
round r if and only if they hold in round ρi(r), and so they hold in all rounds if and only if they hold
in all rounds where i is selected. In other words

∞⋂
r=1

Gi,r =
⋂

r∈Ri

Gi,r. (4)
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We can now bound the probability that an execution is not clean:

Pr(G) = Pr(G1 ∪ · · · ∪ Gn) (de Morgan’s law)

≤
n∑

i=1

Pr(Gi) (union bound)

=

n∑
i=1

Pr

( ∞⋂
r=1

Gi,r
)

(definition)

=

n∑
i=1

Pr

( ⋂
r∈Ri

Gi,r
)

(Equation (4))

=

n∑
i=1

Pr

( ⋂
r∈Ri

Gi,mi(r),κi(r)

)
(definition)

≤
n∑

i=1

Pr

( ∞⋂
mi=1

∞⋂
li=1

Gi,mi,2li−1

)
(Equation (3))

=

n∑
i=1

Pr

( ∞⋃
mi=1

∞⋃
li=1

Gi,mi,2li−1

)
(de Morgan’s law)

≤
n∑

i=1

∞∑
mi=1

∞∑
li=1

Pr
(
Gi,mi,2li−1

)
(union bound)

≤
n∑

i=1

∞∑
mi=1

∞∑
li=1

(
Pr

(
G(F )
i,mi,κi

)
+ Pr

(
G(U)
i,mi,κi

))
(union bound)

≤
n∑

i=1

∞∑
mi=1

∞∑
li=1

4δ

11nm2
i l

2
i

(Hoeffding’s inequality)

≤ δ (Basel problem).

Lemma 2: For all i at all points during a clean execution, we have

LCBi ≤ Ui ≤ UCBi,

and

UCBi − LCBi ≤ 2α(mi, κi) + u(κi)
(
1− Fi(κi)

)
.

Proof. We will use the fact that Ui(κ) − u(κ)
(
1− Fi(κ)

)
≤ Ui for any κ by the law of total

expectation, and that Ui ≤ Ui(κ) by the monotonicity of u. We have

LCBi = Ûi − α(mi, κi)− u(κi)(1− F̂i) (definition)

≤ Ui(κi)− u(κi) · α(mi, κi)− u(κi)(1− F̂i) (clean)

≤ Ui(κi)− u(κi)
(
1− Fi(κi)

)
(clean)

≤ Ui (law of total expectation)
≤ Ui(κi) (monotonic utility)

≤ Ûi + (1− u(κi)) · α(mi, κi) (clean)
= UCBi (definition).

And

UCBi − LCBi = (2− u(κi)) · α(mi, κi) + u(κi)
(
1− F̂i

)
(definition)

≤ 2α(mi, κi) + u(κi)
(
1− Fi(κi)

)
(clean).
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Theorem 1: With probability at least 1 − δ, OUP eventually returns an optimal configuration
and it returns an ϵ-optimal configuration if it is run until 2αiopt + u(κiopt)

(
1− Fiopt(κiopt)

)
≤ ϵ.

Furthermore, for any suboptimal configuration i, if mi and κi ever become large enough that
2α(mi, κi) + u(κi)

(
1− Fi(κi)

)
< ∆i

then i will never be run again, and i will be outright eliminated once mi, κi,miopt and κiopt are
large enough that

2α(mi, κi) + 2α(miopt , κiopt) + u(κi)
(
1− Fi(κi)

)
+ u(κiopt)

(
1− Fiopt(κiopt)

)
< ∆i.

Proof. By Lemma 1, the execution is clean with probability at least 1− δ. Suppose the execution
is clean, so the bounds in Lemma 2 hold. For any configuration i in any round r, suppose that mi

and κi are large enough that 2α(mi, κi) + u(κi)
(
1− Fi(κi)

)
< ∆i at the beginning of round r (i.e.,

before any runs are performed). We have
UCBi ≤ LCBi + 2α(mi, κi) + u(κi)

(
1− Fi(κi)

)
(Lemma 2)

≤ Ui + 2α(mi, κi) + u(κi)
(
1− Fi(κi)

)
(Lemma 2)

< Ui +∆i (assumption)
≤ Uiopt (definition)
≤ UCBiopt (Lemma 2)

so i will not be selected in round r. And since 2α(mi, κi)+u(κi)
(
1− Fi(κi)

)
does not change in any

round that i is not selected, i will never be selected again. So if 2α(mi, κi)+u(κi)
(
1− Fi(κi)

)
< ∆i,

then i will never be run again.

Now, if OUP keeps selecting and running i, then we will have 2α(mi, κi) → 0 and
u(κi)

(
1− Fi(κi)

)
→ 0, so there will come a time where 2α(mi, κi) + u(κi)

(
1− Fi(κi)

)
< ∆i.

In either case there will be some final round ri after which i is never run again. Let mi and κi

be the procedure’s internal parameters at the end of this round. Only the optimal configuration(s)
will be run after round maxi suboptimal ri. Define γi = ∆i − 2α(mi, κi) − u(κi)

(
1− Fi(κi)

)
and

note that γi > 0. As miopt → ∞ and κiopt → ∞, there will eventually come a time where
2α(miopt , κiopt) + u(κiopt)

(
1− Fiopt(κiopt)

)
< γi for any i. At this point we will have

UCBi ≤ LCBi + 2α(mi, κi) + u(κi)
(
1− Fi(κi)

)
(Lemma 2)

= Uiopt −∆i + 2α(mi, κi) + u(κi)
(
1− Fi(κi)

)
(definition)

= Uiopt − γi (definition)
≤ UCBiopt − γi (Lemma 2)

≤ LCBiopt + 2α(miopt , κiopt) + u(κiopt)
(
1− Fiopt(κiopt)

)
− γi (Lemma 2)

< LCBiopt (time reached)
≤ LCBi∗ (choice of i∗)

and so i will be eliminated outright.

Now, let i∗r be the configuration with highest LCB at the end of round r, chosen at Line 19, and let
iopt be an optimal configuration. During a clean execution we will have

UCBiopt ≥ Uiopt (Lemma 2)

≥ Ui∗r
(iopt is optimal)

≥ LCBi∗r (Lemma 2)
so iopt will not be eliminated. On the other hand, by the above, any suboptimal configuration i will
eventually be eliminated, so eventually only the optimal configuration(s) will remain.

Finally, suppose that a clean execution of OUP is run until 2αiopt + u(κiopt)
(
1− Fiopt(κiopt)

)
≤ ϵ.

Then we will have
Uiopt − Ui∗ ≤ UCBiopt − LCBi∗ (Lemma 2)

≤ UCBiopt − LCBiopt (choice of i∗)

≤ 2αiopt + u(κiopt)
(
1− Fiopt(κiopt)

)
(Lemma 2)

≤ ϵ (assumption)
so the returned configuration i∗ is ϵ-optimal.
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Lemma 3: An execution of COUP is clean for all phases with probability at least 1− δ
2 .

Proof. For any p, i,mi, κi, define the good events:

G(U)
p,i,mi,κi

=
{∣∣Ui(κi)− Ûi(mi, κi)

∣∣ ≤ (1− u(κi)) · αp(mi, κi)
}

G(F )
p,i,mi,κi

=
{∣∣Fi(κi)− F̂i(mi, κi)

∣∣ ≤ αp(mi, κi)
}

Gp,i,mi,κi = G
(U)
p,i,mi,κi

∩ G(F )
p,i,mi,κi

Gp,i =
∞⋂

mi=1

∞⋂
li=1

Gp,i,mi,2li−1

Gp = Gp,1 ∩ · · · ∩ Gp,np
.

An execution is clean in phase p if Gp holds. The probability that an execution is not clean in any
phase is

Pr

( ∞⋃
p=1

Gp
)
≤

∞∑
p=1

np∑
i=1

∞∑
mi=1

∞∑
li=1

(
Pr(G(F )

p,i,mi,2li−1) + Pr(G(U)

p,i,mi,2li−1)

)
(union bound)

≤
∞∑
p=1

np∑
i=1

∞∑
mi=1

∞∑
li=1

4δ

36p2npm2
i l

2
i

(Hoeffding’s inequality)

≤ δ

2
(Basel problem).

Lemma 4: The proof is completely analogous to that of Lemma 2 and is omitted.

Lemma 5: An execution of COUP is characteristic for all phases with probability at least 1− δ
2 .

Proof. For any p, and for any i ∈ Ap, from the definition of OPT γp , the probability that Ui ≤
OPT γp is at most 1− γp. So the probability that all np configurations have Ui ≤ OPT γp is at most
(1− γp)

np , which is at most (e−γp)np = e−npγp ≤ 3δ
π2p2 . Summing over p = 1, 2, ..., the probability

that in any phase p all np configurations have Ui ≤ OPT γp is at most δ
2 .

Theorem 2: If COUP is run with parameters (ϵ1, ϵ2, ...) and (γ1, γ2, ...) then with with probability
at least 1− δ it returns an (ϵp, γp)-optimal configuration at the end of every phase p = 1, 2, ....

Proof. By Lemmas 3 and 5 an execution is both clean and characteristic with probability at least
1− δ. Because it is characteristic, there is some ip with Uip ≥ OPT γp . Let i∗ be the configuration
returned at the end of phase p during a clean and characteristic execution. We will have

Ui∗ ≥ LCBi∗ (Lemma 4)
≥ max

i∈Ap

UCBi − ϵp (phase termination condition)

≥ UCBip − ϵp (maximum)

≥ Uip − ϵp (Lemma 4)

≥ OPT γp − ϵp (characteristic).

B IMPROVED CAPTIME DOUBLING CONDITION

We discuss the change in doubling condition as applied to OUP, but the same argument holds for
COUP more generally on a per-phase basis, as well as for UP. Line 9 of Algorithm 1 shows the
doubling condition introduced by UP:

9: if 2α(mi, κi) ≤ u(κi)(1− F̂i) then ▷ captime doubling condition
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Figure 6: Improvement of the new doubling condition on UP and OUP, using the log-Laplace utility function.
Other utility functions show similar improvement.

The term 2α(mi, κi) can be interpreted as the error incurred due to sampling because this is the term
that comes from taking samples and applying the statistical bound of Hoeffding’s inequality. The term
u(κi)(1− F̂i) can be interpreted as the error incurred due to capping because runs longer than κi can
have a utility of at most u(κi), and there will only be (approximately) 1 − F̂i of these. Balancing
these two terms seems like a sensible approach, but a more careful analysis suggest something slightly
different.

To emphasize that our uncertainty is the result of both sampling and capping, we re-write the upper
and lower confidence bounds without cancelling terms as

UCBi = Ûi +
(
1− u(κi)

)
· α(mi, κi) + 0,

LCBi = Ûi −
(
1− u(κi)

)
· α(mi, κi)− u(κi)

(
1− F̂i + α(mi, κi)

)
.

It can now be seen more clearly that the confidence width decomposes into a sum of two terms.
The first represents uncertainty about runs from below the captime κi, and the second represents
uncertainty about runs from above κi:

UCBi − LCBi = 2
(
1− u(κi)

)
· α(mi, κi)︸ ︷︷ ︸

error from runs below κi

+u(κi)
(
1− F̂i + α(mi, κi)

)︸ ︷︷ ︸
error from runs above κi

.

Because i was chosen at line 7 to have maximum UCB, we have UCBi − LCBi ≥ UCBiopt −
LCBi ≥ ∆i, so shrinking the confidence width UCBi − LCBi is necessary to prove a better
optimality guarantee for configuration i. But because the confidence width is a sum of two terms,
shrinking it toward zero requires shrinking both terms toward zero; the confidence width is dominated
by the largest term. The new captime doubling condition we propose shrinks these two terms in a
balanced way:

9′: if 2
(
1− u(κi)

)
· α(mi, κi) ≤ u(κi)

(
1− F̂i + α(mi, κi)

)
then ▷ captime doubling condition

Empirically, this is generally an improvement over the old doubling condition and sometimes a large
improvement. We set ϵ = δ = .1 and run both OUP and UP using both the old and new doubling
conditions. Figure 6 clearly shows the improvement to both procedures in terms of the optimality
guarantee being made and the time spent per configuration.

C DESCRIPTION OF PERCENTAGE-GAP EXPERIMENT

In Section 5.3 we compare COUP and OUP to the following procedures.

17



Published as a conference paper at ICLR 2025

10 1 100 101 102

CPU time (days)
0

25

50

75

100

Pe
rc

en
t g

ap
 to

 o
pt

im
al OUP

COUP
SPC
AC-Band, default
ICAR

100 101 102 103 104

CPU time (days)
0

25

50

75

100

100 101 102 103

CPU time (days)
0

25

50

75

100

Figure 7: Average configurator performance as measured by the percentage gap to best configuration in the
dataset optimizing an expected runtime. Quantile parameter δ = .2

Successive Halving (Jamieson & Talwalkar, 2016) is a simple procedure that “successively halves”
the number of configurations based on their performance until only one remains. It has a budget
which it allocates equally to surviving configurations. We varied the budget between 22000 and
186000 for the minisat dataset and between 22000 and 350000 for the CPLEX datasets, which is
the largest range possible based on the numbers of configurations and instances.

Hyperband (Li et al., 2018) builds on Successive Halving, allocating the budget more effectively
across configurations. We set Hyperband to optimize the utility function while minimizing runtime as
its resource budget. We set the multiplier η ∈ {2, 3, 4, 5, 6} so that there would be about five brackets,
as recommended by the authors, and then set the resource parameter R to be as high as the dataset
would permit. We ran Hyperband and Successive Halving with runs capped at κ ∈ {1, 10, 100, 500}
for the minisat dataset and κ ∈ {10, 100, 1000, 5000} for the CPLEX datasets.

AC-Band Brandt et al. (2023) builds further on Hyperband, but is specifically designed for algorithm
configuration. We set AC-Band to optimize the utility function, but we found this did not work
very well, so we also reported its performance when optimizing its default metric, which is better.
We suspect that this utility function is uniquely suited to AC-Band. AC-Band runs a number of
configurations in parallel and terminates them all as soon as one finishes. Meanwhile, its default
evaluation metric counts the number of times a configuration finishes first. The AC-Band paper
reports the percentage gap from best average runtime, though it optimizes a different function. For
consistency, we report this percentage gap. Also, we fixed what we believe to be a bug in the code
from the AC-Band repo. Line 44 of the cse.py file calls the env.run function with a hard-coded
captime value of 900. This is the maximum captime of the smaller, minisat dataset, but the larger
CPLEX datasets were collected with a maximum captime of 10000 seconds. We used a captime of
10000 seconds for the CPLEX datasets (though this made only a little difference).

ImpatientCapsAndRuns (ICAR) (Weisz et al., 2020) builds on a different line of research, and is
designed to discard poorly-performing configurations quickly. It measures performance according to
an expected capped runtime, where the cap is set so that only a δ-fraction of runs time out. Following
the experiments reported in their paper, we set ϵ = 0.25 for the minisat dataset and ϵ = 0.1 for the
CPLEX ones, which were the smallest values we could use without running out of instances. We used
δ ∈ {0.1, 0.2} and varied γ ∈ {0.01, 0.02, 0.05} (note that these parameters have different meaning
than in our paper). We varied the boolean parameters with the same configurations as the authors.

Structured Procrastination with Confidence (SPC) (Kleinberg et al., 2019) makes the same optimality
guarantee as ICAR. We ran SPC with a θ-multiplier parameter of 2 and 3, and checked results after
0.1, 1, 10 and 100 CPU days of total compute time for the minisat dataset and 1, 10, 100 and 1000
CPU days for the CPLEX datasets. The total compute time implies a certain ϵ, depending on the
dataset. Since they optimize the same objective function, we used the same δ values to measure the
performance of SPC as we used for ICAR.
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